
Cost Analysis for Embedded Systems:

Experiments with Priced Timed Automata�

Tolga Ovatman1

Department of Computer Engineering
Istanbul Technical University

34469 Maslak, Istanbul, Turkey

Aske W. Brekling2 Michael R. Hansen3

Department of Informatics and Mathematical Modelling
Technical University of Denmark

2800 Lyngby, Denmark

Abstract

Analysis of resource consumption of embedded systems is a major challenge in the industry since the number
of components that can be included in a single chip keeps getting bigger. In this paper, we consider simple
models of embedded systems and the automated analysis about timing and memory access costs of those
models. In order to achieve this, a basic model is built using priced timed automata and some resource
consumption scenarios are verified. Even though the experiments are performed on small and basic models,
we believe we have taken a basis step in showing that it is promising to use priced timed automata and
Uppaal Cora as a model checking tool in reasoning about resource consumption of embedded systems.

Keywords: Embedded systems, priced time automata, cost analysis.

1 Introduction

An embedded system consists of a combination of hardware and software compo-

nents, and perhaps additional mechanical or other parts, designed to perform a

dedicated process. Since the system is dedicated to a specific task, it can be opti-

mized during the design phase aiming at reducing the size and cost or increasing

the reliability and performance.

� This work is partially funded by the Erasmus Student Exchange programme, ARTIST2 (IST- 004527),
MoDES (Danish Research Council 2106-05-0022) and the Danish National Advanced Technology Foundation
under project DaNES.
1 Email: ovatman@itu.edu.tr

2 Email: awb@imm.dtu.dk

3 Email: mrh@imm.dtu.dk

Electronic Notes in Theoretical Computer Science 238 (2010) 81–95

1571-0661 © 2010 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2010.06.006
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81984933?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ovatman@itu.edu.tr
mailto:awb@imm.dtu.dk
mailto:mrh@imm.dtu.dk
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

The complexity of the hardware-software systems increases as technology gets

more advanced. The more complex systems become the harder it gets to provide

guarantees for systems’ properties. For embedded systems, it is a particular chal-

lenge to provide guarantees about resource consumption, such as bounds on the use

of processing time and memory.

A traditional embedded system platform has many different parameters and

the design space is the complete collection of all possible configurations of these

parameters. Design space exploration is the phenomenon of searching for desired

solutions among a huge variety of possible designs. An important aspect is to

understand and reason about the trade-off among different design parameters. It is

clear that even for simple cases such reasoning becomes a complicated matter.

There exist different frameworks for modelling and analysis of hardware-software

systems. ARTS [8], for example, is a simulation framework that supports designers

in analyzing designs before the system is implemented. However, ARTS cannot be

used to guarantee properties as it does not investigate the full state space. Other

approaches exists for analysis of designs for system on chips (SoC), e.g. [5,2], but

ARTS is the main inspiration for our work, where we experiment with Priced Timed

Automata [10] for modelling simple components having costs and we use Uppaal

Cora [6] for automated reasoning about costs. Uppaal Cora is a member of the

Uppaal[3] family that supports simulation as well as verification in terms of model

checking. There exist other work on modelling Multiprocessor System on Chips

(MPSoC) using Uppaal [4] and optimization work on task graph scheduling using

Uppaal Cora [10].

In our experiments we restrict ourselves by considering a simple system model

involving a processing element with a very basic local memory, a real time operating

system, an external memory and an application consisting of a number of tasks as

illustrated in Figure 1. An intelligent home device like an intelligent vacuum cleaner

may fit into this structure. Even though the system is simple, it is a complicated

matter to analyze the trade-off between aspects of timing and memory access. Us-

ing Uppaal Cora for solving this problem, we shall device cost-optimal solutions

to a collection of scenarios. These optimal schedules cannot be extracted using

”standard” scheduling theory. These analyses can be seen as the introductory steps

towards using formal analysis for cost analysis concerning resource consumption of

hardware/software systems.

The rest of the paper is organized as follows: The next section introduces a

simple embedded system with some scenarios we would like to analyze. Section 3

gives a brief summary of priced timed automata. Section 4 introduces our formal

model for systems. In Section 5 the experiments and formal analysis of the scenarios

are presented, and the last section contains a conclusion of the study.

2 A Simple Embedded System

In Figure 1, we show the major components of the embedded systems we shall model

and analyze in the following sections.

T. Ovatman et al. / Electronic Notes in Theoretical Computer Science 238 (2010) 81–9582

Application

T1

Local
Memory

RTOS

T3

External Memory

Processing Element

T2

Execution Platform

Fig. 1. An informal model of an embedded system

The system consists of a processing element with a local memory, an external

memory, an operating system and an application consisting of a number of task,

where just three tasks are shown in the figure. We shall consider scheduling of tasks

taking cost of using the processing element and the local and external memories

into account. In particular, we shall consider the following aspects:

Memory usage: The local memory is cheaper to use than the external memory, i.e.

if the data for a task already exists in the local memory then the cost of executing

the task is cheaper than if it first has to access the external memory. We want to

schedule tasks so that they meet their deadlines as cheaply as possible, and therefore,

the best scheduling strategy will not necessarily be earliest deadline first [7], but

rather it would depend on the data dependencies among tasks.

Waiting time of tasks: First of all every task should meet each of its deadlines.

In addition to that we shall impose another cost parameter concerning its waiting

for processing time, as some tasks may be more important than others and the cost

of making important tasks wait should be high.

Combined costs: In a realistic analysis, it is important to consider more than

one of the properties of the system and analyze the total utilization of the systems

resources using different configurations. In our examples, there will be trade-offs

between optimizing the scheduling wrt. the cost of the different memory accesses

and optimization wrt. the cost concerning the waiting times for tasks.

Optimization of costs: The goal is to find cost-optimal use of resources. The cost

criteria may involve waiting time of tasks, running time and memory usage. We

use Uppaal Cora to find the optimal schedule with respect to given cost criteria.

Our general aim is to show that priced timed automata can be used for modelling

embedded systems and Uppaal Cora can be used for design space exploration.

T. Ovatman et al. / Electronic Notes in Theoretical Computer Science 238 (2010) 81–95 83

3 Priced Timed Automata

We will now give a brief overview of priced timed automata [9]. Priced timed

automata are extensions to timed automata [1] addressing the calculation of prices

for different runs of a timed automata. In order to do this, cost rates ċ can be added

to locations and costs c to transitions. A cost rate ċ == x denotes that c grows

constantly with rate x in a location. The cost c = x denotes that x is added to the

total cost of c when the transition is taken.

c = 1

ċ = 2

ċ = 1

x <= 1

x <= 3

L2

L4L1

L3
x = 0

x = 0
x == 1
c = 3

x == 3

Fig. 2. Example of a priced timed automaton

Looking at Figure 2, we can see a simple priced timed automaton with four

locations and four transitions which can lead to different runs of the automaton

from the initial location L1 to location L4. In one run it will spend 3 time units

in location L3 due to the invariant x ≤ 3 in the location and the guard x == 3 on

the transition leaving L3, where x is a (real-valued) clock which is set to 0 in both

transitions leaving L1. The other run over L2 has a similar explanation.

Examining the figure, we can see that locations L2 and L3 have cost rates de-

noted with ċ that represents the increase of the total cost per time unit. In our

case, the total cost will be incremented by 2 for each time unit that has been spent

in location L2 and 1 for each time unit that has been spent in L3. We can also see

that taking the transition L2 → L4 has cost 3 and taking the transition L3 → L4

has cost 1.

There are two principally different runs of the priced timed automaton in Fig-

ure 2:

α = L1 → L2 → L4

β = L1 → L3 → L4

and the total cost for these runs are:

cost(α) = 5

cost(β) = 4

T. Ovatman et al. / Electronic Notes in Theoretical Computer Science 238 (2010) 81–9584

In this example the infimum cost for all runs leading to location L4 is costinf =

cost(β) = 4, and Uppaal Cora is able to compute such infimum costs.

3.1 Using Uppaal Cora on Cost Models for Embedded Systems

We conduct cost analysis for embedded systems using Uppaal Cora. Firstly,

we provide a priced timed automata model - implemented in Uppaal Cora - for

embedded systems where different costs (e.g. tasks’ waiting time) are incorporated.

Uppaal Cora can then make verification based on a query given in the Uppaal

Requirement Specification Language. The basic property we want to verify in our

experiments is that all tasks of the system are able to run a specified number

of times while meeting all their deadlines. When this query returns Property is

Satisfied, there can be any number of traces in the computation tree which leads

to the specified situation. An option that provides the user with the best trace

can be enabled in Uppaal Cora. The best trace is the one with infimum cost.

When specifying systems, the main idea is to ”under-specify” your models leaving

degrees of freedom, e.g. in terms of non-determinism in scheduling decisions, so that

Uppaal Cora can determine which decisions will leads to the best trace.

4 Model of the Simple Embedded System

In this section we present a model of an embedded system using priced timed au-

tomata. Considering Figure 1, a system can be thought of as a parallel composition

of an application and an execution platform:

System =̂ Application ‖ ExecutionPlatform

where an application is a parallel composition of a number of tasks (τi):

Application =̂ ‖n
i=1 τi

An execution platform is a parallel composition of a number of hardware com-

ponents (COM) and a real-time operating system (RTOS) that coordinates the

tasks while considering the the situation of the hardware components 4 . This can

be expressed as follows:

ExecutionPlatform =̂ ‖m
j=1 COM j ‖ RTOS

In the following we will give the main characteristics only of tasks, hardware

components and the real-time operating system.

Our model will handle non-preemptive periodic tasks with offset times and spec-

ified run times. Each task may perform a number of memory accesses in each period

4 A system could be modelled using a real-time operating system for each processing element, however, in
this work we only analyze systems with a single processing element

T. Ovatman et al. / Electronic Notes in Theoretical Computer Science 238 (2010) 81–95 85

and it will not perform a memory access if the desired variable resides in local mem-

ory. Some properties of a task is shown in Figure 3 with their symbols and variables

in the Uppaal Cora model.

number of times

period runtime offset to be run

Symbol π ρ o θ

Variable period run time offset nr runs

Fig. 3. Attributes of tasks

The real-time operating system will only deal with task scheduling and memory

access operations, and our model will be constructed as a special component that

deals with precisely these operations.

An instance of a hardware component COM can be used to represent any phys-

ical hardware component of the system such as a processing element or a memory.

This model is responsible for receiving a triggering signal from another component

indicating that an input is present, process this input, and send the result to an-

other component. Hardware components are connected to each other in a specified

sequence, describing the layout of the execution platform. The operating system

initiates and terminates this sequence of signals.

4.1 A Simple Example

In this section, we consider the complete model of a system consisting of one task

τ , one real-time operating system os and one processing element pe that is directly

connected to an external memory mem . This system is described as follows:

System = Application ‖ ExecutionPlatform

Application = τ

ExecutionPlatform = os ‖ pe ‖ mem

Our system model is composed of parallel running automata each of them represent-

ing a specific component of the system. Communication between these automata is

handled via global variables and communication channels.

Communication between the hardware components and the operating system is

illustrated in Figure 4, where SIG is an array of channels and the placement in this

array denotes the resource for which it is destined, e.g. SIG[PE] is destined for the

processing element.

Communication between the execution platform and the application in this ex-

ample is shown on Figure 5, where READY, RUN, FINISH and IO are the channels

used for this communication.

T. Ovatman et al. / Electronic Notes in Theoretical Computer Science 238 (2010) 81–9586

OS

MEMPE

SIG[PE]

SIG[MEM]

SIG[OS]

Fig. 4. Communication diagram between hardware components

TASKOS

READY
FINISH
 IO

RUN

Fig. 5. Communication diagram between the application and the execution platform

4.1.1 Model for a task

The priced timed automaton for τ is given in Figure 6. It resides in the START

location before it start the cyclic behavior when the offset time has elapsed. When

the automaton enters the IDLE location it waits for a new period to start before

it moves to READY. While moving to READY it signals the os component indicating

that it has become ready. In READY the task waits until a RUN signal has been issued

from os before moving to RUNNING. In RUNNING, the task moves to MEM whenever it

needs to issue a memory access and takes one of the transitions back to RUNNING

depending on the presence of the data in the local memory. After the last memory

access, the task moves to IDLE, issuing a FINISH signal to os, where it waits for its

next period.

MEM

START

periodC<=offset

RUNNNIG

runC<=next_oper

READY

cost’==w_costIDLE

periodC<=period

!in_cache()
IO!
set_next()

in_cache()
set_next()

periodC==offset
periodC=period

runC==next_oper
&& next!=OPER_SIZE

io_init()

runC==run_time
&& next==OPER_SIZE
FINISH!
finish_task() task_status==RUNS

RUN?
start_task()

periodC==period
READY!
init_task()

Fig. 6. Priced Timed Automata model of τ

T. Ovatman et al. / Electronic Notes in Theoretical Computer Science 238 (2010) 81–95 87

4.1.2 Model for a real-time operating system

The automaton for os is given in Figure 7. The purpose of os is to handle the com-

munication between the application and the execution platform. This automaton

starts in the IDLE location and waits for tasks to issue READY signals. Based on

those signals it makes a scheduling decision and moves to the SCHEDULED location,

from which it issues a RUN signal to the task that has been scheduled and moves to

the location TASK RUN. It then triggers the component chain by issuing a SIG[PE]

signal to the pe and moves to WAIT COM, where it waits for the output signal from

the component chain to arrive before moving to COM FIN. Here, it can either fin-

ish execution by receiving a FINISH signal from the task and move to IDLE or it

can receive an IO signal from the task on which it moves back to TASK RUN. The

automaton does not react to READY signals when making or executing a scheduling

decision.

WAIT_COMCOM_FIN
TASK_RUN

SCHEDULEDIDLE

last
FINISH?

last=false

READY?
READY?

!last
IO?

SIG[OS]? SIG[PE]!

RUN!

ready_task()
GO?
next_t=scheduleEDF(),
task_status[next_t]=RUNS

READY?

Fig. 7. Priced Timed Automata model of os

The assignment next t=scheduleEDF() indicate on which transition the os

would make a scheduling decision. In our experiments we want Uppaal Cora

to find the optimal schedule. Therefore, the assignment next t=scheduleEDF() is

removed in order to allow a non-deterministic choice of any ready task as its schedul-

ing decision. Using the best-trace generator the optimal schedule is extracted.

4.1.3 Model for a processing element

The automaton for pe, shown in Figure 8, waits for a triggering input signal SIG[PE]

from another component (os in this simple example) in the IDLE location. The

location PROCESS models the actual processing, and in location SEND it spends some

time communicating the output and signal the result to mem using SIG[MEM].

4.1.4 Model for a memory component

The automaton for mem in Figure 9 starts in the IDLE location by waiting for

a triggering input signal SIG[MEM] from another component (pe in this case). In

PROCESS it does some processing, which is accessing data in this case. Finally, in

SEND it can spend some time communicating the output and signals the result to

T. Ovatman et al. / Electronic Notes in Theoretical Computer Science 238 (2010) 81–9588

SEND

lC<=s_wait

PROCESS
lC<=p_wait &&
cost’==c_type*p_cost

IDLE

lC==s_wait
SIG[MEM]!

lC==p_wait
lC=0

SIG[PE]?
lC=0

Fig. 8. Priced Timed Automata model of pe

the next component in the chain, which in this case is os, using SIG[OS].

SEND

lC<=s_wait

PROCESS
lC<=p_wait &&
cost’==c_type*p_cost

IDLE

lC==s_wait
SIG[OS]!

lC==p_wait
lC=0

SIG[MEM]?
lC=0

Fig. 9. Priced Timed Automata model of mem

4.2 The costs model

We will consider two kinds of costs:

(i) The cost of a task waiting for processing time. This is modelled using the cost

rate w cost in the READY location of the task automaton.

(ii) The cost of accessing a hardware component, e.g. a memory component. This is

modelled using the cost rate p cost in the PROCESS location of the automaton

for that component.

The problem to be solved is finding a cost-minimal schedule so that every task meets

every deadline.

4.3 Analysis of a known case

In order to check whether our model is meaningful, we have tested the model on an

example where we know the result. We have tried to achieve the optimal schedule in

the following system definition which consists of three tasks running on a processing

element without any memory access. These periodic tasks will run for a specific

time on the system and Uppaal Cora’s optimization will provide the schedule of

these tasks depending on cost assignment.

T. Ovatman et al. / Electronic Notes in Theoretical Computer Science 238 (2010) 81–95 89

System = Application ‖ ExecutionPlatform

Application = τ1 ‖ τ2 ‖ τ3

ExecutionPlatform = os ‖ pe

The application consists of three tasks whose periods (π) and running times (ρ)

are in Figure 10. The optimal schedule computed by Uppaal Cora should be an

earliest-deadline first schedule.

π ρ

τ1 8 1

τ2 5 2

τ3 10 4

Fig. 10. Properties of tasks that will be used for validation

Using the task parameters shown in Figure 10 it is easy to verify that the optimal

trace provided by Uppaal Cora:

τ2τ1τ3τ2τ1τ2τ3τ2τ1τ2τ3τ2τ1τ2τ1τ3τ2

is, in fact, an earliest-deadline-first schedule.

5 Experiments

We will now experiment with the model. In one experiment we will focus on waiting

time and memory accesses. Another experiment will consider optimization over the

scheduling of the three tasks and produce a unique schedule that minimizes the

costs. Our system definition for these experiments is:

System = Application ‖ ExecutionPlatform

Application = τ1 ‖ τ2 ‖ τ3

ExecutionPlatform = os ‖ pe ‖ mem

The characteristics for the three tasks can be seen in Figure 11. We have al-

ready given explanations for π (period), ρ (runtime), o (offset) and θ (number of

iterations). In each period, each task has two memory accesses, unless the variable

is in the local memory. The values for μ1 and μ2 are the durations for the first and

second memory access, respectively. The values for υ1 and υ2 are the names of the

variables used in connection with the first and second memory access, respectively.

Figure 12 shows the schedules for the system using rate-monotonic and earliest-

deadline-first scheduling algorithms [7].

T. Ovatman et al. / Electronic Notes in Theoretical Computer Science 238 (2010) 81–9590

π ρ o θ μ1 μ2 υ1 υ2

τ1 50 20 30 6 2 2 A B

τ2 60 20 10 5 1 3 B C

τ3 100 30 0 3 4 5 C D

Fig. 11. Properties of tasks that will be used through verification experiments

START FINISH

RM

EDF

T3 T1 T2 T2 T1 T3 T1 T2 T1 T2 T3 T1 T2 T1

T1

T2

T3

Schedule

T1

T2

T3

Schedule T3 T2 T1 T2 T1 T3 T1 T2 T1 T2 T3 T1 T2 T1

READY
RUNNING
IDLE

Fig. 12. Running schemes of tasks in Figure 11 when scheduled with RM and EDF

In the following experiments, system definition and task properties are as in

Figure 11. We will experiment with different cost criteria concerning waiting time

and memory access.

5.1 Reasoning about timing and memory access

Scenario and Purpose. In this experiment we try to see which scheduling policy

(rate monotonic or earliest deadline first) will yield a better performance regarding

costs for waiting time and memory access.

Modelling. The cost rate of the READY location, where a task is waiting, is indicated

by ċw in Figure 13. The cost rate of the PROCESS location, indicated by ċm,

determines the costs while a component (in this case memory) is processing. Notice

that memory access is more important than waiting times of tasks in this example.

Verification. We have used Uppaal Cora to find the total cost of the specified

scenario:

Rate-monotomic scheduling (RM) :
∑3

i=1(cost
w(τi) + costm(τi)) = 900

Earliest deadline first scheduling (EDF) :
∑3

i=1(cost
w(τi) + costm(τi)) = 930

Analysis. Our results show that RM gives a lower total cost because:

T. Ovatman et al. / Electronic Notes in Theoretical Computer Science 238 (2010) 81–95 91

ċw ċm

τ1 2 10

τ2 1 10

τ3 1 10

Fig. 13. Waiting and memory access cost rates for the first scenario

- The τ1τ2 scheduling of the RM causes τ2 to reuse the variable B from Figure 11

and hence reduce the memory access cost

- In RM τ1 waits less and since it costs more when τ1 waits, the waiting time cost

is reduced as well.

5.2 Optimization of costs

Scenario and Purpose. We are now going to let Uppaal Cora find the schedule

with infimum cost in two cases with different costs.

Modelling. In the first case, we choose to introduce a trade-off between memory

access and task waiting time. Consider the cost-assignment scheme in Figure 14.

Waiting-time cost-rates give higher precedence to τ3 and then τ2, while memory

access cost-rates arrange them vice versa, since it is cheaper for τ1 than τ2 to bring

variable B to the local memory, and similar for τ2 and τ3 concerning variable C.

ċw ċm

τ1 1 5

τ2 2 10

τ3 3 15

Fig. 14. Waiting and memory access cost rates for the first case

In the second case we will focus on the cost of the waiting time of a specific task.

As seen in Figure 15 our cost rate assignments gives the lowest priority, in terms of

waiting time, to τ3.

ċw ċm

τ1 3 5

τ2 3 10

τ3 0 15

Fig. 15. Waiting and memory access cost rates for the second case

In both cases, our aim is to explore a part of the design space and achieve better

cost solutions than a use of standard scheduling principles would give.

T. Ovatman et al. / Electronic Notes in Theoretical Computer Science 238 (2010) 81–9592

Verification. After verification of the first case, the diagrams with schedules pro-

duced using an EDF-algorithm and by Uppaal Cora can be seen in Figure 16.

Please note that each horizontal square in the schedule diagrams represent a dura-

tion of 10 time units. The cost of the optimal run produced by Uppaal Cora is

START FINISH

EDF

CORA

T3 T2 T1 T2 T1 T3 T1 T2 T1 T2 T3 T1 T2 T1

T1

T2

T3

Schedule

T1

T2

T3

Schedule T3 T2 T1 T2 T1 T3 T2 T1 T1 T2 T3 T1 T2 T1

READY
RUNNING
IDLE

Fig. 16. Schedule diagrams of the tasks in Figure 14

for the first case
3∑

i=1

(costwinf (τi) + costminf (τi)) = 1005

After the verification of the second case, the diagrams with the schedules pro-

duced using and EDF-algorithm and by Uppaal Cora can be seen in Figure 17.

The cost of the optimal run produced by Uppaal Cora is for the second case

START FINISH

EDF

CORA

T3 T2 T1 T2 T1 T3 T1 T2 T1 T2 T3 T1 T2 T1

T1

T2

T3

Schedule

T1

T2

T3

Schedule T2 T1 T3 T1 T2 T3 T1 T2 T1 T2 T1 T2 T3 T1

READY
RUNNING
IDLE

Fig. 17. Schedule diagrams of the tasks in Figure 15

3∑
i=1

(costwinf (τi) + costminf (τi)) = 1045

Analysis. The results of the first case in Figure 16 show that the schedule provided

by Uppaal Cora differs at one point only from that of the EDF algorithm i.e. the

third time τ1 and τ2 are run. Uppaal Cora determines that the schedulability

T. Ovatman et al. / Electronic Notes in Theoretical Computer Science 238 (2010) 81–95 93

property can be upheld by choosing τ2 instead of τ1, which the EDF-algorithm

would choose. This choice leads to a smaller cost.

For the second case, examining Uppaal Cora’s schedule in Figure 17, three

main points can be observed:

i. τ3 is scheduled after τ2 if it is possible.

ii. τ2 is scheduled after τ1 if it is possible.

iii. The only case where the above two strategies do not apply is the first run,

where these strategies would lead to a missed deadline of τ3.

With a 2 GHz Pentium 4 machine with 512 MB of RAM, it takes about 1 second

running verifications on our model. This duration applies for experiments without

optimization in Sections 5. It takes about 25 seconds to perform verification on the

same model when optimization is performed by Uppaal Cora.

6 Summary

The aim of this ongoing work is cost analysis of embedded systems, and in this

paper, we have a simple model comprising tasks running on an execution platform

consisting of hardware components such as processing elements and local and ex-

ternal memories and a real-time operating system. We have modelled the system

as priced timed automata. In the model we have introduced costs for tasks’ waiting

time and memory access, and we have used Uppaal Cora to give cost-optimized

schedules for systems. The results indicate that the approach could be fruitful in

connection with design space exploration of embedded systems.

Acknowledgement

Comments and suggestions from Jan Madsen are greatly appreciated.

References

[1] Alur, R. and D. Dill, A theory of timed automata, Theoretical Computer Science 126 (1994), pp. 183–
235.

[2] Andreas, G. B., Processor/memory co-exploration on multiple abstraction levels (2003).

[3] Behrmann, G., A. David and K. G. Larsen, A Tutorial on Uppaal, Lecture Notes in Computer Science
3185 (2004), pp. 200–236.

[4] Brekling, A., “Modelling and Verification of MPSoC,” Master’s thesis, Informatics and Mathematical
Modelling, Technical University of Denmark, DTU (2006).

[5] Kim, S., C. Im and S. Ha, Efficient exploration of on-chip bus architectures and memory allocation, in:
International Conference on Hardware/Software Codesign and System Synthesis (2004), pp. 248–253.

[6] Larsen, K., G. Behrmann, E. Brinksma, A. Fehnker, T. Hune, P. Pettersson and J. Romijn, As cheap
as possible: Efficient cost-optimal reachability for priced timed automata, Lecture Notes in Computer
Science 2102 (2001), pp. 493+.

[7] Liu, C. L. and J. W. Layland, Scheduling algorithms for multiprogramming in a hard-real-time
environment, Journal of the ACM 20 (1973), pp. 46–61.

T. Ovatman et al. / Electronic Notes in Theoretical Computer Science 238 (2010) 81–9594

[8] Mahadevan, S., M. Storgaard, J. Madsen and K. Virk, Arts: a system-level framework for modeling
mpsoc components and analysis of their causality, in: International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems (2005), pp. 480–483.

[9] Rasmussen, J. I., K. G. Larsen and G. Behrmann, Priced timed automata: Algorithms and applications,
Lecture Notes in Computer Science 3657 (2005), pp. 162–182.

[10] Subramani, K., K. G. Larsen and J. I. Rasmussen, On using priced timed automata to achieve optimal
scheduling, Formal Methods in System Design 29 (2006), pp. 97–114.

T. Ovatman et al. / Electronic Notes in Theoretical Computer Science 238 (2010) 81–95 95

	Introduction
	A Simple Embedded System
	Priced Timed Automata
	Using Uppaal Cora on Cost Models for Embedded Systems

	Model of the Simple Embedded System
	A Simple Example
	The costs model
	Analysis of a known case

	Experiments
	Reasoning about timing and memory access
	Optimization of costs

	Summary
	References

