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We investigate the critical behavior of continuous (second-order) phase transitions in the context of 
(2 + 1)-dimensional Ginzburg–Landau models with a double-well effective potential. In particular, we 
show that the recently-proposed configurational entropy (CE)—a measure of the spatial complexity of the 
order parameter in momentum space based on its Fourier-mode decomposition—can be used to identify 
the critical point. We compute the CE for different temperatures and show that large spatial fluctuations 
near the critical point (Tc)—characterized by a divergent correlation length—lead to a sharp decrease in 
the associated configurational entropy. We further show that the CE density goes from a scale-free to an 
approximate scaling behavior |k|−5/3 as the critical point is approached. We reproduce the behavior of 
the CE at criticality with a percolating many-bubble model.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

From materials science [1] to the early universe [2], phase tran-
sitions offer a striking illustration of how changing conditions can 
affect the physical properties of matter [3]. In very broad terms, 
and for the simplest systems described by a single order parame-
ter, it is customary to classify phase transitions as being either dis-
continuous or continuous, or as first or second order, respectively. 
First-order phase transitions can be described by an effective free-
energy functional (or an effective potential in the language of field 
theory) where an energy barrier separates two or more phases 
available to the system. The system may transition from a higher 
to a lower free-energy state (or from a higher to a lower vacuum 
state) either by a thermal fluctuation of sufficient size (a critical 
bubble) or, for low temperatures, by a quantum fluctuation. Gener-
ally speaking, this description of thermal bubble nucleation is valid 
as long as F [φb]/kB T � 1, where F [φb] is the 3d Euclidean action 
of the spherically-symmetric critical bubble or bounce φb(r), kB is 
Boltzmann’s constant, and T is the environmental temperature. For 
quantum tunneling, one uses instead S4[φb]/h̄, where S4[φb] is the 
O (4)-symmetric Euclidean action of the 4d bounce.

For second-order transitions the order parameter varies con-
tinuously as an external parameter such as the temperature is 
changed [3]. A well-known example is that of an Ising ferromagnet, 
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where the net magnetization of a sample is zero above a critical 
temperature Tc , the Curie point, and non-zero below it. Below Tc

the transition unfolds via spinodal decomposition, whereby long-
wavelength fluctuations become exponentially-unstable to growth. 
This growth is characterized by the appearance of domains with 
the same net magnetization which compete for dominance with 
their neighbors. In the continuum limit, systems in the Ising uni-
versality class can be modeled by a Ginzburg–Landau (GL) free-
energy functional with an order parameter φ(x) [4]. In the absence 
of an external source (or a magnetic field), the GL free-energy 
functional is simply

E[φ] =
∫

ddx

[
γ

2
(∇φ)2 + a

2
tφ2 + b

4
φ4

]
, (1)

where t ≡ (T − Tc)/Tc , and γ , a, b are positive constants. For 
T > Tc the system has a single free-energy minimum at φ = 0, 
while for T < Tc there are two degenerate minima at φ0 =
±(−at/b)1/2. This mean-field theory description works well away 
from the critical point. In the neighborhood of Tc one uses pertur-
bation theory and the renormalization group to account for the di-
vergent behavior of the system. This behavior can be seen through 
the two-point correlation function G(r): away from Tc G(r) be-
haves as ∼ exp[−r/ξ(T )], where ξ(T ) is the correlation length, 
a measure of the spatial extent of correlated fluctuations of the 
order parameter. In mean-field theory, ξ(T ) ∼ |T − Tc|−ν , where 
ν = 1/2, independently of spatial dimensionality. In the neighbor-
hood of Tc , where the mean-field description breaks down, the 
behavior of spatial fluctuations is corrected using the renormal-
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ization group. Within the ε-expansion, one obtains, in 3d, ν =
1/2 + ε/12 + 7ε2/162 � 0.63 [4].

For continuous transitions in GL-systems, the focus of the 
present letter, the critical point is characterized by having fluctu-
ations on all spatial scales. This means that while away from Tc
large spatial fluctuations are suppressed, near Tc they dominate 
over smaller ones. In this letter, we will explore this fact to ob-
tain a new measure of the critical point based on the information 
content carried by fluctuations at different momentum scales. For 
this purpose we will use a measure of spatial complexity known 
as configurational entropy (CE), recently proposed by Gleiser and 
Stamatopoulos [5]. The CE has been used to characterize the in-
formation content [5] and stability of solitonic solutions of field 
theories [5,6], to obtain the Chandrasekhar limit of compact New-
tonian stars [6], the emergence of nonperturbative configurations 
in the context of spontaneous symmetry breaking [7] and in post-
inflationary reheating [8] in the context of a top-hill model of 
inflation [9]. (Note that our usage of the name “configurational en-
tropy” differs from other instances in the literature, as for example 
in protein folding [10].) Here we show that in the context of con-
tinuous phase transitions the CE provides a very precise signature 
and a marked scaling behavior at criticality.

2. Model and numerical implementation

We consider a (2 + 1)-dimensional GL model where the system 
is in contact with an ideal thermal bath at temperature T . The 
role of the bath is to drive the system into thermal equilibrium. 
This can be simulated as a temperature-independent GL functional 
(so, setting t = −1 in Eq. (1)) with a stochastic Langevin equation

Ẍ + η Ẋ − ∇2 X − X + X3 + ξ = 0, (2)

where we have introduced dimensionless variables xμ = 1√
a

yμ

and φ =
√

a
b X , and we took γ = 1. In Eq. (2), η is the vis-

cosity and ξ(x, t) is the stochastic driving noise of zero mean, 
〈ξ〉 = 0. The two are related by the fluctuation–dissipation relation, 
〈ξ(x, t)ξ(x′, t′)〉 = 2ηθδ(x − x′)δ(t − t′). θ ≡ T /a is the dimension-
less temperature and we take kB = h̄ = 1.

We use a staggered leapfrog method and periodic boundary 
conditions to implement the simulation in a square lattice of size L
and spacing h. We used L = 200 and h = 0.25. Simulations with 
larger values of L produce essentially similar results, apart from 
typical finite-size scaling effects [4]. Different values of h can be 
renormalized with the addition of proper counter terms, as has 
been discussed in Refs. [11] and [12]. Since all we need here is to 
simulate a phase transition with enough accuracy, we leave such 
technical issues of lattice implementation of effective field theories 
aside. We follow Ref. [12] for the implementation of the stochastic 
dynamics, so that the noise is drawn from a unit Gaussian scaled 
by a temperature-dependent standard deviation, ξ = √

2ηθ/
th2. 
To satisfy the Courant condition for stable evolution we used a 
time-spacing of 
t = h/4. The discrete Laplacian is implemented 
via a maximally rotationally invariant convolution kernel [15] with 
error of O (h2).

We start the field X at the minimum at X = −1 and the bath 
at low temperature, θ = 0.01. We wait until the field equilibrates, 
checked using the equipartition theorem: in equilibrium, the av-
erage kinetic energy per degree of freedom of the lattice field, 
〈 Ẋ2

i j/2〉, is 〈 Ẋ2
i j〉 = θ . Once the field is thermalized, which typi-

cally takes about 1,000 time steps, we use ergodicity to take 200
readings separated by 50 time steps each to construct an ensem-
ble average. We then increase the temperature in increments of 
0.01 and repeat the entire procedure until we cover the interval 
θ ∈ [0.01, 0.83].
Fig. 1. (Color online.) The order parameter 〈X〉 [top (blue) line] and the volume frac-
tion (pV ) occupied by the X > 0 phase [bottom (green) line] vs. temperature. The 
shaded regions correspond to 1σ deviations from the mean. Within the accuracy of 
our simulation, the critical temperature is θc � 0.43 ± .01, marked by the vertical 
band.

We then obtain the ensemble-averaged 〈X〉 vs. θ . The coupling 
to the bath induces temperature-dependent fluctuations which, 
away from the critical point, can be described by an effective 
temperature-dependent potential, as in the Hartree approximation 
[13]. The critical point occurs as 〈X〉 → 0, when the Z2 symmetry 
is restored.

In Fig. 1 we plot the results. The top (blue) line is 〈X〉, while the 
bottom (green) line is the ensemble-averaged fraction of the vol-
ume occupied by X > 0 (pV ). Symmetry restoration corresponds 
to this fraction approaching 0.5. Shadowed regions correspond to 
1σ deviation from the mean. Within the accuracy of our simu-
lation, the critical temperature is θc � 0.43 ± .01. In the top row 
of Fig. 2 we show the field at different temperatures, including at 
∼Tc , where large-size fluctuating domains are apparent, indicative 
of the divergent correlation length.

3. Configurational entropy of the critical point

Consider the set of square-integrable bounded periodic func-
tions with period L in d spatial dimensions, f (x) ∈ L2(Rd), and 
their Fourier series decomposition, f (x) = ∑

kn
F (kn)eikn·x , with 

kn = 2π(n1/L, . . . , nd/L), and ni integers. Now define the modal 
fraction fkn = |F (kn)|2/ ∑ |F (kn)|2. (For details and the extension 
to nonperiodic functions, see [5].) The configurational entropy for 
the function f (x), SC [ f ], is defined as

SC [ f ] = −
∑

fkn ln[ fkn ]. (3)

The quantity σ(kn) ≡ − fkn ln[ fkn ] gives the relative entropic con-
tribution of mode kn . In the spirit of Shannon’s information en-
tropy [14], SC [ f ] gives an informational measure of the relative 
weights of different k-modes composing the configuration: it is 
maximized when all N modes carry the same weight, the mode 
equipartition limit, fkn = 1/N for any kn , with SC [ f ] = ln N . If 
only a single mode is present, SC [ f ] = 0. For the lattice used here, 
with N = 8002 points, the maximum entropy is Smax

C = 13.37.
Plane waves in momentum space have equally distributed 

modal fractions, and their position space representations are highly 
localized. Conversely, singular modes in momentum space have 
plane wave representations in position space which are maximally 
delocalized. Localized distributions in position space maximize CE 
(many momentum modes contribute), while delocalized distribu-
tions minimize it. SC [ f ] is, in a sense, an entropy of shape, an 
informational measure of the complexity of a given spatial profile 
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Fig. 2. (Color online.) Top row: Snapshots of the equilibrium field X(x, y) for different temperatures. The bar on the right denotes the field magnitude. Bottom row: The 
corresponding mode distribution of the CE density. Far from the critical temperature, the CE density is scale-invariant for low |k|, while close to the critical temperature flow 
into IR produces scaling with power-law ∼|k|−5/3.
in terms of its momentum modes. The lower SC [ f ], the less in-
formation (in terms of contributing momentum modes) is needed 
to characterize the shape. In the context of phase transitions, we 
should expect SC [ f ] to vary at different temperatures, as differ-
ent modes become active. Consider the snapshots of the fields at 
different temperatures in Fig. 2. Given that near Tc the average 
field distribution is dominated by a few long-wavelength modes, 
we should expect a sharp decrease in the CE.

We use Eq. (3) to compute the configuration entropy of φ(x, y). 
The discrete Fourier transform is

�(kx,ky) = N
∑
nx=0

∑
ny=0

φ(nxh,nyh)e−ih(nxkx+nyky), (4)

where kx(y) = 2πmx(y)/L, and mx(y) are integers. We display the CE 
density as a function of mode magnitude |k| in the bottom row of 
Fig. 2. For temperatures far from the critical value, we find a scale-
invariant CE density for long-wavelength modes, and a tapering 
distribution for short wavelengths. This is the mode equipartition
regime. As the critical temperature is approached, the field con-
figurations are dominated by large-wavelength modes, and the CE 
density flows toward lower values of |k|, disrupting the scale in-
variance of the spectrum. This IR flooding is expected from the 
diverging correlation length that characterizes the critical point. 
For the parameters of our simulation, we find an approximate 
scaling behavior near Tc with slope ∼k−5/3, the same as Kol-
mogorov turbulence in fluids [16], although of course turbulent 
scaling happens in the kinetic energy as a function of the wave 
vector and in 3d. In view of the analogy, we call this critical scaling 
information-entropic turbulence, here characterized by an amplifica-
tion of IR modes.

An analytical argument to estimate the scaling at criticality 
goes as follows: given that the modal fraction is proportional to 
the square of the field’s Fourier transform, f (|k|) ∝ |F (|k|)|2, and 
that |F (|k|)|2 ∝ C(|k|), where C(|k|) is the Fourier transform of the 
two-point correlation function, we can use the critical scaling of 
C(|k|) ∼ k−2+η [4] in the definition of the CE density σ(|k|) =
− f (|k|) log[ f (|k|)] to get σ(|k|) ∼ a(|k|/k∗)−2+η[1 + b log(|k|/k∗)], 
where a and b are constants and k∗ is a fiducial value. The scal-
ing is thus dominated by the power in the pre-factor, −2 + η, 
plus logarithmic corrections in |k|. Since the GL model is in the 
universality class of the Ising model, in 2d we have η = 1/4 and 
the estimate for the scaling is |k|−7/4. Close to −5/3 but not the 
same. The difference may be attributed to several factors: first, the 
logarithmic correction becomes important for small |k|/k∗ , which 
dominate σ(k) near Tc ; second, there are finite-size scaling effects 
and crossover corrections given that results depend on L and the 
exact value of Tc . We are currently studying the CPU-intensive de-
tailed behavior of the system near and at Tc in order to determine 
the scaling power for L → ∞.

The flow of CE-density into IR modes illustrates how lower-k
modes occupy a progressively larger volume of momentum space 
as the critical point is approached. Hence the sharp decline in CE 
near Tc . In fact, a simple mean-field estimate predicts that the CE 
will approach zero at Tc in the infinite-volume limit: using that in 
mean-field theory ξ(T ) ∼ |T − Tc|−1/2 and considering the domi-
nant fluctuations far away from Tc as being Gaussians with radius 
ξ(T ), we can use the continuum limit to compute the CE of a 
single Gaussian in d = 2 as [5]: SC [T ] = 2π/ξ2 = 4π(1 − T /Tc). 
Although even far away from Tc we shouldn’t expect this simple 
approximation to match the behavior of Fig. 3, the general trend is 
for CE to vanish at Tc in the infinite-volume limit. In a finite lattice 
of length L, there is going to be a minimum value for CE given by 
the largest average fluctuation within the lattice. Indeed, in Fig. 3
we see that the critical point is characterized by a minimum of the 
CE at SC (θc) � 8.0 ± 0.30. We found that as a function of |θ − θc |
the CE drops super-exponentially as criticality is approached from 
below, whereas from above we obtain the approximate scaling be-

havior SC [φ](θ) ∝ |θ − θc |− 1
4 .

For a more realistic estimate of the minimum value of CE for 
a finite lattice near criticality, we model a large fluctuation as a 
domain of radius R and a kink-like functional profile

φ(r,ϕ) = 1

2

[
1 + tanh

(
R − a(ϕ)r

d

)]
, (5)

where d measures the thickness of the domain wall in units of 
lattice length L and a is a random perturbation defined as

a(ϕ) = 1 +
10∑

n=3

αn

n
cos (nϕ + βn) , (6)

with αn and βn being uniformly-distributed random numbers de-
fined in the intervals (0, 1) and (0, 2π), respectively. We took 
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Fig. 3. (Color online.) Configurational entropy vs. θ for the ensemble-averaged field 
〈X〉. The minimum at θc is apparent. The lighter shade of grey corresponds to a 1σ
deviation from the mean.

Fig. 4. (Color online.) Configurational entropy vs. the log of volume fraction occupied 
by a single fluctuation with tanh profile defined in Eqs. (5) and (6). The shadowed 
area corresponds to 1σ deviation from mean. The dashed line corresponds to a 
symmetric bubble.

d = 0.01L so that the domain wall thickness matches the zero-
temperature correlation length. Eqs. (5) and (6) define a fluctuation 
interpolating between φ = 0 and near φ = 1. In Fig. 4 we show 
the results for an ensemble of such fluctuations occupying differ-
ent volume fractions. Note how the symmetric fluctuation (dashed 
line, obtained by setting a(ϕ) = 1 in Eq. (5)) has lower CE than 
the asymmetric fluctuations, as one should expect given that CE 
measures spatial complexity. Fluctuations with R ≥ L/4 (volume 
fraction �0.2) begin to have boundary issues due to the tail of the 
configuration. If we thus take a fluctuation with R/L = 0.25 to rep-
resent large fluctuations near Tc , from Fig. 4 its ensemble-averaged 
CE is CE ∼ 3.72 ± 0.13. Of course, a single bubble doesn’t match 
the complexity of the percolating behavior at Tc . To simulate the 
percolating transition, we placed different numbers of bubbles ran-
domly on the lattice with initial radius R/L = 0.001. We then let 
their radius R grow to R/L = 0.1, measuring the volume fraction 
(pV ) they occupy, while computing the CE as their radii increase. 
In Fig. 5 we show the CE as a function of pV . From bottom up, 
the number of bubbles is 5, 10, 25, 50, 100, and 150. The dashed 
line corresponds to a symmetric bubble. As the number of bubbles 
increases, the CE at pV = 0.5 approaches the numerical value at 
Tc (see Fig. 3). The results show a simple behavior, SC (N, pV ) ∼
B(N) log(pV /L2), with B(N) having a weak N dependence.
Fig. 5. (Color online.) Configurational entropy vs. the log of volume fraction for en-
sembles of bubbles placed at random positions in lattice of side L = 100. From 
bottom up, the number of bubbles is 5, 10, 25, 50, 100, and 150. The shadowed 
areas corresponds to 1σ deviation from the mean. The dashed line corresponds to 
a single bubble with tanh profile defined in Eqs. (5) and (6).

We have presented a new diagnostic tool to study critical phe-
nomena based on the configurational entropy (CE). We have shown 
how criticality is characterized by a sharp minimum of CE, and 
identified a transition from scale-free to an approximate scal-
ing behavior at criticality due to the amplification of IR modes, 
which we called information-entropic turbulence. We introduced 
a percolating-bubble model to describe our numerical results. We 
are currently exploring the notion of informational turbulence and 
its relation to criticality, performing a detailed finite-size scaling 
study to identify the precise nature of the scaling and the accuracy 
of our analytical prediction for its behavior.
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