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Abstract 

A concept of unique peptides (CUP) was proposed and implemented to identify whole-cell proteins from tandem 
mass spectrometry (MS/MS) ion spectra. A unique peptide is defined as a peptide, irrespective of its length, that 
exists only in one protein of a proteome of interest, despite the fact that this peptide may appear more than once in 
the same protein. Integrating CUP, a two-step whole-cell protein identification strategy was developed to further 
increase the confidence of identified proteins. A dataset containing 40,243 MS/MS ion spectra of Saccharomyces 
cerevisiae and protein identification tools including Mascot and SEQUEST were used to illustrate the proposed 
concept and strategy. Without implementing CUP, the proteins identified by SEQUEST are 2.26 fold of those 
identified by Mascot. When CUP was applied, the proteins bearing unique peptides identified by SEQUEST are 
3.89 fold of those identified by Mascot. By cross-comparing two sets of identified proteins, only 89 common pro-
teins derived from CUP were found. The key discrepancy between identified proteins was resulted from the filter-
ing criteria employed by each protein identification tool. According to the origin of peptides classified by CUP 
and the commonality of proteins recognized by protein identification tools, all identified proteins were 
cross-compared, resulting in four groups of proteins possessing different levels of assigned confidence. 
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Introduction  

Mass spectrometry (MS) based protein identification 
experiments have been the major resource for 
large-scale proteomic studies of a cell or an organism 
(1-5). Presently, there are numerous protein identifi-
cation packages available such as MS-Tag (6), Mascot 
(7) and SEQUEST (8, 9). Reviews on these various 
protein identification tools were reported recently (10, 
11). 
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The critical complexity in protein identification lies 
in the need to provide confidence levels for the results 
obtained using the above mentioned tools. A set of 
positive protein results can help derive accurate con-
clusions and develop an appropriate plan for further 
study. However, the practice of using a specific set of 
MS data to predict several peptides necessitates the 
separation of the “real” proteins by showing their high 
confidence. This protracted step is one of the most 
complicated in protein identification. The major dif-
ficulties in using these protein identification tools in-
clude multi-identification (i.e., a series of identified 
peptides may be used to identify two or more pro-
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teins), low-confidence identification (i.e., the Mowse 
score of each peptide is lower than the threshold 
Mowse score, though the total Mowse score may be 
greater than the threshold value), and pre-set thresh-
old values used to determine the “true” peptide (e.g., 
Xcorr in SEQUEST). 

An apparent downside in protein identification us-
ing SEQUEST is the determination of the Xcorr value. 
Under diverse Xcorr settings, the searched results, 
based on the same MS/MS data, may show great 
variation leading to ambiguity among biological re-
searchers. For instance, from the MS/MS data of 
Saccharomyces cerevisiae (12), 1,227 proteins were 
recognized for Xcorr value set to 2.0 or greater while 
only 347 proteins were identified for Xcorr value 
greater than or equal to 2.5. These two sets of “identi-
fied” proteins were derivatives of the same MS/MS 
spectral dataset using the same protein identification 
tool. Consequently, these deviant protein results con-
vey confounding messages to scientists when applied 
to interpreting phenotypic observations. 

Comparisons among various protein identification 
tools were also reported (13, 14). For example, 
Chamrad et al (13) applied different protein identifi-
cation tools to the same set of MS and MS/MS spec-
tral data and observed that only 30%-50% of the re-
sults were consistent. This underscores the fact that 
searched proteins from each protein identification tool 
generate different confidences, and only those pro-
teins with high confidences can be recognized by 
these tools. Accordingly, a strategy to analyze the 
confidence of searched proteins is required. 

Based on the concept of unique peptides (CUP) and 
the cross-comparison among identified proteins, a 
two-step strategy to study the confidence of 
whole-cell protein identification was developed in this 
study. The CUP filters first classify peptides into 
unique and non-unique clusters, and the step of 
cross-comparison adds the levels of assigned confi-
dence to proteins identified by means of different 
protein identification tools. Depending on the acces-
sibility of additional protein identification tools, the 
proposed dual step approach can be applied inde-
pendently or in a combined mode. To demonstrate 
effect of the strategy, two extensively used protein 
identification packages, namely SEQUEST and Mas-
cot, were employed to identify proteins from publicly 

available MS data, and the recognized proteins from 
these tools were investigated using the proposed 
two-step protein identification strategy. 

Results 

Concept of unique peptides 

A unique peptide is defined as a peptide, irrespective 
of its length, that exists only in one protein of a pro-
teome of interest, despite the fact that this peptide 
may appear more than once in the same protein. For 
example, for Proteins 1 and 2 digested by trypsin, the 
expected peptides with zero missed cleavage are il-
lustrated in Figure 1. 

 

Figure 1  Illustration of the concept of unique peptides. 
 

According to the definition, the peptide ANDR 
shown in Figure 1 is regarded as unique since it ap-
pears once in Protein 1 but not in Protein 2. The pep-
tide NQEGHK is also considered unique based on the 
same standard. Neither MFPSTK nor WYVTR are 
unique peptides as they appear in both Proteins 1 and 
2. Other unique peptides include MFPSR and CEGIK, 
found only in Protein 2. The definition of unique pep-
tide is essential in protein identification. It is intuitive 
to identify Protein 1, if ANDR, NQEGHK, or both are 
identified. On the contrary, it becomes challenging to 
conclude whether Protein 1 or 2 exists if only 
MFPSTK is identified from the MS/MS data. There-
fore, a unique peptide can act as a “protein tag” in 
protein identification. 

Whole-cell protein identification 

The general procedure implemented in a protein iden-
tification tool contains three steps: peptide ranking, 
peptide filtering and protein identification, which are 
equivalent to Steps 1, 3 and 4 shown in Figure 2 (the 
leftmost column). The MS and MS/MS ion spectra are 
combined to reconstruct the amino acid sequence of 
peptides. It is typical that not all experimentally ob-
tained mass spectral data are used during protein  
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Figure 2  Application of the concept of unique peptides and the effect of peptide filtering criteria on the whole-cell protein identifi-
cation. The number shown in the parentheses represents non-redundant peptides, and the number surrounding by square brackets 
stands for proteins derived from the non-unique peptide database that were also found in the unique peptide database. 
 
identification. For example, Peng et al (4) reported in 
their yeast proteome experiments that among 162,000 
MS/MS ion spectra, only 26,815 peptides were recon-
structed and considered confident, representing a 
16.5% utilization of MS/MS information. 

Steps 1, 3 and 4 

Using MS/MS spectral datasets (12), 9,285 top-ranking 
peptides were derived from 40,243 MS/MS ion spec-
tra by means of Mascot, and 9,852 top-ranking pep-
tides were obtained by SEQUEST (Figure 2, Step 1). 
By applying the identity threshold score based on the 
absolute probability implemented in Mascot, 335 
(213+122) peptides were satisfied; when 
SEQUEST-filtering criteria proposed by Peng et al (4) 
were adopted, 1,132 (809+323) peptides were found 
(Figure 2, Step 3). As a result, 241 (95+146, using 
Mascot) and 545 (370+175, using SEQUEST) pro-
teins were deemed identified (Figure 2, Step 4). It can 
be seen that the proteins identified by SEQUEST are 
2.26 fold of those identified by Mascot. On average, 
each protein recognized by SEQUEST requires 2.08 
peptides, whereas 1.39 peptides per protein are 
needed for Mascot. When an equivalent identity 
threshold (see Materials and Methods) was taken as 
the filtering criterion in Mascot, 836 (563+273) pep-
tides satisfied the requirement, resulting in 417 
(248+169) identified proteins (2.01 peptides per pro-
tein). Even though, the proteins identified by 

SEQUEST are still 1.31 fold of those identified by 
Mascot. 

Step 2 

Our proposed two-step strategy includes two addi-
tional yet critical steps: Steps 2 and 5 (Figure 2); that 
is, peptide classifying: classify top-ranking peptides 
into unique and non-unique peptide cluster, and pro-
tein regrouping: regroup identified proteins into four 
different levels of assigned confidence. In Step 2, a 
total of 6,708 top-ranking non-redundant peptides 
(from Step 1) reconstructed by SEQUEST were clas-
sified into 3,817 non-redundant unique and 2,891 
non-redundant non-unique peptides, in which only 
809 unique peptides satisfied filtering criteria (4), 
representing 21.19% of total unique peptides, from 
which 370 proteins were deduced. The ratio of unique 
peptide to protein was 2.19 (see supplementary file 
“sequest.xls” for relevant unique and non-unique pep-
tides).  

For Mascot, 4,930 out of 5,965 top-ranking pep-
tides were unique according to the proposed CUP, and 
the remaining 1,035 peptides were non-redundant and 
non-unique. When the absolute identity threshold was 
applied, there were 213 unique peptides (correspond-
ing to 4.32% of total unique peptides) that satisfied 
Mascot filtering criteria, from which 95 proteins were 
deemed identified, and the unique peptide-to-protein 
ratio was 2.24 (refer to supplementary file “mascot- 
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ab.xls”). In parallel, 563 unique peptides satisfied the 
equivalent identity threshold criteria. This represents 
11.42% of total unique peptides in this category, 
which translates to 248 proteins, and the ratio of 
unique peptide to protein was 2.27 (refer to supple-
mentary file “mascot-eq.xls”). 

Step 5 

To further analyze the confidence of identified pro-
teins obtained from different protein identification 
tools, these proteins were cross-compared (Figure 2, 
Step 5). Among 370 SEQUEST-recognized and 95 
Mascot-recognized proteins using absolute identity 
threshold (both deduced according to CUP), there 
were 89 proteins found by both tools and were con-
sidered as a protein group with the highest confidence 
(Level IV). The remaining 287 proteins possessing 
unique peptides were assigned as Level III, a group of 
proteins with the second highest confidence. The 
above two levels of proteins represent 65.62% of total 
recognized proteins. Correspondingly, after cross- 
comparing 175 proteins from SEQUEST and 146 
proteins from Mascot (both derived from non-unique 
peptide cluster), 124 common proteins and the re-
maining 73 non-common proteins were collected and 
assigned as Level II and Level I proteins, respectively, 
representing two low confident groups in this pro-
posed strategy (see supplementary file “se-
quest-mascot-ab.xls” for a complete listing of 
re-grouped peptides). 

When proteins were identified by means of 
equivalent identity threshold in Mascot and 
cross-compared to those identified by SEQUEST, four 
groups of proteins were collected. Each group con-
tains 148, 322, 157, and 30 proteins ranging from 
Level IV to Level I, respectively. Both Level IV and 
Level III proteins occupy 71.54% of total identified 
proteins under this set of filtering criteria (see sup-
plementary file “sequest-mascot-eq.xls” for a com-
plete listing of re-grouped peptides).  

The identified proteins with higher levels of confi-
dence defined by our proposed strategy require no 
(Level IV proteins) or a lesser degree (Level III pro-
teins) of human intervention, because these proteins 
were identified by means of CUP. In contrast, both 
Level II and Level I proteins must be carefully scruti-

nized when drawing conclusions.   

Discussion 

Characteristics of unique peptides and missed 
cleavage 

Figure 3 portrays distributions of the number of pro-
teins, trypsinized peptides (including both unique and 
non-unique), and trypsinized unique peptides at dif-
ferent molecular weights. The number of matched 
proteins decreases monotonically as molecular weight 
increases, whereas a large portion of proteins are re-
lated to low-molecular-weight peptides. In the 
high-molecular-weight region, the numbers of pep-
tides and unique peptides are nearly the same, illus-
trating that either peptide type could be used to iden-
tify proteins, and a highly accurate result could be 
obtained due to a smaller sample size (~1,000 proteins 
and ~10,000 peptides). Comparatively, the differences 
between the number of peptides and the number of 
unique peptides become noticeable in the low-molecular- 
weight region, indicating the difficulty of deducing 
true proteins from a pool of tens of thousands of pep-
tides. When the characteristics of unique peptides are 
applied to protein identification, the uncertainty of de-
ducing proteins from peptide fragments is minimized. 
The significance of CUP becomes obvious and effec-
tive, particularly for identifying proteins possessing 

 

Figure 3  Distributions of in silico trypsinized unique pep-
tides, peptides (including both unique and non-unique), and 
proteins at different molecular weights. This figure is con-
structed by allowing one missed cleavage. 
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short peptides. The CUP also simplifies the efforts 
exerted on the whole-cell protein identification, since 
no advanced and/or complicated mathematics or sta-
tistical reasoning is required. The drawback of CUP is 
that not all proteins possess unique peptides, meaning 
that different protein identification approaches are 
required to identify those proteins that do not possess 
unique peptides as defined by CUP. 

A protease, such as trypsin, is used to digest a 
whole-cell protein sample, resulting in a pool of pep-
tides at various lengths. When a yeast proteome is in 
silico digested by trypsin, 334,520 peptides are re-
sulted from 5,863 proteins if a perfect trypsinzation is 
assumed (i.e., no missed cleavage is allowed). The 
peptide-to-protein ratio is 57. When only unique pep-
tides are taken into consideration, the same ratio re-
duces to 31. If one missed cleavage on the amino acid 
sequence of a protein is allowed, the pep-
tide-to-protein ratio becomes 113, and the ratio re-
duces to 78 when only considering unique peptides. 
This ratio depicts the average number of peptides re-
quired in order to match a protein out of a yeast pro-
teome. A smaller ratio at each respective missed 
cleavage indicates a significant reduction of false 
positive protein identification from a whole-cell pro-
tein sample, and a high confidence of identified re-
sults would be expected because of the characteristics 
of unique peptides implemented in the proposed pro-
tein identification strategy. 

Unique peptides and molecular weight 

Figure 4 depicts that at low-molecular-weight region, 
there are more trypsinizied peptides than unique ones; 
for example, at molecular weights between 400 and 
500 Da, there are 35,982 peptides compared to 1,672 
unique peptides. The ratio of these two peptide groups 
is 21.52. As the molecular weight of a peptide in-
creases, the peptide ratio approaches 1; for example, 
at molecular weight between 1,500 and 1,600 Da, the 
ratio is 1.08 (17,446 vs. 16,198). This observation 
clearly points out the difficulty of identifying proteins 
from a low-molecular-weight peptide pool. Without 
the implementation of CUP to whole-cell protein 
identification, a high false positive rate of protein 
identification would be expected, leading to erroneous 
conclusions. 

 

Figure 4  Correlation of trypsinized unique peptides and 
trypsinized peptides (including both unique and non-unique) at 
different molecular weights. 
 

Figure 4 also illustrates that as the molecular 
weight of a peptide increases, the differentiation be-
tween trypsinized peptides and trypsinizied unique 
peptides becomes unremarkable (approaching to the 
45º line). In other words, peptides having larger mo-
lecular weight possess characteristics as defined by 
CUP. The correlation of the average length of a 
unique peptide (Y) to its average molecular weight (X) 
can be expressed as Y = 0.0089X, which means that 
the longer a trypsinizied peptide, the higher the possi-
bility of it being regarded as a unique peptide. As a 
result, a much higher confidence of the identified 
proteins could be drawn. 

Filtering criteria 

Different protein identification tools implement dif-
ferent peptide ranking and filtering criteria. 
SEQUEST generates in silico mass spectra, compares 
them to the experimentally obtained ones, and ranks 
the matches; whereas Mascot pre-processes intensities 
of mass signals in order to increase the signal-to-noise 
ratio, and uses a probability-based approach to rank 
the matches (7). The absolute probability in conjunc-
tion with a user-specified false positive rate (based on 
type II error) was adopted by Mascot and used to cal-
culate an identity threshold to filter ranked peptides. 
Due to different degrees of stringency applied to re-
moving low confident peptides, there are over 50% 
differences in identified proteins derived from the 
same MS/MS ion spectra (refer to Steps 1, 3 and 4 in 
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Results section). To validate the hypothesis that the 
differentiation in the number of matched proteins re-
sults from different filtering criteria, an equivalent 
identity threshold using data reported in Peng et al (4) 
was estimated and applied to the same spectra. The 
result clearly indicates that the peptide filtering crite-
ria (absolute identity vs. equivalent identity; or, 241 
vs. 417 proteins) hold enormous impact on the protein 
identification; the looser the filtering criteria, the lar-
ger number of matched proteins. By further examin-
ing proteins identified by Mascot and SEQUEST, a 
noticeable disagreement in matched proteins was ob-
served, causing one to wonder which are true positive 
proteins.  

It is meaningless to determine which pep-
tide-filtering criteria implemented in each respective 
protein identification tool is superior to others, since 
each set of criteria has its own strength and weakness. 
To utilize the strength of those criteria built in differ-

ent protein identification tools, one could 
cross-compare matched proteins deduced by each 
protein identification tool; as such, a high confident 
set of results could be obtained, and different levels of 
confidence of recognized proteins could be assigned.  

Origin, commonality and confidence of identi-
fied proteins 

To minimize the inconsistency of identified proteins 
derived from different protein identification tools, and 
thus to increase the confidence of identified proteins, 
a cross-comparison step among matched proteins was 
implemented into the proposed protein identification 
strategy. Four levels of confidence were assigned ac-
cording to the origin of a peptide (unique vs. 
non-unique) and the commonality of a matched pro-
tein (presence vs. absence) in all protein identification 
tools. As illustrated in Figure 5, a Level IV protein is  

 

Figure 5  Illustration of the two-step strategy for whole-cell protein identification. The initial step (Step 2 in Figure 2) involves the 
classification of top-ranking peptides from each protein identification tool into unique and non-unique peptide pools, which are sub-
sequently used for protein identification. The last step (Step 5 in Figure 2) cross-compares the identified proteins from previous step: 
common proteins identified in the cross-comparison step are more confident than the non-common ones. 
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a protein possessing unique peptides and found in all 
protein identification tools, whereas a protein com-
prised of unique peptides but not found in all protein 
identification tools is assigned as a Level III protein. 
Those proteins consisting of non-unique peptides 
and either found or not found in all protein identifi-
cation tools are called Level II and Level I proteins, 
respectively. A higher level of confidence of matched 
proteins (such as Level IV and Level III proteins) 
implies that a true positive identification is con-
cluded, and requires no or a lesser degree of manual 
validation. On the other hand, a false positive identi-
fication might result from those Level II and Level I 
proteins; therefore, careful scrutinization becomes 
unavoidable. 

Conclusion 

Generally, a protein identification tool takes MS 
and/or MS/MS ion spectra to rank and deduce the 
most probable peptides, and the resulting proteins are 
regarded as identified. These proteins are then exam-
ined and validated by experienced MS staff. Since 
manual curation is involved, the efficiency of 
high-throughput technologies such as shotgun pro-
teomic experiments is discounted. Frequently, differ-
ent peptides are identified even when the same set of 
MS and MS/MS spectra is interpreted by a single 
software tool (12). Different proteins might be re-
ported by various identification tools, even though the 
concept of unique peptides is incorporated to improve 
the confidence of identified proteins. Cross-comparison 
can, therefore, further enhance the level of confidence 
of matched proteins by finding common proteins in 
different protein identification tools from the same 
dataset of MS and MS/MS ion spectra. The proposed 
concept of unique peptides can be seamlessly inte-
grated into the existing protein identification tools. 
The developers of these tools need only to incorporate 
the pre-built unique peptide database in Step 2 of the 
described two-step strategy. Although the peptide da-
tabase is in silico constructed for trypsin, the proposed 
approach can be readily implemented and extended to 
other proteinases to cleave proteins if the cleavage 
sites were known. 

Materials and Methods 
The proposed two-step protein identification strategy 
was examined using MS/MS spectral dataset retrieved 
from http://bioinformatics.icmb.utexas.edu/ OPD/ 
(12). The accession number of the dataset is 
“opd00034_YEAST”, which was compressed and 
named as “6-04-03-YPD_test.sequest.zip”. The data-
set contains 11 fractions of whole-cell eluents of S. 
cerevisiae, including 40,243 MS/MS spectra (in “.dta” 
format) and the corresponding SEQUEST-processed 
results (in “.out” format). The proposed strategy is 
illustrated in Figure 5 and described below. 

Construction of trypsinized unique/non- 
unique peptide database 

Yeast protein sequences (“s.cerevisiae.pep”) were 
retrieved from Kyoto Encyclopedia of Genes and 
Genomes (ftp://ftp.genome.jp/pub/kegg/genes/ 
organisms/sce/; April 2008), which contain 5,863 
proteins. The enzymatic cleavage sites of trypsin 
tabularized by Snyder (15) were implemented to in 
silico construct a tryptic yeast peptide pool. Allowing 
one missed cleavage, 663,177 peptides were obtained. 
Based on the concept of unique peptides, 445,227 
peptides were resulted. 

Overall average identity threshold and ho-
mology threshold (Mab and Meq) 

The overall average identity threshold (Mab) and ho-
mology threshold (Meq) were calculated by summing 
all respective identity and homology thresholds found 
in all 11 Mascot summary reports and divided by its 
respective total number of appearances. As a result, 
Mab = 27.665 and Meq = 15.962. 

Estimation of equivalent identity threshold 
(λeq) 

The equivalent identity threshod (λeq) was estimated 
from Mab. From Mascot’s Help – Results Interpreta-
tion, Mab = −10 log (fpr/x), in which fpr stands for 
false positive rate and x is the number of peptides fal-
ling within the mass tolerance window about the pre-
cursor mass. Given Mab = 27.665 and fpr = 0.05, x 
was then calculated to be 29.206. Incorporating x and 
fpr found in Figure 5A of Peng et al (4), we have λeq 
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= 15.471, which is close to Meq. Hence, when filtering 
peptides, λeq > 15 was implemented. 

Whole-cell protein identification 

Step 1: peptide ranking 

A PERL script was developed to extract top-ranking 
peptides from all “.out” files. All “.dta” files were 
concatenated into 11 portions based on the eluent 
fractions, and each portion of spectral dataset was 
imported into Mascot to carry out MS/MS ion search. 
The search parameters used were: Type of search: 
MS/MS Ion Search; Database: NCBInr; Taxonomy: S. 
cerevisiae; Enzyme: Trypsin; Fixed modifications: 
Carbamidomethyl (C); Mass values: Average; Protein 
Mass: Unrestricted; Peptide Mass Tolerance: ±1 Da; 
Fragment Mass Tolerance: ±0.4 Da; Max Missed 
Cleavages: 1; Instrument type: ESI-TRAP. The 
top-ranking peptides from all 11 Mascot peptide 
summary reports were collected.  

Step 2: peptide classification 

According to the concept of unique peptides defined 
in the Results section, all top-ranking peptides from 
Step 1 were classified into two clusters: unique and 
non-unique peptides.  

Steps 3 and 4: peptide filtering and protein 
identification 

For SEQUEST, filtering criteria reported by Peng et 
al (4) were used; that is, for singly charged ions (+1), 
the Xcorr value must be greater than 1.5; and for +2 
and +3 ions, the Xcorr value must be greater than 2.0 
and 3.3, respectively. In Mascot, each top-ranking 
peptide has an associated Mowse score and is accom-
panied by an (absolute) identity threshold (λab), which 
was calculated using absolute probability along with a 
pre-specified false positive rate. When a peptide had a 
Mowse score greater than its corresponding absolute 
identity, the protein harboring this peptide was then 
considered as “identified”. 

Step 5: protein regrouping 

Proteins identified in Step 4 from SEQUEST and 
Mascot were further cross-compared, and pooled into 
four groups according to their origins from unique 
and non-unique peptides.  Refer to Figure 5 for the 
definition and the assigned level of confidence of 

these proteins. 
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