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a b s t r a c t

Mitotic centromere-associated kinase (MCAK/Kif2C) plays a critical role in chromosome movement
and segregation with ATP-dependent microtubule depolymerase activity. However, its role in cellu-
lar senescence remains unclear. MCAK/Kif2C expression decreased in human primary cells under
replicative and premature senescence. MCAK/Kif2C down-regulation in young cells induced prema-
ture senescence. MCAK/Kif2C overexpression in old cells partially reversed cell senescence. Senes-
cence phenotypes by MCAK/Kif2C knockdown were observed in p16-knockdown cells, but not in
p53-knockdown cells. These results suggest that MCAK/Kif2C plays an important role in the regula-
tion of cellular senescence through a p53-dependent pathway and might contribute to tissue/organ-
ism aging and protection of cellular transformation.
� 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Cellular senescence is an irreversible arrest state of cell prolifer-
ation [1], which is caused by telomere shortening, activation of
oncogene and tumor suppressor genes, oxidative stress, DNA dam-
age, inflammation, chemotherapeutic agents and ultraviolet (UV)
or gamma-irradiation [2]. Accumulating evidence suggests that
cellular senescence is one of the intrinsic safeguards against cancer
progression as well as contributes to tissue/organism aging and
age-related disease [3]. In addition to growth arrest, senescent cells
exhibit senescence-associated b-galactosidase activity (SA-b-gal),
DNA scars or damage foci, and senescence-messaging secretome
or senescence-associated secretory phenotypes [4]. Although dif-
ferent triggers induce cellular senescence, p53 and p16/Rb tumor
suppressor pathways are well documented to play a critical role
in cell senescence program [5].

Senescent cells manifest multiple defects in chromatin struc-
ture [6]. Increasing errors in the mitotic machinery of dividing cells
and resulting persistent DNA damage during cell senescence pro-
gress are suggested to induce global changes in chromatin struc-
ture of senescent cells, contributing to physiological and
premature aging, as well as defense mechanism against tumor
chemical Societies. Published by E
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transformation [7]. A variety of genes involved in the regulation
of chromosomal processing and assembly including CENP-F, mito-
tic kinesin-like protein-1, CENP-A, kinesin-like spindle protein, and
mitotic centromere-associated kinase (MCAK) are down-regulated
in cells from middle age, old age, and progeria versus young human
subjects, suggesting that chromosomal pathologies led by misregu-
lation of mitotic genes might be involved in the aging process [8].

Hutchinson–Gilford progeroid syndrome (HGPS), a premature
aging disorder, is caused by a point mutation in the lamin A/C gene
(LMNA) and shows multiple chromosomal defects and continual
DNA damage [9]. Aging-related chromatin defects are mediated
via loss of nucleosome remodeling and deacetylase chromatin
remodeling (NuRD) complex in premature and physiological aging
[10]. In addition, other genes such as CENP-A [11], aurora B kinase
(Aurora B) [12], and Bub1 [13], were involved in chromosome
movement and segregation during the mitotic process. However,
the molecular mechanism of aging-related chromatin abnormali-
ties and its relationship to cellular senescence remain to be
established.

Mitotic centromere-associated kinase or kinesin family member
2C (MCAK/Kif2C) is a member of the kinesin superfamily of micro-
tubule motor proteins [14]. Instead of carrying cargo along micro-
tubules, it associates with the microtubule surface and
depolymerizes microtubules with ATPase activity [15], which is a
critical process in normal chromosome movement and segregation.
MCAK/Kif2C is localized at the centromeres and kinetochores and
in the spindle poles, and functions as a key regulator of mitotic
spindle assembly and dynamics [16,17]. Both localization of MCAK
lsevier B.V. All rights reserved.
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Table 1
PCR primer sequences and siRNA sequences.

Name Sequence

MCAK/Kif2C Forward:
ATGGCCATGGACTCGTCGCTT
Reverse: TCGCTGGGGCCGTTTCTTGCT

p53 Forward: CCCTGAGGTTGGCTCTGA
Reverse: GTGCTGAGCCTCCCCTTT

p16 Forward: CTTCCTGGACACGCTGGT
Reverse: ACCTTCCGCGGCATCTAT

GAPDH Forward: CGACCACTTTGTCAAGCTCA
Reverse: AGGGGTCTACATGGCAACTG

Negative control siRNA dTdTUUCUCCGAACGUGUCACGU
dTdTACGUGACACGUUCGGAGAA

MCAK/Kif2C Stealth RNAi duplex
Oligonucleotides

AAUUGGAGUUGGCAAAUGUCUCGGC
GGGCAGACAUUUGCCAACUCCAAUU

p53 Stealth RNAi duplex
Oligonucleotides

UCCACACGCAAAUUUCCUUCCACUC
GAGUGGAAGGAAAUUUGCGUGUGGA

p16 Silencer� Select siRNA CUACCGUAAAUGUCCAUUUTT
AAAUGGACAUUUACGGUAGTG
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to the centromere and its microtubule depolymerase activity are
regulated by phosphorylation by Aurora B [18,19], Aurora A [20],
and polo-like kinase-1 (Plk1) [21], and dephosphorylation by type
I protein phosphatase [19]. Depletion or down-regulation of
MCAK/Kif2C revealed chromosomal congression and segregation
defects due to improper kinetochore attachments in potoroo kid-
ney (PtK) cells [22] and in normal diploid RPE-1 cells [23]. In con-
trast, overexpression of MCAK/Kif2C enhances microtubule
depolymerization, resulting in microtubule detachment from cen-
tromeres [24]. The higher expression of MCAK level was found in
gastric cancer tissue [25], colorectal and other epithelial cancers
[26], and breast cancer [27]. Considerable studies on MCAK/Kif2C
have focused mainly on its role in microtubule depolarization
and chromosome segregation and suggested that alteration of
MCAK/Kif2C might be involved in chromosome instability related
to cancer or aging, and thus, may contribute to cell proliferation
as well as senescence. However, the role of MCAK/Kif2C in cellular
senescence has not been reported.

In the present study, we reveal the causative effect of MCAK/
Kif2C on cellular senescence in human primary cells. Down-regula-
tion of MCAK/Kif2C in young cells induced premature senescence.
In contrast, ectopic expression of MCAK/Kif2C in old cells partially
reversed cell senescence. Senescence phenotypes induced by
MCAK/Kif2C repression were observed in p16-knockdown cells
but not in p53-knockdown cells. These results suggest that
MCAK/Kif2C plays an important role in the regulation of cellular
senescence through a p53-dependent pathway and might contrib-
ute to tissue/organism aging as well as protection of cell
transformation.

2. Materials and methods

2.1. Materials

Human dermal fibroblasts (HDFs), human umbilical vein endo-
thelial cells (HUVECs), and endothelial cell basal medium-2 (EBM-
2) containing several growth factors and supplements (EGM-2)
were purchased from Lonza (Walkersville, MD). Dulbecco’s modi-
fied eagle medium (DMEM), fetal bovine serum (FBS), 100 U/ml
penicillin, and 100 mg/ml streptomycin were obtained from Wel-
Gene (Daegu, Republic of Korea). Bromo-chloro-indolyl-galacto-
pyranoside (BCIG, X-gal) was purchased from Sigma–Aldrich (St.
Louis, MO). Antibodies against caspase 3, p53, cyclin A, MCAK/
Kif2C, and poly ADP ribose polymerase (PARP)-1/2 were obtained
from Santa Cruz Biotechnology (Santa Cruz, CA). Antibody against
phospho-Rb at serine 807 and 811 (pRbser807/811) was obtained
from Cell Signaling Technology (Danvers, MA). Glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) antibody was kindly provided
by KS Kwon (KRIBB, Daejeon, Republic of Korea). The Topo-TA clon-
ing kit, Lipofectamine 2000, Alexa Fluor� 647-conjugated annexin
V, and horseradish peroxidase (HRP)-conjugated secondary rabbit
or mouse polyclonal antibodies were purchased from Invitrogen
Life Technologies (Carlsbad, CA). The oligonucleotides for polymer-
ase chain reaction (PCR) primers of MCAK/Kif2C, p53, p16 and
GAPDH were obtained from Bioneer (Daejeon, Republic of Korea)
(Table 1). siRNAs used in the present study were listed in Table 1.
Total RNA isolation (TRI) reagent was from Bio Science Technology
(Daegu, Republic of Korea) and pAdEasy-1 adenoviral vector was
purchased from Stratagene (Santa Clara, CA).

2.2. Cell culture and treatment

HDFs in DMEM containing 10% FBS and 1% antibiotics, and HU-
VECs in EBM-2 with EGM-2 were plated at 1 � 105 cells per
100 mm-diameter culture plate and cultured at 37 �C in 5% CO2

humidified air. The number of population doublings (PDs) during
cell culture was monitored and cells were used in either PD < 24
(young) or PD > 50 (old). For induction of premature cell senescence
by adriamycin, cells (5 � 104) were seeded in wells of six-well
culture plates and incubated overnight and treated with 0.5 lM
adriamycin for 4 h. After washing, cells were incubated for the
indicated times. Adriamycin-induced cellular senescence was con-
firmed by SA-b-gal staining as described immediately below.

2.3. Senescence associated b-galactosidase (SA-b-gal) staining

SA-b-gal activity in cells was observed as described previously
[28]. After SA-b-gal staining, cells were counterstained with 1% eo-
sin for 3 min and then washed twice with phosphate buffered sal-
ine (PBS). The percentage of blue cells observed in 100 cells
examined by light microscopy was determined.

2.4. Immunofluorescence staining

Cells were fixed with 3.7% para-formaldehyde in PBS for 10 min
and permeabilized in PBS containing 0.5% Triton X-100 for 30 min.
An antibody specific to MCAK/Kif2C (1:200) was applied for 1 h
and then Alexa Fluor� 488 goat anti-mouse IgG (1:250) (Invitrogen
Life Technologies) was applied for 30 min. The nuclei were stained
with 0.1 lg/ml of 40,6-diamidino-2-phenylindole (DAPI) for 5 min.
Images were obtained using a fluorescence microscope.

2.5. Total RNA extraction and reverse transcriptase (RT)-PCR

RNA was extracted from cells using Tri-RNA isolation reagent
according to the manufacturer’s protocols. Total RNA was incubated
with 2.5 lM oligo-dT primer, 2.5 mM dNTPs, moloney murine leu-
kemia virus (MMLV) reverse transcriptase, and RNase inhibitor.
MCAK/Kif2C, p53, and p16 were amplified from resulting cDNAs
with Super-Therm DNA polymerase (JMR Holdings, London, UK)
and gene specific primers. The PCR protocol consisted of an initial
denaturation for 5 min at 95 �C; 30 cycles of 15 s at 95 �C, 15 s at
60 �C, and 30 s at 72 �C; and a final incubation for 1 min at 72 �C.
GAPDH primers were used to standardize the amount of RNA in each
sample. PCR products were resolved on 1% agarose gels and visual-
ized by SYBR Green staining (Applied Biosystems, Carlsbad, CA).

2.6. Real-time PCR

Real-time PCR was performed using SYBR Green PCR master
mix (Applied Biosystems) and a LightCycler 2.0 Real-Time PCR sys-
tem (Roche Diagnostic, Indianapolis, IN). The PCR protocol was
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Fig. 1. Expression levels of MCAK/Kif2C in young and old cells under replicative senescence and in adriamycin-treated cells. (A) SA-b-gal staining of young and old cells
(�100). The percentages of SA-b-gal-positive cells were determined by counting of 100 cells in five different fields. Values are means ± S.D. of three independent experiments.
(B) Semi-quantitative RT-PCR, Western blotting, and real-time PCR. (C) Immunostaining of MCAK/Kif2C in young and old cells. (D) Immunostaining of MCAK/Kif2C in the
nuclei of young cells treated with nocodazole (50 ng/ml). Cells were stained with an MCAK/Kif2C antibody (green) and DAPI (blue) for the nuclei. (E) Expression levels of
MCAK/Kif2C protein in adriamycin-treated cells. The MCAK/Kif2C and p53 protein level was detected by Western blotting. Representative data from three independent
experiments are shown. Y, young cells; O, old cells; ADR, adriamycin.
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2 min at 50 �C, 10 min at 94 �C, and 38 cycles of 15 s at 95 �C and
2 min at 54 �C. Expression levels were analyzed with the Light-
Cycler software (Roche Diagnostic).

2.7. Protein extraction and Western blot analysis

Proteins (50 lg) were separated by 10% SDS–polyacrylamide gel
electrophoresis (SDS–PAGE) and transferred to nitrocellulose
membranes. The membranes were incubated overnight with one
of the specific primary antibodies (1:1000). Then, HRP-conjugated
goat anti-mouse or goat anti-rabbit (1:3000) antibody were ap-
plied for 1.5 h. Antigen–antibody complex was detected using
Western Blotting Luminol solution (Santa Cruz Biotechnology)
with a LAS-3000 image system (Fujifilm).
2.8. Preparation of recombinant MCAK/Kif2C adenovirus

Full length human MCAK/Kif2C cDNA was PCR-amplified and
cloned into a TOPO-TA cloning vector. Nucleotide sequences of
MCAK/Kif2C cDNA (TOPO/MCAK/Kif2C) were confirmed by dide-
oxy sequencing (SolGent, Daejeon, Republic of Korea). Recombi-
nant MCAK/Kif2C adenoviral vector (pAd/MCAK/Kif2C) was
prepared using the pAdEasy-1 adenoviral vector. The recombinant
pAd/MCAK/Kif2C vector was linearized with PacI digestion and
transfected into AD293 cells using Fugene� HD transfection re-
agent (Promega, Madison, WI). Recombinant adenovirus was
amplified in AD293 cells and purified by an adenovirus purification
kit (CellBiolabs, San Diego, CA). Virus titers were determined using
the pAdEasy titer kit in AD293 cells.
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2.9. Transduction of recombinant MCAK/Kif2C adenovirus

Old cells (PD > 50, 1 � 105 cells) were seeded in 60 mm-diame-
ter culture plate and incubated overnight. Cells were treated at a
multiplicity of infection (MOI) of 3, 6, and 12 of recombinant
MCAK/Kif2C adenovirus for 24 h. Cell proliferation and SA-b-gal
activity were measured at 4 days post-transduction.

2.10. Transfection of MCAK/Kif2C, p53, and p16 small interfering RNAs
(siRNAs)

Young cells (1 � 105) were seeded in 60 mm-diameter culture
plates and incubated overnight. siRNAs (5 pmol) against MCAK/
Kif2C, p53, or p16 were transfected into cells using Lipofectamine
2000 transfection reagent (Invitrogen Life Technologies). After 24 h
incubation, media were changed and their expression levels were
observed by RT-PCR or Western blotting. Cell proliferation and
SA-b-gal activity were measured at 4 days post-transfection.

2.11. Annexin V staining

Apoptosis was observed in cells transfected with MCAK or neg-
ative control siRNAs using Alexa Fluor� 647-conjugated annexin V
according to the manufacturer’s suggestion. The samples were ana-
lyzed using the Becton–Dickinson FACS Canto II flow cytometer
(Becton–Dickinson, San Jose, CA).
2.12. Statistical analysis

The results are represented as means ± S.D. P values for deter-
mining statistical significance were calculated using an unpaired
two-tailed Student’s t-test.

3. Results

3.1. Expression levels of MCAK/Kif2C in young and old cells

While screening for genes differentially expressed in human
primary cells during replicative senescence by cDNA microarray
technology, we found that MCAK/Kif2C expression was down-reg-
ulated in senescent cells compared to young cells (data not shown).
The levels of many genes associated with mitotic process and chro-
mosomal segregation were decreased [12]. Since MCAK/Kif2C
functions as a key regulator of mitotic spindle assembly and
dynamics [16,17] and chromosomal pathologies led by misregula-
tion of mitotic genes might be involved in the aging process [8], we
tried to investigate the role of MCAK/Kif2C in cellular senescence.
Cellular senescence of HDFs and HUVECs was confirmed by
increases in SA-b-gal activity (Fig. 1A) and p53 levels (Fig. 1B).
Decreased expression levels of MCAK/Kif2C were shown in old cells
by RT-PCR, real-time PCR, and Western blotting (Fig. 1B). Immuno-
staining analysis revealed that MCAK/Kif2C was localized in the
nucleus of young and old cells, and that its level was reduced in
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Fig. 2. Effects of MCAK/Kif2C knockdown on cellular senescence in young HDFs and HUVECs. Young cells were transfected with either control siRNA or MCAK/Kif2C siRNA for
24 h. After further incubation for 4 days, cells were harvested. (A) Western blot analysis for the levels of MCAK/Kif2C, pRbser807/811, and cyclin A proteins. (B) Cell proliferation
measured by cell counting at the indicated times. (C) SA-b-gal staining (�100) and the percentages of SA-b-gal-positive cells. Representative data from four independent
experiments are shown. Values are mean ± S.D. of four independent experiments. ⁄P < 0.05; Y, young cells; O, old cells; siNC, control siRNA; siMCAK, MCAK/Kif2C siRNA.
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old cells compared to young cells (Fig. 1C). When treated with
nocodazole, an inhibitor of microtubule polymerization, MCAK/
Kif2C was confirmed to be localized in chromosomes of the pro-
metaphase, metaphase, and anaphase in young cells (Fig. 1D). In
addition, we tested whether stress-induced premature senescence
also causes a decrease in MCAK/Kif2C expression level. When cells
were exposed to adriamycin, which induces premature senescence
[29], the level of MCAK/Kif2C protein declined in a time-dependent
manner (Fig. 1E). These results showed that MCAK/Kif2C was
down-regulated under replicative senescence as well as stress-in-
duced premature senescence.

3.2. MCAK/Kif2C knockdown induces premature cellular senescence

To determine role of MCAK/Kif2C in the regulation of cellular
senescence of human primary cells, MCAK/Kif2C expression was
knocked-down with MCAK/Kif2C siRNA and the resulting senes-
cence phenotypes were assessed. Down-regulation of MCAK/Kif2C
was confirmed by Western blotting (Fig. 2A). MCAK/Kif2C reduc-
tion in young cells was associated with decreases in the levels of
phosphorylated Rb and cyclin A, which have been reported to be
decreased in cellular senescence [30] (Fig. 2A). Whereas cell prolif-
eration was decreased, SA-b-gal activity was enhanced by MCAK/
Kif2C knockdown (Fig. 2B and C). To examine whether inhibition
of cell proliferation in MCAK/Kif2C siRNA cells is caused by apop-
tosis, Annexin V staining and the levels of PARP1/2 and caspase 3
were measured. Flow cytometry revealed that Annexin V staining
was not increased by MCAK/Kif2C knockdown (Fig. 3A and B). No
cleavages of PARP-1/2 and caspase 3 were observed (Fig. 3C). These
results suggested that knockdown of MCAK/Kif2C stimulated pre-
mature cellular senescence in human primary cells.
3.3. MCAK/Kif2C overexpression partially reverses senescence
phenotypes

In contrast, to investigate the effects of MCAK/Kif2C overexpres-
sion on cellular senescence in old cells, old cells were transduced
with MCAK/Kif2C recombinant adenovirus and the senescence
features were assessed. An increase in MCAK/Kif2C level was
confirmed by RT-PCR (Fig. 4A). MCAK/Kif2C up-regulation
significantly increased cell proliferation (Fig. 4B), decreased
SA-b-gal activity, and converted flattened and enlarged cell
morphology of senescence cells to young cell-like morphology
(Fig. 4C). These data implicated that up-regulation of MCAK/Kif2C
level in old cells resulted in partial reversion of senescence
phenotype.

3.4. Induction of premature cell senescence by MCAK/Kif2C down-
regulation via a p53-dependent pathway

Since cellular senescence is regulated by p53- and p16/Rb-
dependent tumor suppressor pathways [31], it was presently
appropriate to investigate which pathway might be involved in
premature senescence induced by MCAK/Kif2C knockdown.
Knockdown of p53, p16, and MCAK/Kif2C were confirmed by RT-
PCR and Western blotting (Fig. 5A). A decrease in cell proliferation
and an increase in SA-b-gal activity by MCAK/Kif2C knockdown
were not observed in p53 siRNA cells, but were evident in p16 siR-
NA cells (Fig. 5B and C). Senescent-like cell morphology was also
shown in p16 siRNA cells, but not p53 siRNA cells (Fig. 5D). These
results support the view that premature cellular senescence in-
duced by MCAK/Kif2C knockdown might be regulated via a p53-
dependent pathway.
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Fig. 5. Effect of p53 or p16 knockdown on cellular senescence induced by MCAK/Kif2C down-regulation in HDFs and HUVECs. Cells were transfected with p53 or p16 siRNAs
and incubated for 24 h. Then cells were transfected with either control or MCAK/Kif2C siRNA and further incubated for 24 h. After 4-day incubation, cells were harvested. (A)
RT-PCR and Western blot analyses. (B) Cell counting. (C) The percentages of SA-b-gal-positive cells. (D) SA-b-gal staining (�100). Representative data from three independent
experiments are shown. Values are means ± S.D. of three independent experiments. ⁄P < 0.05 or ⁄⁄P < 0.01. Y, young cells; O, old cells; siNC, control siRNA; siMCAK, MCAK/
Kif2C siRNA; sip53, p53 siRNA; sip16, p16 siRNA.
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4. Discussion

The present study clearly shows that MCAK/Kif2C is involved in
the regulation of cellular senescence in human primary cells. This
conclusion is based on the following observations: (i) the expres-
sion levels of MCAK/Kif2C decreased in cells under replicative or
premature senescence induced by adriamycin (Fig. 1B–E), (ii)
down-regulation of MCAK/Kif2C in young cells induced premature
senescence (Fig. 2), and (iii) ectopic expression of MCAK/Kif2C in
senescent cells partially rescued senescence phenotypes (Fig. 4).
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To our knowledge, this is the first report to reveal the involve-
ment of MCAK/Kif2C in cellular senescence in human primary cells.
However, some indirect evidence has suggested that MCAK/Kif2C
might be involved in cellular senescence by regulating prolifera-
tion. The expression levels of MCAK/Kif2C gene are higher in gas-
tric cancer tissue [25], breast cancer [27], prostate cancer [32],
and in a variety of solid tumors [26]. Moreover, its expression lev-
els correlate with the proliferative activity of the tumor, lymph
node metastasis, and overall survival [25,26]. Consistent with clin-
ical findings, ectopic expression of MCAK/Kif2C in gastric cancer
cells increases cell proliferation as well as migratory ability [25].
Altered expression of MCAK/Kif2C might be caused by decreased
methylation of CpG island of its promoter in breast cancer [33].
In contrast, down-regulation of MCAK/Kif2C effectively inhibits
the growth of the breast cancer cells [27] and prostate cancer cells
[32], and decreases the mitotic index in HeLa cells by blocking the
prometaphase-to-metaphase transition with misaligned or malori-
ented chromosomes, suggesting the inhibition of cell proliferation
[16]. The absence of MCAK/Kif2C in breast cancer cells resulted in
enlarged cell morphology changes due to the inhibition of cytoki-
nesis [27]. These lines of evidence point to MCAK/Kif2C’s role in
cell proliferation and growth, indirectly supporting its association
with cellular senescence.

MCAK/Kif2C as an ATP-dependent microtubule (MT) depoly-
merase affects diverse aspects in mitosis during cell division, such
as spindle assembly, MT dynamics, correct kinetochore-MT
attachment, and chromosome positioning and segregation [14].
Therefore, MCAK/Kif2C activity should be regulated in a pre-
cisely-coordinated and finely-tuned manner. Several protein
kinases involved in mitosis and the cell cycle, such as Aurora B
[18] and A [20], and Plk1 [21], are pivotal to the complex spatio-
temporal phosphorylation-mediated regulation of MCAK/Kif2C
activity. Among these kinases, Aurora B is down-regulated during
cellular senescence and regulates cellular senescence in human
fibroblasts and endothelial cells through a p53-dependent path-
way [12]. Aurora A overexpression induces cellular senescence in
mammary gland hyperplastic tumors developed in p53-deficient
mice [34]. Bub1 mutant murine embryonic fibroblasts (MEFs)
underwent premature senescence displaying defects in chromo-
some congression to the metaphase plate, severe chromosome
missegregation, and aneuploidy [13]. Down-regulation of BubR1
levels in MEFs resulted in aneuploidy and premature senescence,
and BubR1-null mice revealed early aging-associated phenotypes
along with progressive aneuploidy [35]. Our results are consistent
with these studies in supporting the view that alteration of MCAK/
Kif2C activity might be involved in the regulation of cellular
senescence.
p53 and pRb/p16INK4A tumor suppressor pathways play a crit-
ical role in the regulation of cellular senescence induced by diverse
factors [5]. Therefore, we tried to elucidate the tumor suppressor
pathway involved in cell senescence induced by MCAK/Kif2C
down-regulation. The present data confirm that the p53-depen-
dent pathway might govern the regulation of cellular senescence
induced by MCAK/Kif2C knock-down. Two findings support this
suggestion. Firstly, MCAK/Kif2C knockdown decreased cell prolif-
eration in p16-shRNA-treated cells, but not in p53-shRNA-treated
cells (Fig. 5B). Secondly, MCAK/Kif2C knockdown increased SA-b-
gal activity in p16-shRNA-treated cells but not in p53-shRNA-
treated cells (Fig. 5C and D). MCAK/Kif2C expression has been re-
ported to be regulated by a p53 dependent pathway. MCAK/Kif2C
levels are increased by ectopic expression of p53 but decreased
by depletion of p53 in breast cancer cells [27] and the promoter se-
quence of MCAK/Kif2C was predicted to contain a putative p53
binding site [36], suggesting the involvement of p53 in the regula-
tion of MCAK/Kif2C level. Further study is necessary to investigate
the complex regulatory mechanism between MCAK/Kif2C and p53
involved in the regulation of cellular senescence.

In conclusion, our results reveal a causative role of MCAK/Kif2
down-regulation in cellular senescence of human primary cells,
thus contributing to tissue homeostasis, organism aging, and age-
related diseases. MCAK/Kif2C down-regulation during cellular
senescence seems to function in the growth arrest of cells with
aberrant chromosomes, as well as in protection of cellular
transformation.
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