Scheduling jobs with agreeable processing times and due dates on a single batch processing machine

L.L. Liu, C.T. Ng^{*}, T.C.E. Cheng
Department of Logistics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

Received 26 October 2006; received in revised form 11 December 2006; accepted 22 December 2006

Communicated by D.-Z. Du

Abstract

In this paper we study the problems of scheduling jobs with agreeable processing times and due dates on a single batch processing machine to minimize total tardiness, and weighted number of tardy jobs. We prove that the problem of minimizing total tardiness is NP-hard even if the machine capacity is two jobs and we develop a pseudo-polynomial-time algorithm for an NPhard special case of this problem. We also develop a pseudo-polynomial-time algorithm for the NP-hard problem of minimizing weighted number of tardy jobs, which suggests that this problem cannot be strongly NP-hard unless $\mathrm{P}=\mathrm{NP}$.

(c) 2007 Elsevier B.V. All rights reserved.

Keywords: Scheduling; Batch processing; Agreeable

1. Introduction

Batch scheduling has attracted wide attention of the scheduling research community over the past two decades. This scheduling model is primarily motivated by the burn-in operations in the final testing stage of very large-scale integrated circuits manufacture. A batch processing machine can process several jobs simultaneously. The processing time of a batch is equal to the longest processing time of the jobs in the batch. All the jobs contained in the same batch start and complete at the same time. Once processing of a batch is started, it cannot be interrupted, nor can other jobs be added to the batch. Besides application in very large-scale integrated circuits manufacture, batch scheduling can also be found in a variety of other manufacturing environments such as heat treatment in the metalworking industry, and diffusion or oxidation in wafer fabrication of semiconductor manufacture.

Du and Leung [4] proved that the traditional scheduling problem of minimizing total tardiness on a single machine is NP-hard. Lawler [8] developed a pseudo-polynomial-time algorithm for this problem, which suggests that the problem cannot be strongly NP-hard unless $\mathrm{P}=\mathrm{NP}$. When the processing times and due dates are agreeable, Emmons [5] showed that the problem can be solved optimally by ordering the jobs in non-decreasing order of their processing times. Karp [7] proved that the problem of minimizing weighted number of tardy jobs on a single machine is NPhard even if all the jobs are subject to the same due date. Lawler and Moore [9] presented a pseudo-polynomial-time algorithm for this problem.

[^0]Ikura and Gimple [6] may be the first researchers to study the batch scheduling problems. Many results in this area have since been obtained. Lee et al. [10] provided polynomial-time algorithms for the problems of scheduling jobs with agreeable processing times and due dates on a single batch processing machine to minimize maximum tardiness and number of tardy jobs. Li and Lee [11] proved that the batch scheduling problem with agreeable release dates and deadlines is strongly NP-hard. They developed polynomial-time algorithms for the problems of minimizing maximum tardiness and number of tardy jobs when all the jobs have agreeable release dates, due dates and processing times. Brucker et al. [1] provided an extensive discussion of the problems minimizing various regular objectives on an unbounded batch processing machine and on a bounded batch processing machine. For the scheduling problems on a batch processing machine with unbounded capacity, they developed polynomial-time dynamic programming algorithms for several objectives and proved that the problems of minimizing weighted number of tardy jobs and total weighted tardiness are ordinary NP-hard. For the scheduling problems on a batch processing machine with bounded capacity, they presented a dynamic programming algorithm for the problem with the total completion time objective and proved that the problems with due date related objectives are strongly NP-hard. Cheng et al. [3] proved that scheduling jobs with release dates and deadlines on an unbounded batch processing machine is NP-hard even if all the jobs are subject to agreeable processing times and deadlines. They developed polynomial-time algorithms for several special cases. Liu et al. [13] showed that the problem of minimizing total tardiness on a single unbounded batch processing machine is NP-hard in the ordinary sense and provided a pseudo-polynomial-time algorithm for the problems with release dates and several regular objectives on a single unbounded batch processing machine.

Given the strong NP-hardness of the batch scheduling problems with due date related objectives, we study in this paper the scheduling problems with agreeable processing times and due dates to minimize total tardiness, and weighted number of tardy jobs. These problems are interesting since in reality the job with a longer processing time is often assigned a larger due date [2,11], then the jobs satisfy the condition of agreeable processing times and due dates.

The rest of this paper is organized as follows. In Section 2 we discuss the assumptions and notation that will be used in this paper. In Section 3 we prove that the problem of scheduling jobs with agreeable processing times and due dates on a batch processing machine to minimize total tardiness is NP-hard even if the machine can process at most two jobs at the same time. We present a pseudo-polynomial-time algorithm for an NP-hard special case of this problem. In Section 4 we develop a pseudo-polynomial-time algorithm for the NP-hard problem of scheduling jobs with agreeable processing times and due dates on a single batch processing machine to minimize weighted number of tardy jobs, which suggests that this problem cannot be strongly NP-hard unless P $=$ NP. Finally, we draw some conclusions and suggest some future research directions in Section 5.

2. Assumptions and notations

In this paper we make assumptions and use notation about the jobs and the machine as follows:

- There are n jobs, all of which are available at time zero, to be processed on a single batch processing machine. The processing time of job J_{j} is denoted by p_{j}, its weight by w_{j}, and its due date by d_{j}. We say that the processing times and due dates are agreeable if $p_{i}<p_{j}$ implies that $d_{i} \leq d_{j}(1 \leq i<j \leq n)$. Since we study the problems with agreeable processing times and due dates, throughout this paper we assume that all the jobs have been indexed in non-decreasing order of their processing times and due dates such that $p_{1} \leq p_{2} \leq \cdots \leq p_{n}$ and $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$.
- The batch processing machine can process up to B jobs at the same time. A batch is called full if it contains exactly B jobs; otherwise, it is called a partial batch. The processing time of batch B_{i} is denoted by $p\left(B_{i}\right)$, which is equal to the longest processing time of the jobs in the batch. The number of jobs in batch B_{i} is denoted by $\left|B_{i}\right|$.

We use the common three-field notation to denote the scheduling problems under study. For example, ${ }_{1 \mid B}, \operatorname{agr}\left(p_{j}, d_{j}\right) \mid \sum T_{j}$ denotes the problem of scheduling jobs with agreeable processing times and due dates on a single bounded batch processing machine to minimize total tardiness.

3. Minimizing total tardiness

The problem $1\left|\operatorname{agr}\left(p_{j}, d_{j}\right)\right| \sum T_{j}$ can be solved in polynomial time [5]. Brucker et al. [1] showed that the problem $1|B=2| L_{\max } \leq 0$ is strongly NP-hard, which indicates that the problem $1|B=2| \sum T_{j}$ is strongly NP-hard, too. Liu and Yu [12] proved that the problem $1\left|B=2, r_{j} \in\{0, r\}\right| C_{\max }$ is NP-hard in the ordinary sense. By scheduling
the jobs in a backward way, the problem $1\left|B=2, r_{j} \in\{0, r\}\right| C_{\max }$ can be transformed into the problem $1 \mid B=$ $2, d_{j} \in\left\{d_{1}, d_{2}\right\} \mid L_{\max } \leq 0$, where d_{1} and d_{2} are two distinct due dates and $0<d_{1}<d_{2}$. It follows that the problem ${ }_{1 \mid B}=2, d_{j} \in\left\{d_{1}, d_{2}\right\} \mid \sum T_{j}$ is NP-hard, too. In this section we prove that the problem $1\left|B, \operatorname{agr}\left(p_{j}, d_{j}\right)\right| \sum T_{j}$ is NP-hard even if $B=2$ by reducing the partition problem to it. Our reduction is a modification of the one in [13]. We first introduce a structural property of a class of optimal schedules for the case of $B=2$.
Lemma 1. There exists an optimal schedule for the problem $1\left|B=2, \operatorname{agr}\left(p_{j}, d_{j}\right)\right| \sum T_{j}$ such that all the batches contain consecutively indexed job(s).
Proof. Consider an optimal schedule in which jobs J_{i} and J_{j} are processed in the same batch B_{l} and job $J_{s}(i<s<$ j) is processed in another batch B_{k}. Let C_{1} and C_{2} denote the completion times of batches B_{l} and B_{k}, respectively.

If B_{l} is processed before B_{k}, exchange job J_{s} and job J_{j} by moving J_{s} to B_{l} and J_{j} to B_{k}. Since $p_{i} \leq p_{s} \leq p_{j}$, the completion times of all the batches do not increase. Denoting the new completion times of batches B_{l} and B_{k} as C_{1}^{\prime} and C_{2}^{\prime}, respectively, we have $C_{1}^{\prime} \leq C_{1}$ and $C_{2}^{\prime} \leq C_{2}$. Let T_{s}, T_{j} and $T_{s}^{\prime}, T_{j}^{\prime}$ denote the tardiness of jobs J_{s} and J_{j} before and after the job exchange, respectively. Therefore:

$$
\begin{array}{ll}
T_{j}=\max \left\{0, C_{1}-d_{j}\right\}, & T_{s}=\max \left\{0, C_{2}-d_{s}\right\}, \\
T_{s}^{\prime}=\max \left\{0, C_{1}^{\prime}-d_{s}\right\}, & T_{j}^{\prime}=\max \left\{0, C_{2}^{\prime}-d_{j}\right\} .
\end{array}
$$

Because $C_{1}^{\prime} \leq C_{1}$ and $C_{2}^{\prime} \leq C_{2}$, it follows that:

$$
\begin{aligned}
& T_{s}+T_{j}-\left(T_{s}^{\prime}+T_{j}^{\prime}\right) \\
& \quad \geq \max \left\{0, C_{1}-d_{j}\right\}+\max \left\{0, C_{2}-d_{s}\right\}-\left(\max \left\{0, C_{1}-d_{s}\right\}+\max \left\{0, C_{2}-d_{j}\right\}\right) .
\end{aligned}
$$

Since $d_{s} \leq d_{j}, C_{1}<C_{2}$, we know that both $C_{1}-d_{s}$ and $C_{2}-d_{j}$ lie within the time interval ($C_{1}-d_{j}, C_{2}-d_{s}$). Moreover, $C_{1}-d_{s}-\left(C_{1}-d_{j}\right)=C_{2}-d_{s}-\left(C_{2}-d_{j}\right)=d_{j}-d_{s}$ and the non-negative increasing function $x^{+}=\max \{0, x\}$ is convex, and we obtain:

$$
\begin{aligned}
T_{s}+T_{j}- & \left(T_{s}^{\prime}+T_{j}^{\prime}\right) \\
& \geq\left(C_{1}-d_{j}\right)^{+}+\left(C_{2}-d_{s}\right)^{+}-\left(\left(C_{1}-d_{s}\right)^{+}+\left(C_{2}-d_{j}\right)^{+}\right) \\
& =\left(C_{2}-d_{s}\right)^{+}-\left(C_{2}-d_{j}\right)^{+}-\left(\left(C_{1}-d_{s}\right)^{+}-\left(C_{1}-d_{j}\right)^{+}\right) \\
& \geq 0 .
\end{aligned}
$$

Thus, the total tardiness does not increase after the job interchange.
If B_{l} is processed after B_{k}, exchange job J_{i} and job J_{s} by moving J_{s} to B_{l} and J_{i} to B_{k}. Repeat the above arguments; the total tardiness does not increase after the job interchange either.

Repeating the above procedures, we can construct an optimal schedule with all the batches containing consecutively indexed jobs.

3.1. NP-hardness proof

Partition: Given t positive integers $\left\{a_{1}, \ldots, a_{t}\right\}$ such that $\sum a_{j}=2 A$, is there a partition of the index set $\{1, \ldots, t\}$ into A_{1}, A_{2} such that $\sum_{j \in A_{1}} a_{j}=\sum_{j \in A_{2}} a_{j}=A$?

Given any instance of the partition problem, we first define the following $3 t+1$ integers:

$$
\begin{aligned}
M_{t} & =\sum_{i=1}^{t}(t-i) a_{i}+6 A, \\
M_{k} & =3 \sum_{i=k+1}^{t} M_{i}+\sum_{i=1}^{t}(t-i) a_{i}+6 A, \quad k=t-1, \ldots, 1, \\
L_{1} & =11 \sum_{i=1}^{t} M_{i}+\sum_{i=1}^{t}(t-i) a_{i}+4 A, \\
L_{k} & =2 \sum_{i=1}^{k-1} L_{i}+11 \sum_{i=1}^{t} M_{i}+\sum_{i=1}^{t}(t-i) a_{i}+4 A, \quad k=2, \ldots, 2 t+1 .
\end{aligned}
$$

Obviously, the above defined $3 t+1$ integers satisfy:

$$
2 A \ll M_{t} \ll M_{t-1} \ll \cdots \ll M_{1} \ll L_{1} \ll L_{2} \ll \cdots \ll L_{2 t+1} .
$$

We now construct a scheduling instance with $n=6 t+2$ jobs and $B=2$. For each $k(k=1, \ldots, 2 t)$, define three type k jobs $J_{k}^{i}(i=1,2,3)$. For $k=1, \ldots, t ; i=1,2,3$, job $J_{2 k-1}^{i}$ has the following processing time $p_{2 k-1}^{i}$ and due date $d_{2 k-1}^{i}$.

$$
\begin{aligned}
p_{2 k-1}^{1} & =L_{2 k-1}, \\
p_{2 k-1}^{2} & =L_{2 k-1}+2 M_{k} \\
p_{2 k-1}^{3} & =L_{2 k-1}+3 M_{k} \\
d_{2 k-1}^{1} & =2 \sum_{i=1}^{2 k-2} L_{i}+8 \sum_{i=1}^{k-1} M_{i}+L_{2 k-1}+2 M_{k}+2 A \\
d_{2 k-1}^{2} & =2 \sum_{i=1}^{2 k-1} L_{i}+8 \sum_{i=1}^{k-1} M_{i}, \\
d_{2 k-1}^{3} & =2 \sum_{i=1}^{2 k-1} L_{i}+8 \sum_{i=1}^{k-1} M_{i}+5 M_{k}+2 A .
\end{aligned}
$$

For $k=1, \ldots, t ; i=1,2,3$, job $J_{2 k}^{i}$ has the following processing time $p_{2 k}^{i}$ and due date $d_{2 k}^{i}$.

$$
\begin{aligned}
& p_{2 k}^{1}=L_{2 k}, \\
& p_{2 k}^{2}=L_{2 k}+2 M_{k}+a_{k}, \\
& p_{2 k}^{3}=L_{2 k}+3 M_{k}, \\
& d_{2 k}^{1}=2 \sum_{i=1}^{2 k-1} L_{i}+8 \sum_{i=1}^{k-1} M_{i}+L_{2 k}+5 M_{k}+2 A, \\
& d_{2 k}^{2}=2 \sum_{i=1}^{2 k} L_{i}+8 \sum_{i=1}^{k-1} M_{i}+5 M_{k}-(t-k+1) a_{k}, \\
& d_{2 k}^{3}=2 \sum_{i=1}^{2 k} L_{i}+8 \sum_{i=1}^{k} M_{i}+2 A .
\end{aligned}
$$

In addition, we define two type $2 t+1$ jobs $J_{2 t+1}^{1}$ and $J_{2 t+1}^{2}$ with the same processing time $p_{2 t+1}^{1}=p_{2 t+1}^{2}=L_{2 t+1}$ and the same due date $d_{2 t+1}^{1}=d_{2 t+1}^{2}=2 \sum_{i=1}^{2 t} L_{i}+L_{2 t+1}+8 \sum_{i=1}^{t} M_{i}+A$. According to the definition of processing times and due dates, we know that:

$$
\begin{aligned}
& p_{1}^{1}<p_{1}^{2}<p_{1}^{3}<\cdots<p_{k}^{1}<p_{k}^{2}<p_{k}^{3}<\cdots<p_{2 t}^{1}<p_{2 t}^{2}<p_{2 t}^{3}<p_{2 t+1}^{1}=p_{2 t+1}^{2}, \\
& d_{1}^{1}<d_{1}^{2}<d_{1}^{3}<\cdots<d_{k}^{1}<d_{k}^{2}<d_{k}^{3}<\cdots<d_{2 t}^{1}<d_{2 t}^{2}<d_{2 t}^{3}<d_{2 t+1}^{1}=d_{2 t+1}^{2} .
\end{aligned}
$$

Set the threshold value of the total tardiness as

$$
T^{*}=3 \sum_{i=1}^{t} M_{i}+\sum_{i=1}^{t}(t-i) a_{i}+A .
$$

We call a schedule satisfying $\sum T_{j} \leq T^{*}$ a feasible schedule. According to Lemma 1, any feasible schedule can be transformed into one with each batch containing consecutively indexed jobs; we call this schedule a feasible schedule with consecutively indexed jobs, and then we know that there exists a feasible schedule for the constructed scheduling instance if and only if there exists a feasible schedule with consecutively indexed jobs for it. We will prove that there exists a feasible schedule with consecutively indexed jobs for the scheduling instance if and only if the partition instance has a solution.

Obviously, the reduction for constructing the scheduling instance is polynomial under binary encoding. We next explore the properties of any feasible schedule with consecutively indexed jobs. For a given schedule, $k=$ $1, \ldots, 2 t ; i=1,2,3$ and $k=2 t+1 ; i=1,2$, let T_{k}^{i} denote the tardiness of job J_{k}^{i}.

Lemma 2. In any feasible schedule with consecutively indexed jobs, each batch contains only jobs of one type; the three jobs of the same type must be assigned to two batches; and all the batches are processed in non-decreasing order of their processing times.

Proof. Consider a schedule in which a type k job and a type $h(1 \leq k<h \leq 2 t+1)$ job are processed in the same batch. The tardiness of the type k job in this batch is at least

$$
\begin{aligned}
L_{h}-d_{k}^{3} & \geq L_{h}-\left(2 \sum_{i=1}^{k} L_{i}+8 \sum_{i=1}^{t} M_{i}+2 A\right) \geq L_{k+1}-\left(2 \sum_{i=1}^{k} L_{i}+8 \sum_{i=1}^{t} M_{i}+2 A\right) \\
& >3 \sum_{i=1}^{t} M_{i}+\sum_{i=1}^{t}(t-i) a_{i}+A=T^{*} .
\end{aligned}
$$

Therefore, in any feasible schedule, each batch contains only jobs of the same type.
Consider a schedule in which the three jobs of type $k(1 \leq k \leq 2 t)$ are assigned to three batches, and the tardiness of the last type k job is at least:

$$
\begin{aligned}
3 L_{k}-d_{k}^{3} & \geq 3 L_{k}-\left(2 \sum_{i=1}^{k} L_{i}+8 \sum_{i=1}^{t} M_{i}+2 A\right)=L_{k}-\left(2 \sum_{i=1}^{k-1} L_{i}+8 \sum_{i=1}^{t} M_{i}+2 A\right) \\
& >3 \sum_{i=1}^{t} M_{i}+\sum_{i=1}^{t}(t-i) a_{i}+A=T^{*} .
\end{aligned}
$$

Since the machine can process at most two jobs at the same time, the three jobs $J_{k}^{i}(i=1,2,3)$ of the same type $k(k=1, \ldots, 2 t)$ must be assigned to two batches: $\left\{J_{k}^{1}, J_{k}^{2}\right\}$ and $\left\{J_{k}^{3}\right\}$; or $\left\{J_{k}^{1}\right\}$ and $\left\{J_{k}^{2}, J_{k}^{3}\right\}$. In the same way, we know that the two jobs $J_{2 t+1}^{1}$ and $J_{2 t+1}^{2}$ must be assigned to the same batch.

Consider a schedule in which batch B_{k} contains one type k job, batch B_{h} contains one type $h(1 \leq k<h \leq 2 t+1)$ job and B_{h} is processed before B_{k}. Then the tardiness of the type k job in B_{k} is at least:

$$
\begin{aligned}
L_{h}+L_{k}-d_{k}^{3} & \geq L_{k+1}+L_{k}-\left(2 \sum_{i=1}^{k} L_{i}+8 \sum_{i=1}^{t} M_{i}+2 A\right) \\
& >3 \sum_{i=1}^{t} M_{i}+\sum_{i=1}^{t}(t-i) a_{i}+A=T^{*} .
\end{aligned}
$$

Consider a schedule in which two batches containing type $k(1 \leq k \leq 2 t)$ jobs satisfy that the batch containing job J_{k}^{1} is processed after the batch containing job J_{k}^{3}, and we obtain:

$$
\begin{aligned}
T_{k}^{1}>L_{k}+L_{k}-d_{k}^{1} & >2 L_{k}-\left(2 \sum_{i=1}^{k-1} L_{i}+L_{k}+8 \sum_{i=1}^{t} M_{i}+2 A\right) \\
& =L_{k}-\left(2 \sum_{i=1}^{k-1} L_{i}+8 \sum_{i=1}^{t} M_{i}+2 A\right) \\
& >3 \sum_{i=1}^{t} M_{i}+\sum_{i=1}^{t}(t-i) a_{i}+A=T^{*} .
\end{aligned}
$$

Hence, in any feasible schedule, all the batches are processed in non-decreasing order of their processing times.
Lemma 3. In any feasible schedule with consecutively indexed jobs, for each $k(k=1, \ldots, t)$, the six jobs of type $2 k-1$ and $2 k$ are assigned to four batches: $\left\{J_{2 k-1}^{1}, J_{2 k-1}^{2}\right\},\left\{J_{2 k-1}^{3}\right\},\left\{J_{2 k}^{1}\right\},\left\{J_{2 k}^{2}, J_{2 k}^{3}\right\}$;or $\left\{J_{2 k-1}^{1}\right\},\left\{J_{2 k-1}^{2}, J_{2 k-1}^{3}\right\}$,
$\left\{J_{2 k}^{1}, J_{2 k}^{2}\right\},\left\{J_{2 k}^{3}\right\}$. The first pattern is called 2112 with total processing time $2\left(L_{2 k-1}+L_{2 k}\right)+8 M_{k}$ and the second pattern is called 1221 with total processing time $2\left(L_{2 k-1}+L_{2 k}\right)+8 M_{k}+a_{k}$.

Proof. We prove this lemma by induction on k. For the six type 1 and type 2 jobs, if the two batches $\left\{J_{1}^{1}, J_{1}^{2}\right\}$ and $\left\{J_{2}^{1}, J_{2}^{2}\right\}$ exist, then the total tardiness of J_{2}^{1} and J_{2}^{3} is

$$
\begin{aligned}
p_{1}^{2}+p_{1}^{3}+p_{2}^{2}-d_{2}^{1}+p_{1}^{2}+p_{1}^{3}+p_{2}^{2}+p_{2}^{3}-d_{2}^{3} & >4 M_{1}-4 A \\
& >3 \sum_{i=1}^{t} M_{i}+\sum_{i=1}^{t}(t-i) a_{i}+A=T^{*} .
\end{aligned}
$$

If the two batches $\left\{J_{1}^{2}, J_{1}^{3}\right\}$ and $\left\{J_{2}^{2}, J_{2}^{3}\right\}$ exist, then the total tardiness of J_{1}^{2} and J_{2}^{2} is

$$
\begin{aligned}
p_{1}^{1}+p_{1}^{3}-d_{1}^{2}+p_{1}^{1}+p_{1}^{3}+p_{2}^{1}+p_{2}^{3}-d_{2}^{2} & >4 M_{1} \\
& >3 \sum_{i=1}^{t} M_{i}+\sum_{i=1}^{t}(t-i) a_{i}+A=T^{*}
\end{aligned}
$$

Thus, in any feasible schedule with consecutively indexed jobs the six type 1 and type 2 jobs can only be assigned to four batches: $\left\{J_{1}^{1}, J_{1}^{2}\right\},\left\{J_{1}^{3}\right\},\left\{J_{2}^{1}\right\},\left\{J_{2}^{2}, J_{2}^{3}\right\} ;$ or $\left\{J_{1}^{1}\right\},\left\{J_{1}^{2}, J_{1}^{3}\right\},\left\{J_{2}^{1}, J_{2}^{2}\right\},\left\{J_{2}^{3}\right\}$.

Suppose that there exists a feasible schedule with consecutively indexed jobs such that this lemma is true for $i=1, \ldots, k-1$, but it does not hold for k. Then the total processing time of the $(4 i-3) t h,(4 i-2) t h,(4 i-1) t h$, and ($4 i$)th batches is at least $2\left(L_{2 i-1}+L_{2 i}\right)+8 M_{i}$. By computation, if the six jobs of type $2 i-1$ and $2 i$ are of Pattern 1221, then the tardiness of job $J_{2 i-1}^{2}$ is at least $3 M_{i}$; if the six jobs of type $2 i-1$ and $2 i$ are of Pattern 2112 , then the tardiness of job $J_{2 i}^{2}$ is also at least $3 M_{i}$. Hence, the total tardiness of the first $4(k-1)$ batches is at least $3 \sum_{i=1}^{k-1} M_{i}$. For the six jobs of type $2 k-1$ and $2 k$, we can discuss this case similar to the case of type 1 and type 2 jobs. It follows that the total tardiness will be larger than T^{*} and this is a contradiction to the feasible schedule assumption.

Let A_{1} be the index set of $k(k=1, \ldots, t)$ such that the six jobs of type $2 k-1$ and $2 k$ are of Pattern 2112 and $A_{2}=\{1, \ldots, t\}-A_{1}$. According to the above discussion, if $k \in A_{1}$, then the total processing time of the four batches $\left\{J_{2 k-1}^{1}, J_{2 k-1}^{2}\right\},\left\{J_{2 k-1}^{3}\right\},\left\{J_{2 k}^{1}\right\}$, and $\left\{J_{2 k}^{2}, J_{2 k}^{3}\right\}$ is $2\left(L_{2 k-1}+L_{2 k}\right)+8 M_{k}$, and if $k \in A_{2}$, then the total processing time of the four bathes $\left\{J_{2 k-1}^{1}\right\},\left\{J_{2 k-1}^{2}, J_{2 k-1}^{3}\right\},\left\{J_{2 k}^{1}, J_{2 k}^{2}\right\}$, and $\left\{J_{2 k}^{3}\right\}$ is $2\left(L_{2 k-1}+L_{2 k}\right)+8 M_{k}+a_{k}$. Therefore, if $k \in A_{1}(k=1, \ldots, t)$, then $J_{2 k}^{2}$ is the only tardy job of the four batches and its tardiness is

$$
3 M_{k}+(t-k+1) a_{k}+\sum\left\{a_{i} \mid i<k, i \in A_{2}\right\}
$$

If $k \in A_{2}(k=1, \ldots, t)$, then $J_{2 k-1}^{2}$ is the only tardy job of the four batches and its tardiness is

$$
3 M_{k}+\sum\left\{a_{i} \mid i<k, i \in A_{2}\right\} .
$$

Combining all the properties we have derived for any feasible schedule with consecutively indexed jobs, we obtain the following conclusion.

Lemma 4. There exists a feasible schedule with consecutively indexed jobs for the scheduling instance such that $\sum T_{j} \leq T^{*}$ if and only if $\sum_{i \in A_{1}} a_{i}=\sum_{i \in A_{2}} a_{i}=A$ holds for the partition instance.
Proof. From the above discussion, the total tardiness is equal to:

$$
\sum T_{j}=\sum_{k=1}^{t}\left(3 M_{k}+\sum\left\{a_{i} \mid i<k, i \in A_{2}\right\}\right)+\sum_{k \in A_{1}}(t-k+1) a_{k}+2 \max \left\{0, \sum_{k \in A_{2}} a_{k}-A\right\},
$$

where the third term on the right-hand side is the total tardiness of jobs $J_{2 t+1}^{1}$ and $J_{2 t+1}^{2}$. Since:

$$
\sum_{k=1}^{t} \sum\left\{a_{i} \mid i<k, i \in A_{2}\right\}=\sum_{i \in A_{2}}(t-i) a_{i}
$$

we obtain:

$$
\sum T_{j}=3 \sum_{k=1}^{t} M_{k}+\sum_{k=1}^{t}(t-k) a_{k}+\sum_{k \in A_{1}} a_{k}+2 \max \left\{0, \sum_{k \in A_{2}} a_{k}-A\right\}
$$

Therefore, there exists a feasible schedule with consecutively indexed jobs such that $\sum T_{j} \leq T^{*}$ if and only if $\sum_{k \in A_{1}} a_{k}+2 \max \left\{0, \sum_{k \in A_{2}} a_{k}-A\right\} \leq A$. Hence, $\sum_{k \in A_{1}} a_{k} \leq A$ and $\sum_{k \in A_{2}} a_{k} \leq A$. Because $\sum_{k \in A_{1}} a_{k}+$ $\sum_{k \in A_{2}} a_{k}=2 A$, we get $\sum_{k \in A_{1}} a_{k}=\sum_{k \in A_{2}} a_{k}=A$.

Based on the above lemmas, we obtain the following theorem:
Theorem 1. The problem $1\left|B, \operatorname{agr}\left(p_{j}, d_{j}\right)\right| \sum T_{j}$ is $N P$-hard even if $B=2$.

3.2. Pseudo-polynomial algorithm

According to the construction of the scheduling instance from a partition instance in the proof of the NP-hardness of the problem $1\left|B, \operatorname{agr}\left(p_{j}, d_{j}\right)\right| \sum T_{j}$ with $B=2$, we know that the constructed scheduling instance satisfies $p_{i+1}-p_{i} \leq d_{i+1}-d_{i}(i=1, \ldots, n-1)$. Therefore, the problem $1\left|B, \operatorname{agr}\left(p_{j}, d_{j}\right)\right| \sum T_{j}$ is NP-hard even if $B=2$ and $p_{i+1}-p_{i} \leq d_{i+1}-d_{i}(i=1, \ldots, n-1)$. We next develop a pseudo-polynomial-time dynamic programming algorithm for this problem. Before presenting the dynamic programming algorithm, we first provide some structural properties of a class of optimal schedules. We call batch B_{j} a deferred batch of B_{k} (or batch B_{j} is deferred by B_{k}) if B_{j} is scheduled after B_{k} and $p\left(B_{k}\right)>p\left(B_{j}\right)$, and batch B_{k} is called a deferring batch of B_{j}.

Lemma 5. For the problem $1\left|B, \operatorname{agr}\left(p_{j}, d_{j}\right)\right| \sum T_{j}$, there exists an optimal schedule in which all the deferring batches are full, all the deferred batches are partial and all the jobs in the deferred batches are tardy.

Proof. Consider an optimal schedule containing a deferring partial batch. Move jobs from its deferred batches to this deferring partial batch until it becomes a full batch or it is still a partial batch but all the batches after it have processing times longer than the processing time of this batch (in this case, it is not a deferring batch any more). The completion times of the moved jobs decrease and the completion times of the other jobs do not increase, thus the schedule remains optimal. Repeating the above procedure, we obtain an optimal schedule with all the deferring batches being full.

Consider an optimal schedule containing a full deferred batch B_{i}. From the above discussion, we can assume that its deferring batches are full. Denote one of its deferring batches as B_{k} and the completion times of batches B_{k} and B_{i} as C_{1} and C_{2}, respectively. Order the $2 B$ jobs in batches B_{k} and B_{i} in increasing order of their indices and assign the B jobs with the smallest indices to batch B_{k} and the remaining B jobs to batch B_{i}. After the rearrangement, batch B_{i} is not deferred by batch B_{k} any more. Denote the new completion times of batches B_{k} and B_{i} as C_{1}^{\prime} and C_{2}^{\prime}, respectively. We have $C_{1}^{\prime} \leq C_{1}$ and $C_{2}^{\prime} \leq C_{2}$ and the completion times of the other batches do not increase. The tardiness of the jobs that were originally in $B_{k}\left(B_{i}\right)$ and are now still in $B_{k}\left(B_{i}\right)$ does not increase. If there is a job J_{k} that was originally in batch B_{k} and is now in batch B_{i}, then there must exist another job J_{i} with $p_{k} \geq p_{i}$ and $d_{k} \geq d_{i}$ that was originally in batch B_{i} and is now in batch B_{k}. Therefore, the decreased tardiness by exchanging jobs J_{k} and J_{i} is

$$
\begin{aligned}
& \max \left\{0, C_{1}-d_{k}\right\}+\max \left\{0, C_{2}-d_{i}\right\}-\max \left\{0, C_{1}^{\prime}-d_{i}\right\}-\max \left\{0, C_{2}^{\prime}-d_{k}\right\} \\
& \quad \geq \max \left\{0, C_{1}-d_{k}\right\}+\max \left\{0, C_{2}-d_{i}\right\}-\max \left\{0, C_{1}-d_{i}\right\}-\max \left\{0, C_{2}-d_{k}\right\} \\
& \quad=\left(C_{2}-d_{i}\right)^{+}-\left(C_{2}-d_{k}\right)^{+}-\left(\left(C_{1}-d_{i}\right)^{+}-\left(C_{1}-d_{k}\right)^{+}\right)
\end{aligned}
$$

Following the proof of Lemma 1, we know that the decreased tardiness is non-negative. Repeating the above discussions, we obtain an optimal schedule with all the deferred batches being partial.

Consider an optimal schedule in which deferred batch B_{i} contains at least one job finished on time. Since all the jobs have agreeable processing times and due dates, in batch B_{i} the job with the largest index must be on time. Denote this job as J_{i} and one of the deferring batches of B_{i} as B_{k}. Denote the completion times of batches B_{k} and B_{i} as C_{1} and C_{2}, respectively. Denote the number of jobs in batch B_{k} with indices larger than that of job J_{i} as a. We have $a \leq B$. If $a+\left|B_{i}\right| \leq B$, move the a jobs in batch B_{k} with indices larger than that of J_{i} to B_{i}; otherwise, move $a+\left|B_{i}\right|-B$ jobs in batch B_{i} with the smallest indices to B_{k} and the a jobs in batch B_{k} with indices larger than that of J_{i} to B_{i}. The completion times of the other batches do not increase, the jobs moved from B_{k} to B_{i} are on time, the
completion times of jobs moved from B_{i} to B_{k} are decreased, and the completion times of the other jobs in these two batches do not increase. Therefore, the total tardiness does not increase and batch B_{i} is not a deferred batch of B_{k} any more. Repeat the above procedures for an optimal schedule in which all the jobs in the deferred batches are tardy.

From Lemma 5, we obtain the following lemma, which establishes that the partial batches and the full batches are arranged in non-decreasing order of their processing times.

Lemma 6. For the problem $1\left|B, \operatorname{agr}\left(p_{j}, d_{j}\right)\right| \sum T_{j}$, there exists an optimal schedule in which all the partial bathes and all the full batches are arranged in non-decreasing order of their processing times.

Lemma 7. For the problem $1\left|B, \operatorname{agr}\left(p_{j}, d_{j}\right)\right| \sum T_{j}$ with $B=2$ and $p_{i+1}-p_{i} \leq d_{i+1}-d_{i}(i=1, \ldots, n-1)$, if batch $\left\{J_{i}\right\}$ is deferred by batch $\left\{J_{j}, J_{k}\right\}$ in any optimal schedule that satisfies Lemmas 1,5 and 6, we have $\frac{p_{k}}{2} \leq p_{i}$ ($1 \leq i<j<k \leq n$).

Proof. According to Lemma 1 and the definition of deferred batch, we obtain that $p_{i} \leq p_{j} \leq p_{k}, d_{i} \leq d_{j} \leq d_{k}$ and $p_{i}<p_{k}$. Without loss of generality, we assume that batch $\left\{J_{i}\right\}$ is processed immediately after batch $\left\{J_{j}, J_{k}\right\}$; otherwise, following Lemmas 5 and 6 , we can find another deferred partial batch and(or) another deferring full batch such that the partial batch is processed immediately after the full batch and the job in the partial batch is tardy. Suppose that $\frac{p_{k}}{2}>p_{i}$ in an optimal schedule σ. Denote the starting time of batch $\left\{J_{j}, J_{k}\right\}$ as C in σ. We construct another schedule σ^{\prime} by exchanging batches $\left\{J_{i}\right\}$ and $\left\{J_{j}, J_{k}\right\}$ in σ. Then job J_{i} must be on time in σ^{\prime}; otherwise, from σ to σ^{\prime}, the decreased tardiness of job J_{i} is p_{k} and the increased total tardiness of jobs J_{j} and J_{k} is at most $2 p_{i}$. Since $\frac{p_{k}}{2}>p_{i}$, it follows that schedule σ^{\prime} is better than σ and this is a contradiction. We obtain $C+p_{i} \leq d_{i}$ and $C+p_{k}-d_{k} \leq d_{i}-p_{i}+p_{k}-d_{k}=p_{k}-p_{i}-\left(d_{k}-d_{i}\right) \leq 0$. Hence, job J_{k} is on time in schedule σ. We consider five possible cases.
Case 1. Job J_{j} is tardy in σ and job J_{k} is on time in σ^{\prime}, then job J_{j} must be tardy in σ^{\prime}. The decreased total tardiness from σ to σ^{\prime} is

$$
C+p_{k}-d_{j}+C+p_{k}+p_{i}-d_{i}-\left(C+p_{i}+p_{k}-d_{j}\right)=C+p_{k}-d_{i}
$$

Since job J_{j} is tardy in σ, we have $C+p_{k}-d_{j}>0$. Hence, $C+p_{k}-d_{i}>d_{j}-d_{i} \geq 0$.
Case 2. Job J_{j} is tardy in σ and job J_{k} is tardy in σ^{\prime}, then job J_{j} must be tardy in σ^{\prime}. The decreased total tardiness from σ to σ^{\prime} is:

$$
C+p_{k}-d_{j}+C+p_{k}+p_{i}-d_{i}-\left(C+p_{i}+p_{k}-d_{j}+C+p_{i}+p_{k}-d_{k}\right)=d_{k}-d_{i}-p_{i}
$$

Since $d_{k}-d_{i} \geq p_{k}-p_{i}$, it follows that $d_{k}-d_{i}-p_{i} \geq p_{k}-2 p_{i}>0$.
Case 3. Job J_{j} is on time in both σ and σ^{\prime}, so job J_{k} must be on time in σ^{\prime} since $d_{k} \geq d_{j}$. Obviously, the decreased total tardiness from σ to σ^{\prime} is strictly larger than zero since job J_{i} is tardy in σ according to Lemma 5 .
Case 4. Job J_{j} is on time in σ, job J_{j} is tardy in σ^{\prime} and job J_{k} is on time in σ^{\prime}. The decreased total tardiness from σ to σ^{\prime} is:

$$
C+p_{k}+p_{i}-d_{i}-\left(C+p_{i}+p_{k}-d_{j}\right)=d_{j}-d_{i}
$$

If $d_{j}>d_{i}$, we obtain $d_{j}-d_{i}>0$. The decreased total tardiness is positive. If $d_{j}=d_{i}$, we have $0=d_{j}-d_{i} \geq$ $p_{j}-p_{i} \geq 0$, thus $p_{j}=p_{i}$. We construct another schedule $\sigma^{\prime \prime}$ by assigning jobs J_{i} and J_{j} to one batch and this batch is immediately followed by a batch containing only job J_{k}. Then jobs J_{i}, J_{j}, J_{k} are on time in $\sigma^{\prime \prime}$ while job J_{i} is tardy in σ. It follows that the decreased total tardiness is strictly larger than zero from σ to $\sigma^{\prime \prime}$.
Case 5. Job J_{j} is on time in σ, and jobs J_{j} and J_{k} are tardy in σ^{\prime}. The decreased total tardiness from σ to σ^{\prime} is

$$
C+p_{k}+p_{i}-d_{i}-\left(C+p_{i}+p_{k}-d_{j}+C+p_{i}+p_{k}-d_{k}\right)=d_{k}-d_{i}-p_{i}+d_{j}-C-p_{k}
$$

Since $d_{k}-d_{i} \geq p_{k}-p_{i}$, it follows that $d_{k}-d_{i}-p_{i} \geq p_{k}-2 p_{i}>0$. Since job J_{j} is on time in σ, we have $C+p_{k} \leq d_{j}$. Hence, the decreased total tardiness is strictly larger than zero.

We have considered all the possible cases and for each case we can construct a better schedule than schedule σ, which implies that σ is not optimal.
Lemma 8. For the problem $1\left|B, \operatorname{agr}\left(p_{j}, d_{j}\right)\right| \sum T_{j}$ with $B=2$ and $p_{i+1}-p_{i} \leq d_{i+1}-d_{i}(i=1, \ldots, n-1)$, the number of deferred batches of any full batch is at most one in any optimal schedule that satisfies Lemmas 1 and 5-7.

Proof. Suppose there are more than one deferred partial batches of full batch B_{k} in an optimal schedule σ. Denote the nearest two deferred batches from batch B_{k} as $\left\{J_{i}\right\}$ and $\left\{J_{j}\right\}$, respectively. In accordance with Lemma 7, we have $\frac{p\left(B_{k}\right)}{2} \leq p_{i}$ and $\frac{p\left(B_{k}\right)}{2} \leq p_{j}$. Following Lemmas 5 and 6 , we know that jobs J_{i} and J_{j} are tardy in σ and $p_{i}<p_{j}$. Then σ can be represented as the following form:

$$
\sigma=S_{0} B_{k}\left\{J_{i}\right\} S_{1}\left\{J_{j}\right\} S_{2},
$$

where S_{0}, S_{1}, S_{2} are three blocks of batches and S_{1} contains full batches with processing times longer than or equal to $p\left(B_{k}\right)$ according to Lemmas 5 and 6 .

We construct another schedule σ^{\prime} from σ by assigning job J_{i} and J_{j} to the same batch and scheduling it immediately after batch B_{k}. Hence,

$$
\sigma^{\prime}=S_{0} B_{k}\left\{J_{i}, J_{j}\right\} S_{1} S_{2}
$$

If job J_{j} is on time in σ^{\prime}, then exchange batches B_{k} and $\left\{J_{i}\right\}$ in σ. The jobs in B_{k} are on time while the tardiness of J_{i} is decreased, a contradiction to the optimality of σ. Therefore, both jobs J_{i} and J_{j} are tardy in σ^{\prime}. From σ to σ^{\prime}, the tardiness of job J_{i} increases by $p_{j}-p_{i}$, the total tardiness of jobs in S_{1} increases by at most $\left(p_{j}-p_{i}\right)\left|S_{1}\right|$, and the tardiness of job J_{j} decreases by $p_{i}+p\left(S_{1}\right)$, where $p\left(S_{1}\right)$ and $\left|S_{1}\right|$ denote the total processing time of batches in S_{1} and the total number of jobs in S_{1}. Therefore, the total tardiness is decreased by at least:

$$
p_{i}+p\left(S_{1}\right)-\left(p_{j}-p_{i}\right)-\left(p_{j}-p_{i}\right)\left|S_{1}\right|=2 p_{i}-p_{j}+p\left(S_{1}\right)-\left(p_{j}-p_{i}\right)\left|S_{1}\right|
$$

Since $\frac{p\left(B_{k}\right)}{2} \leq p_{i}, p\left(B_{k}\right)>p_{j}$ and $\frac{p\left(B_{k}\right)}{2} \leq \frac{p\left(S_{1}\right)}{\left|S_{j}\right|}$, it follows that $2 p_{i}-p_{j}>0, p_{j}-p_{i}<\frac{p\left(B_{k}\right)}{2} \leq \frac{p\left(S_{1}\right)}{\left|S_{i}\right|}$ and $p\left(S_{1}\right)-\left(p_{j}-p_{i}\right)\left|S_{1}\right|>0$. Hence, the decreased total tardiness is positive and σ is not an optimal schedule.

We now present a dynamic programming algorithm for the NP-hard problem $1\left|B, \operatorname{agr}\left(p_{j}, d_{j}\right)\right| \sum T_{j}$ with $B=2$ and $p_{i+1}-p_{i} \leq d_{i+1}-d_{i}(i=1, \ldots, n-1)$. According to Lemma 8 , the number of deferred batch of any full batch does not exceed one. Let $f(C, j, i)$ denote the minimum total tardiness when jobs J_{1}, \ldots, J_{i-1} and J_{i+1}, \ldots, J_{j} are scheduled such that the unscheduled job J_{i} is deferred by the full batch containing job J_{j} and the completion time of the last batch is C. If no unscheduled job is deferred by the batch containing job J_{j}, the minimum total tardiness is denoted as $f(C, j, o)$.

Let $f(0,0, o)=0$. For $C=p_{1}, \ldots, \sum p_{j}, j=1, \ldots, n$, and $i<j$, the value $f(C, j, o)$ can be obtained by the following recurrence equations:

$$
f(C, j, o)=\min \left\{\begin{array}{l}
\min _{i<j}\left\{f\left(C-p_{i}, j, i\right)+\max \left\{0, C-d_{i}\right\}\right\}, \\
\min _{1 \leq l \leq 2}\left\{f\left(C-p_{j}, j-l, o\right)+\sum_{k=1}^{l} \max \left\{0, C-d_{j-k+1}\right\}\right\},
\end{array}\right.
$$

where the first term is taken by adding the deferred batch of the batch containing job J_{j} and the second term is taken by adding a full or partial batch containing job J_{j} that does not defer any batch.

The value $f(C, j, i)$ can be obtained by the following recurrence equations:

$$
f(C, j, i)=\min \begin{cases}f\left(C-p_{j}, j-2, i\right)+\sum_{k=1}^{2} \max \left\{0, C-d_{j-k+1}\right\}, & \text { if } i<j-2, \\ f\left(C-p_{j}, j-3, o\right)+\sum_{k=1}^{2} \max \left\{0, C-d_{j-k+1}\right\}, & \text { if } i=j-2,\end{cases}
$$

where the two terms are both taken by adding the full batch containing job J_{j} while the first term corresponds to job J_{i} being deferred by the batch containing job J_{j-2} and the second term corresponds to job J_{i} being job J_{j-2}.

The optimal value is equal to $\min _{p_{1} \leq C \leq \sum_{k=1}^{n} p_{k}} f(C, n, o)$ and the time complexity of this dynamic programming algorithm is $O\left(n^{3} \sum_{k=1}^{n} p_{k}\right)$, which is a pseudo-polynomial-time algorithm.

4. Minimizing the weighted number of tardy job

We know that the problem $1 \| \sum w_{j} U_{j}$ is ordinary NP-hard even if all the jobs have the same due dates. Thus, the problem $1\left|B, \operatorname{agr}\left(p_{j}, d_{j}\right)\right| \sum w_{j} U_{j}$ is NP-hard, too. In this section we develop a pseudo-polynomial-time algorithm
for this problem, and therefore show that the problem cannot be strongly NP-hard unless $\mathrm{P}=\mathrm{NP}$. According to Lee et al. [10], we have the following conclusion.

Lemma 9. There exists an optimal schedule for the problem $1\left|B, \operatorname{agr}\left(p_{j}, d_{j}\right)\right| \sum w_{j} U_{j}$ in which all the on-time jobs are processed before all the tardy jobs and the on-time jobs are arranged in non-decreasing order of their indices.

We now present a dynamic programming algorithm that runs in pseudo-polynomial time. Let $F_{j}(k, l, t)$ denote the minimum weighted number of tardy jobs when jobs J_{1}, \ldots, J_{j} are scheduled, the last on time batch can be expanded to comprise job J_{k} and $l \leq B$ is the number of jobs in the last on time batch, and the completion time of the last on time batch is t. We develop the following dynamic programming algorithm.

$$
F_{0}(k, l, t)= \begin{cases}0, & \text { if } k=t=0, l=B \\ \infty, & \text { otherwise }\end{cases}
$$

For $j=1, \ldots, n, k=0, \ldots, n, l=1, \ldots, B$, and $t=0, \ldots, \sum_{j=1}^{n} p_{j}$, the recursion equations are

$$
F_{j}(k, l, t)= \begin{cases}\min \left\{\begin{array}{ll}
F_{j-1}(k, l-1, t), & \text { if } t \leq d_{j}, \\
\min _{h \leq-1,1 \leq l^{\prime} \leq B}\left\{F_{j-1}\left(h, l^{\prime}, t-p_{k}\right)\right\}, & \text { if } l=1, t \leq d_{j} \\
F_{j-1}(k, l, t)+w_{j}, & \text { if } t \leq d_{j}, \\
F_{j-1}(k, l, t)+w_{j}, & \text { if } t>d_{j}
\end{array} .\right.\end{cases}
$$

The optimal value is equal to $\min _{0 \leq k \leq n, 1 \leq l \leq B, 0 \leq t \leq \sum_{j=1}^{n} p_{j}} F_{n}(k, l, t)$ and the optimal schedule is obtained by backtracking. The time complexity of this algorithm is $O\left(n^{3} B^{2} \sum_{j=1}^{n} p_{j}\right)$.

5. Conclusions

In this paper we investigated the problem of scheduling jobs with agreeable processing times and due dates on a single batch processing machine. Lawler [8] showed that the problem $1\left|\operatorname{agr}\left(p_{j}, d_{j}\right)\right| \sum w_{j} T_{j}$ is strongly NP-hard. Therefore, the problem $1\left|B, \operatorname{agr}\left(p_{j}, d_{j}\right)\right| \sum w_{j} T_{j}$ is strongly NP-hard, too. We proved that the problem ${ }_{1}\left|B, \operatorname{agr}\left(p_{j}, d_{j}\right)\right| \sum T_{j}$ is NP-hard even if $B=2$ and $p_{i+1}-p_{i} \leq d_{i+1}-d_{i}(i=1, \ldots, n-1)$, and provided pseudo-polynomial-time algorithms for the problems $1\left|B, \operatorname{agr}\left(p_{j}, d_{j}\right)\right| \sum T_{j}$ with $B=2$ and $p_{i+1}-p_{i} \leq d_{i+1}-d_{i}$ $(i=1, \ldots, n-1)$ and $1\left|B, \operatorname{agr}\left(p_{j}, d_{j}\right)\right| \sum w_{j} U_{j}$, respectively.

To find efficient algorithms for the problem $1\left|B=2, \operatorname{agr}\left(p_{j}, d_{j}\right)\right| \sum T_{j}$ and the even more general problem $1\left|B, \operatorname{agr}\left(p_{j}, d_{j}\right)\right| \sum T_{j}$ are very challenging topics for future research.

Acknowledgements

The authors are thankful to the referees for their helpful suggestions and comments on an earlier version of the paper. This research was supported in part by The Hong Kong Polytechnic University under a doctoral research studentship for Liu.

References

[1] P. Brucker, A. Gladky, H. Hoogevreen, M.Y. Kovalyov, C.N. Potts, T. Tautenhahn, S. Van de Velde, Scheduling a batching machine, Journal of Scheduling 1 (1998) 31-54.
[2] T.C.E. Cheng, M.C. Gupta, Survey of scheduling research involving due date determination decisions, European Journal of Operational Research 38 (1989) 156-166.
[3] T.C.E. Cheng, Z.H. Liu, W.C. Yu, Scheduling jobs with release dates and deadlines on a batch processing machine, IIE Transactions 33 (2001) 685-690.
[4] J.Z. Du, J.Y.-T. Leung, Minimizing total tardiness on one machine is NP-hard, Mathematics of Operations Research 15 (1990) $483-495$.
[5] H. Emmons, One-machine sequencing to minimize certain functions of job tardiness, Operation Research 17 (1969) $701-715$.
[6] Y. Ikura, M. Gimple, Efficient scheduling algorithms for a single batch processing machine, Operations Research Letters 5 (1986) 61-65.
[7] R.M. Karp, Reducibility among combnatorial problems, in: R.D. Miller, J.W. Thatcher (Eds.), Complexity in Computer Computations, Plenum Press, New York, 1972, pp. 85-103.
[8] E.L. Lawler, A "pseudopolynomial" algorithm for sequencing jobs to minimize total tardiness, Annals of Discrete Mathematics 1 (1977) 331-342.
[9] E.L. Lawler, J.M. Moore, A functional equation and its application to resource allocation and sequencing problems, Management Science 16 (1969) 77-84.
[10] C.Y. Lee, R. Uzsoy, L.A. Martin Vega, Efficient algorithms for scheduling semiconductor burn-in operations, Operation Research 40 (1992) 764-775.
[11] C.L. Li, C.Y. Lee, Scheduling with agreeable release times and due dates on a batch processing machine, European Journal of Operational Research 96 (1997) 564-569.
[12] Z.H. Liu, W.C. Yu, Scheduling one batch processor subject to job release dates, Discrete Applied Mathematics 105 (2000) $129-136$.
[13] Z.H. Liu, J.J. Yuan, T.C.E. Cheng, On scheduling an unbounded batch machine, Operations Research Letters 31 (2003) 42-48.

[^0]: * Corresponding author. Tel.: +852 27667364; fax: +852 23302704.

 E-mail address: lgtctng @polyu.edu.hk (C.T. Ng).

