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1. Introduction and preliminaries

Let X be a nonempty set and T : X � X be a set-valued map with nonempty values. An element x ∈ X is said to be
a stationary point (or endpoint or strict fixed point) of T , if T (x) = {x}. By “asymptotic stationary point theory” we mean
results in which the existence of stationary points of a set-valued map T is established with the aid of assumptions on
the iterates T n of T . The existence of stationary points of set-valued maps has significant applications in the optimization
theory, fixed point theory and Ekeland’s variational principle; for more details see [2,6,7,9,10,16]. The most of the existence
of stationary point results and asymptotic stationary points results are in metric spaces and uniform spaces (see [2–6,8–16]
and references therein). In the most of the methods for obtaining those results, the authors have used the ideas of Banach
contraction principle and its generalizations. Recently Tarafdar and Yuan [9] introduced the notion of topological contraction
and proved that every upper semicontinuous set-valued topological contraction with closed values on compact topological
spaces has a unique stationary point. Our goal in this work is to derive an asymptotic version of this result and extend
our result by relaxing the compactness of the space for generalized μ-set contraction mappings. Also, we show that any
generalized sequence of iterations (xn) with an arbitrary initial point x1 of set-valued map T on a complete first countable
Hausdorff uniform space, converges to stationary point of T . Furthermore, we prove that some recent classes of set-valued
maps the stationary points of which have been studied satisfy the assumptions of our results.

Let us introduce some definitions and facts which will be used in the sequel. Suppose that X is a topological space,
a set-valued map T : X � X is said to be a topological contraction if for every nonempty compact subset A of X with
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T (A) = A, A is singleton, i.e., A is a stationary point of T . Let X and Y be topological spaces, a set-valued map T : X � Y is
said to be:

(i) closed, if T (A) is a closed set for any closed subset A of X ,
(ii) upper semicontinuous, if for each closed set B ⊆ Y , T −(B) = {x ∈ X: T (x) ∩ B �= ∅} is closed in X .

Let X be a topological space and (C, τ ) be a topological lattice with minimal element which we denote by 0. Suppose that
B is a collection of nonempty sets of X such that A, A ∪ B ∈ B for any A, B ∈ B. A measure of noncompactness on X with
respect to B is simply any functional μ :B → C such that:

(i) μ(A) = μ(A) for all A ∈ B;
(ii) μ(A) = 0 if and only if A is relatively compact;

(iii) μ(A ∪ B) = max{μ(A),μ(B)} for all A, B ∈ B.

It follows immediately that if A ⊆ B , then μ(A) � μ(B). A sequence (An)∞n=1 of nonempty subsets in B is called μ-
descending, if An is closed, An+1 ⊆ An for each n ∈N and limn→∞ μ(An) = 0. We say that μ has the Kuratowski property, if
the intersection A = ⋂

n∈N An is nonempty and compact for any μ-descending sequence (An)∞n=1 in B.
Let X be a topological space and μ : 2X → [0,∞] be a measure of noncompactness on X . A set-valued map T : X � X

is said to be generalized μ-set contraction, if for each ε > 0, there exists δ > 0 such that for A ⊆ X with ε �μ(A) < ε + δ,
there exists n ∈N such that μ(T n(A)) < ε.

The following lemma characterizes a generalized μ-set contraction.

Lemma 1.1. ([1]) Let X be a topological space and μ be a measure of noncompactness on X. Then T is a generalized μ-set contraction
on X if and only if for every subset A of X such that T (A) ⊆ A and μ(A) < ∞, we have

lim
n→∞μ

(
T n(A)

) = 0.

Motivated by the above lemma, we introduce the concept of a generalized μ-set contraction whenever the image of the
measure of noncompactness μ contained in a topological lattice C .

Definition 1.2. Let X be a topological space and (C, τ ) be a topological lattice with minimal element 0. Suppose that B
is a collection of nonempty subsets of X such that A, A ∪ B ∈ B for any A, B ∈ B. If μ :B → C is a measure of non-
compactness, then a set-valued map T : X � X is said to be a generalized μ-set contraction with respect to (w.r.t.) B, if
limn→∞ μ(T n(A)) = 0 for every A ∈ B.

2. Stationary points in an arbitrary topological space

In this section, we present some stationary point results for set-valued maps on noncompact topological spaces. Since we
decided to study asymptotic stationary point theory for topological contraction maps, then it is a natural question to pose
that under which conditions a set-valued map T is a topological contraction whenever its iterates T n of T is a topological
contraction for some n. The following lemma gives an answer to this question.

Lemma 2.1. Let X be a topological space and T : X � X be a set-valued map, then the following statements hold:

(i) If T n, for some n ∈ N, is a topological contraction, then T is a topological contraction.
(ii) If T is a topological contraction, A ⊆ X compact, T (A) ⊆ A and T n(A) = A, then A is singleton.

(iii) If T is a topological contraction and T (A) is compact for any compact subset A of X , then T n is a topological contraction for each
n ∈ N.

Proof. (i) Let A be a compact subset of X and T (A) = A, then T n(A) = A. Since T n is a topological contraction, then A is
singleton.

(ii) By our assumption A ⊇ T (A) ⊇ T 2(A) ⊇ · · · ⊇ T n(A) = A, then T (A) = A. Since T is a topological contraction, thus A
is singleton.

(iii) Let A be a compact subset of X and T 2(A) = A, then T (T (A) ∪ A) = T (A) ∪ A. Since T (A) ∪ A is compact and T is a
topological contraction, then T (A) ∪ A is singleton. Therefore, T 2 is a topological contraction. By induction, we deduce that
T n is also a topological contraction. �

In the following example we show that T n is not in general a topological contraction for n � 2 when T is a topological
contraction. Hence, parts (ii) and (iii) of Lemma 2.1 do not hold without extra conditions on T .
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Example 2.2. Let X := [0,∞) and T : X � X be defined as follows:

T (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 x = 0,

{10x,12x} ∪ {100,180} 0 < x < 15,

0 15 � x < 100,

]10,15[ 100 � x � 180,

0 x > 180.

It is clear that T is a topological contraction, but we have

T 2([100,180]) = [100,180].
Therefore, T 2 is not a topological contraction.

In the following we give an existence result of stationary points on compact topological spaces.

Theorem 2.3. Let X be a compact Hausdorff topological space and T : X � X be a topological contraction. Suppose that there exists
p ∈ N such that T p is upper semicontinuous and closed values. Then T has a unique stationary point x0 and {x0} = ⋂∞

n=0 T n(X).

Proof. Let Xn := T pn X for each n ∈ N and X0 := X . Then the sequence (Xn)∞n=1 is compact and decreasing. Therefore,
K = ⋂∞

n=0 Xn is nonempty and compact. We show that T p(K ) = K . It is clear that T p(K ) ⊆ K . Suppose that z ∈ K , then
z ∈ T pn+p(X) and so (T p)−(z) ∩ T pn(X) �= ∅ for any n ∈ N. If Yn := (T p)−(z) ∩ T pn(X), then (Yn) is a decreasing sequence
of nonempty compact subsets of X (note that T p is upper semicontinuous with closed values). Therefore,

⋂∞
n=0 Yn �= ∅. If

x ∈ ⋂∞
n=0 Yn , then z ∈ T p(x) ⊆ T p(

⋂∞
n=0 Yn) ⊆ T p(K ). So K ⊆ T p(K ) and we have T p(K ) = K .

On the other hand X ⊇ T X ⊇ T 2 X ⊇ · · · , thus K = ⋂∞
n=0 T n X and T (K ) ⊆ K . Since T is a topological contraction, hence

by part (ii) of Lemma 2.1, K is a singleton. Therefore, T has a unique stationary point. �
The following example shows that Theorem 2.3 is an improvement of Theorem 1 in [9] and Theorem 2.2 of [13].

Example 2.4. Let X := [0,1] and T : X � X be defined as follows:

T (x) =
{ {1} if x is rational,
Q∩ [0, 1

2 ] otherwise.

Then, T is not upper semicontinuous and T (x) is not closed for any x /∈ Q ∩ [0,1]. But T 2(x) = {1} for all x ∈ X . Therefore,
T satisfies all of the assumptions of Theorem 2.3, but it does not satisfy the assumptions of Theorem 2.2 in [13].

Theorem 2.5. Let X be a Hausdorff topological space, (C, τ ) be a topological lattice with minimal element 0 and μ : 2X → C be a
measure of noncompactness on X with the Kuratowski property. Suppose that T : X � X is a topological contraction and a generalized
μ-set contraction w.r.t. B = 2X . Let there exists p ∈ N such that T p is upper semicontinuous and closed. Then T has a unique stationary
point x0 and {x0} = ⋂∞

n=0 T n(X).

Proof. Let Xn := T pn(X) for all n ∈ N ∪ {0}, where X0 = X . Clearly, Xn is closed and Xn+1 ⊆ Xn for all n ∈ N ∪ {0}. Since
T is a generalized μ-set contraction w.r.t. B = 2X , then μ(Xn) = μ(T pn(X)) → 0. As μ has the Kuratowski property, then
K := ⋂∞

n=0 Xn is nonempty and compact. We show that T p(K ) = K . It is clear that T p(K ) ⊆ K . For the converse, let x ∈ K
and Yn := (T p)−(x) ∩ Xn for each n ∈ N. Since x ∈ K , then x ∈ T p(Xn), so there exists z ∈ Xn such that x ∈ T p(z). Therefore,
z ∈ Xn ∩ (T p)−(x) = Yn , that is Yn is nonempty. Since T p is upper semicontinuous and Xn is closed, then Yn is closed. Also,
μ(Yn) � μ(Xn) → 0. Therefore,

⋂∞
n=1 Yn �= ∅. If y ∈ ⋂∞

n=1 Yn , then y ∈ K and x ∈ T p(y). Hence, K ⊆ T p(K ). Furthermore,
K = ⋂∞

n=0 T n(X) and so T (K ) ⊆ K . Then by part (ii) of Lemma 2.1, K is singleton. Thus, T has a unique stationary point. �
As a consequence of Theorem 2.5, we obtain the following fixed point theorem which improves Corollary 4 of [10].

Corollary 2.6. Let X be a Hausdorff topological space, (C, τ ) be a topological lattice with minimal element 0 and μ : 2X → C be a
measure of noncompactness on X with the Kuratowski property. Suppose that f : X → X is a topological contraction and a generalized
μ-set contraction with respect 2X . If there exists p ∈N such that f p is continuous and closed, then f has a unique fixed point.

3. Stationary points in uniform spaces

In this section, we focus our intention on finding stationary points of set-valued maps on uniform spaces. Hence, let E
be a Hausdorff uniform space with uniformity defined by a saturated family D = {dα: α ∈A} of pseudo-metrics dα , α ∈A,
uniformly continuous on E × E . We denote by B(E) the set of all nonempty bounded subsets of E , C(E) the set of all
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nonempty closed subsets of E and by C B(E) the set of all nonempty closed and bounded subsets of E . For A ∈ B(E) and
α ∈A, we denote its diameter as

δα(A) = sup
{

dα(x, y): x, y ∈ A
} = δα(A).

Then, the Kuratowski measure of noncompactness γ defined on B(E) for each α ∈ A, as: [γ (A)](α) = inf{δ > 0: A admits
a finite partition into subsets whose diameters with respect to the pseudo-metric dα are no larger than δ}.

Let x1 ∈ X , then a sequence (xn) such that xn ∈ T n(x1), T n = T ◦ T ◦ · · · ◦ T (n-times), n > 1, is called a generalized
sequence of iterations with initial point x1. In Theorems 2.3 and 2.5, we established conditions guaranteeing the existence
and uniqueness of stationary points. Now, we are going to show that under these conditions all generalized sequences of
iterations of a set-valued map on a complete first countable Hausdorff uniform space converge to these stationary points.
In order to prove these results, we need the following lemma:

Lemma 3.1. Let E be a complete first countable Hausdorff uniform space and γ be the Kuratowski measure of noncompactness on E.
Suppose that T : E � E is a generalized γ -set contraction with respect to B = 2E and

⋂∞
n=1 T n(E) = {x0}, then δα(T n(E)) → 0 for

all α ∈ A. Furthermore, if
⋂∞

n=1 T n(E) = {x0}, then each generalized sequence of iterations (xn) with an arbitrary initial point x1 ,
converges to x0 .

Proof. Let α ∈ A be arbitrary and fixed. Since T is a generalized γ -set contraction w.r.t. 2E , then γ (T n(E)) → 0. Therefore,
δα(T n(E)) is finite for sufficiently large n. Without loss of generality, assume that δα(T n(E)) is finite for any n ∈ N. Hence,
for all n ∈N, there exist xn, un ∈ T n(E) such that

δα
(
T n(E)

)
� dα(xn, un) + 1

n
. (1)

Now, we consider two decreasing sequences of sets (Cn) and (Dn) given by Cn = {xi: i � n} and Dn = {ui: i � n}. Obvi-
ously Cn, Dn ⊆ T n(E) and γ (C1)(α) = γ (Cn)(α) � γ (T n(E))(α) and γ (D1)(α) = γ (Dn)(α) � γ (T n(E))(α) for every n ∈ N.
Therefore, γ (C1)(α) = 0 and γ (D1)(α) = 0. Since α is arbitrary, then C1 and D1 are relatively compact. Let (xnk ) and
(unk ) be subsequences of (xn) and (un) respectively, such that xnk → x̄, unk → ū. Then x̄, ū ∈ T n(E) for all n ∈ N. Since⋂∞

n=1 T n(E) = {x0}, then x̄ = ū = x0. Therefore, from (1), we have δa(T nk (E))(α) → 0. Since (δα(T n(E))) is a decreasing se-
quence, then limn→∞ δα(T n(E)) = 0. Furthermore, if

⋂∞
n=1 T n(E) = {x0}, then dα(xn, x0)� δα(T n(E)) for all n > 1 and α ∈A

(note that xn ∈ T n(x1) for all n > 1). Hence, (xn) converges to x0. �
By applying Theorem 2.5 and Lemma 3.1, we obtain the following result.

Theorem 3.2. Let E be a complete first countable Hausdorff uniform space and γ be the Kuratowski measure of noncompactness on E.
Suppose that T : E � E is a topological contraction and a generalized γ -set contraction w.r.t. B = 2E . Let there exists p ∈N such that
T p is upper semicontinuous and closed. Then T has a unique stationary point x0 in E and each generalized sequence of iterations (xn)

with an arbitrary initial point x1 converges to x0 .

Recently Włodarczyk et al. [11–15] obtained the existence of stationary points for some classes of set-valued maps which
are defined on metric spaces or uniform spaces. We shall show that the classes of set-valued maps which were introduced
in [11–15] are topological contraction and generalized γ -set contraction with respect to a subfamily of 2E , where E is a
uniform space or a metric space and γ is the Kuratowski measure of noncompactness.

In the following result we give a sufficient condition for topological contraction and generalized μ-set contraction set-
valued mappings in uniform spaces.

Lemma 3.3. Let T : E � E be a set-valued map and B be a collection of nonempty subsets of E which contains nonempty compact
subsets of E. Suppose that limn δα(T n(A)) = 0 for any α ∈ A and for every A ∈ B. Then T is topological contraction and generalized
γ -set contraction w.r.t. B, where γ is the Kuratowski measure of noncompactness.

Proof. Assume that on the contrary that T is not a topological contraction. Then there exists a nonempty compact subset
A of E such that T (A) = A and A is not singleton. Therefore, there exists α ∈ A such that δα(A) = r > 0. Since r = δα(A) =
δα(T n(A)) for all n ∈ N, then limn→∞ δα(T n(A)) = r > 0, which is a contradiction.

On the other hand, for any A ∈ B we have

γ
(
T n(A)

)
(α) � δα

(
T n(A)

) ∀α ∈ A.

Then γ (T n(A)) → 0 and so T is a generalized γ -set contraction w.r.t. B. �
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The following example shows that the converse of Lemma 3.3 is not valid.

Example 3.4. Let c0 be the null sequences space equipped with its canonical norm

∥∥(xn)
∥∥∞ = sup

{|xn|: n ∈N
} ∀(xn) ∈ c0.

Let B be the closed unit ball of c0 and T : B → B be defined as follows:
For each x = (x1, x2, . . . , xi, . . .) ∈ B ,

T (x) =
{

(0,0, . . .) if xi = 0, ∀i � 2,

(x1,
1
2 x2,

1
2 x3, . . .) otherwise.

We show that T is a topological contraction and a generalized γ -set contraction, where γ is the Kuratowski measure of
noncompactness.

Let A = {x ∈ B: ∃i � 2, xi �= 0} and C ⊂ B , then we have

γ
(
T (C)

) = γ
(
T
(
(C ∩ A) ∪ (

C ∩ Ac))) = γ
(
T (C ∩ A) ∪ T

(
C ∩ Ac)) = max

{
γ

(
T (C ∩ A)

)
, γ

(
T
(
C ∩ Ac))}

= γ
(
T (C ∩ A)

) = γ

(
1

2

(
C ∩ Ac) + 1

2
(C ∩ A)

)
� γ

(
1

2
(C ∩ A)

)
= 1

2
γ (C ∩ A) � 1

2
γ (C).

Therefore, T is a 1
2 -set contraction and by Proposition 2.3 of [1], T is a generalized γ -set contraction. Suppose that A is a

compact subset of B and T (A) = A. Then, we get

T n(A) =
{(

x1,
1

2n
x2,

1

2n
x3, . . .

)
; x = (x1, x2, . . .) ∈ A

}
= A.

Hence,

A = lim
n

T n(A) = {
(x1,0, . . .), x1 ∈ [−1,1], x ∈ A

}
.

On the other hand T (A) = {(0,0, . . .)} = A, thus A is singleton and so T a is topological contraction.
Let x = (0,0, . . .) and y = (1,1,0, . . .), then

∥∥T n(x) − T n(y)
∥∥ =

∥∥∥∥
(

1,
1

2n
,0, . . .

)∥∥∥∥ = 1.

Therefore, δ(T n(B)) � 0.

Now, we characterize some classes of set-valued maps which are fulfilled the assumptions of Lemma 3.3.

Definition 3.5. [11] The family

V = {
Vα : 2E → [0,∞], α ∈ A

}
is said to be a V-family of generalized pseudo-distances on E (V-family, for short) if the following conditions hold:

(V1) ∀α ∈A ∀A1, A2 ∈ 2E {A1 ⊆ A2 ⇒ Vα(A1) � Vα(A2)},
(V2) ∀α ∈A ∀x, y, z ∈ X, Vα({x, z})� Vα({x, y}) + Vα({y, z}),
(V3) for any sequence (xm) in E such that

∀α ∈ A, lim
n

sup
m

Vα

({xn, xm}) = 0,

if there exists a sequence (ym) in E satisfying

∀α ∈ A, lim
m

Vα

({xm, ym}) = 0,

then

∀α ∈ A, lim
m

dα

({xm, ym}) = 0,

(V4) ∃α0 ∈A such that Vα0(E) > 0.
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Definition 3.6. ([11]) Let T : E � E be a set-valued map and V = {Vα : 2E → [0,∞], α ∈ A} be a V-family on E . Suppose
that for each α ∈A,

Dα;T ,V = {
Vα(A): A ⊂ E, T (A) ⊂ A, Vα(A) > 0

}
and

Hα;T ,V = {
Vα

(
T n(E)

)
: Vα

(
T n(E)

)
> 0, n ∈ {0} ∪N

}
where T 0(E) = E .

An Ω-family of generalized gauge maps (Ω-family, for short) is by definition a family Ω = {ωm;α}α∈A of maps
ωm;α : Hα;T ,V → (0,∞], m ∈N, α ∈A, such that

∀α ∈ A ∀ε > 0 ∃η > 0 ∃m ∈N ∀t ∈ [ε, ε + η),
{

t ∈ Hα;T ,V ⇒ ωm;α(t) � ε
}
. (2)

Definition 3.7. ([11]) Let T : E � E be a set-valued map. If there exist a V-family and an Ω-family such that

∀α ∈ A ∀m ∈N ∀n ∈ {0} ∪N,
{

Vα

(
T n(E)

)
> 0 ⇒ Vα

(
T m(

T n(E)
))

< ωm;α
(

Vα

(
T n(E)

))}
. (3)

Then we say that T is a (V,Ω)-asymptotic contraction on E .

Lemma 3.8. If T : E � E is a (V,Ω)-asymptotic contraction on E, then

∀α ∈ A, lim
n→∞ δα

(
T n(E)

) = 0.

Proof. Let w0 ∈ E and wm ∈ T m(w0) for m ∈ N, be arbitrary and fixed, then by part (VI) of the proof of Theorem 2.3 in
[11], we have

∀α ∈ A, lim
n

sup
m>n

Vα

({wn, wm}) = 0. (4)

Let (un) be a sequence in E such that un ∈ T n(E), then {wn, un} ⊆ T n(E) for any n ∈ N. Therefore, by (V1),

∀α ∈ A ∀m ∈N, Vα

({wn, un}
)
� Vα

(
T n(E)

)
.

But in the step (II) of the proof of Theorem 2.3 in [11], it has been shown that Vα(T n(E)) → 0. Therefore, we have

∀α ∈ A, lim
n

Vα

({wn, un}
) = 0. (5)

Hence, from (4), (5) and (V3), we conclude that

∀α ∈ A, lim
n

dα(wn, un) = 0. (6)

Moreover, by (V2),

∀α ∈ A, Vα

({um, un}
)
� Vα

({um, wm}) + Vα

({wm, wn}
) + Vα

({wn, un}
)
.

From (4) and (6), we get that

∀α ∈ A, lim
n

sup
m>n

Vα

({um, un}
) = 0.

If (xn) is another sequence in E such that xn ∈ T n(E), then

∀α ∈ A, lim
n

dα(xn, un) = 0. (7)

Let α ∈ A be arbitrary and fixed. We claim that there exists N ∈ N such that δα(T N (E)) < ∞. Assume on the contrary that
δα(T n(E)) = ∞ for every n ∈N. Hence, for every n ∈N there exist xn, un ∈ T n(E) such that dα(xn, un)� n. Therefore,

lim
n→∞dα(xn, un) = ∞,

which contradicts (7). Thus, there exists N such that δα(T N (E)) < ∞. Since T n+1(E) ⊆ T n(E) for any n ∈ N, then
δα(T n(E)) < ∞ for any n � N . Without loss of generality we can assume that δα(T n(E)) < ∞ for any n ∈ N. Since the
sequence (δα(T n(E))) is nondecreasing, then there exists a real number r such that

lim δα
(
T n(E)

) = r � 0.

n→∞
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If r �= 0, then

∃N0 ∈ N δα
(
T n(E)

)
>

r

2
∀n � N0.

Therefore, for any n � N0, there exist xn, un ∈ T n(E) such that dα(xn, un) > r
2 which is a contradiction and so the proof is

completed. �
From Lemmas 3.3 and 3.8 and Theorem 2.5, we can deduce the following facts.

Remark 3.9. Let T : E � E and γ be the Kuratowski measure of noncompactness.

(i) Suppose E is a metric space and T is a set-valued asymptotic contraction [Definition 2.1 of [12]]. According to the proof
of Theorem 2.1 of [12], we have

∀A ∈ B(E), lim
n→∞ δ

(
T n(A)

) = 0.

Then by Lemma 3.3, T is a topological contraction and a generalized γ -set contraction w.r.t. B(E).
(ii) Suppose E is a uniform space and T is an asymptotic contraction of Meir–Keeler type [Definition 2.1 of [13]]. By the

proof of Theorem 2.1 of [13], we have

∀α ∈ A ∀A ∈ C B(E), lim
n→∞ δα

(
T n(A)

) = 0.

Then by Lemma 3.3, T is a topological contraction and a generalized γ -set contraction w.r.t. C B(E).
(iii) Suppose E is a uniform space and T is a contraction of Meir–Keeler type on E [Definition 2.1 of [15]]. In the proof of

Theorem 2.1 of [15], it is shown that

∀α ∈ A, lim
n→∞ δα

(
T n(E)

) = 0.

Then by Lemma 3.3, T is a topological contraction and a generalized γ -set contraction w.r.t. 2E .
(iv) Suppose E is a uniform space and T is a (V,Ω)-asymptotic contraction on E . By Lemma 3.8, we have

∀α ∈ A, lim
n→∞ δα

(
T n(E)

) = 0.

Lemma 3.3 implies that T is a topological contraction and a generalized γ -set contraction w.r.t. 2E .

Now by Remark 3.9 and Theorem 3.2, we can deduce the following existence result of stationary points which is different
from Theorem 2.2 in [14] and Theorems 2.1 of [11,13] and [15].

Theorem 3.10. Let E be a complete first countable Hausdorff uniform space and T : E � E be a set-valued map. Assume that there
exists n0 ∈ N such that γ (T n0 (E))(α) < ∞, for every α ∈ A, where γ is the Kuratowski measure of noncompactness on E. Suppose
that there exists p ∈ N such that T p is upper semicontinuous and closed. If T p is one of the mappings in Remark 3.9, then T has a
unique stationary point x0 and each generalized sequence of iterations (xn) with an arbitrary initial point x1 converges to x0 .

Remark 3.11. (a) In the above corollary if T p or T is one of the mapping satisfying conditions (iii) and (iv) of Remark 3.9,
then there exists n0 ∈N such that γ (T n0 (E))(α) < ∞, for every α ∈A.

(b) Though T p for p � 2 defined in Example 2.4 satisfies all of the conditions of mappings in Remark 3.9, but T does
not.
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