
Theoretical Computer Science 374 (2007) 159–169
www.elsevier.com/locate/tcs

Scheduling jobs with agreeable processing times and due dates on a
single batch processing machine

L.L. Liu, C.T. Ng∗, T.C.E. Cheng

Department of Logistics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

Received 26 October 2006; received in revised form 11 December 2006; accepted 22 December 2006

Communicated by D.-Z. Du

Abstract

In this paper we study the problems of scheduling jobs with agreeable processing times and due dates on a single batch
processing machine to minimize total tardiness, and weighted number of tardy jobs. We prove that the problem of minimizing
total tardiness is NP-hard even if the machine capacity is two jobs and we develop a pseudo-polynomial-time algorithm for an NP-
hard special case of this problem. We also develop a pseudo-polynomial-time algorithm for the NP-hard problem of minimizing
weighted number of tardy jobs, which suggests that this problem cannot be strongly NP-hard unless P = NP.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Scheduling; Batch processing; Agreeable

1. Introduction

Batch scheduling has attracted wide attention of the scheduling research community over the past two decades.
This scheduling model is primarily motivated by the burn-in operations in the final testing stage of very large-scale
integrated circuits manufacture. A batch processing machine can process several jobs simultaneously. The processing
time of a batch is equal to the longest processing time of the jobs in the batch. All the jobs contained in the same batch
start and complete at the same time. Once processing of a batch is started, it cannot be interrupted, nor can other jobs
be added to the batch. Besides application in very large-scale integrated circuits manufacture, batch scheduling can
also be found in a variety of other manufacturing environments such as heat treatment in the metalworking industry,
and diffusion or oxidation in wafer fabrication of semiconductor manufacture.

Du and Leung [4] proved that the traditional scheduling problem of minimizing total tardiness on a single machine
is NP-hard. Lawler [8] developed a pseudo-polynomial-time algorithm for this problem, which suggests that the
problem cannot be strongly NP-hard unless P = NP. When the processing times and due dates are agreeable, Emmons
[5] showed that the problem can be solved optimally by ordering the jobs in non-decreasing order of their processing
times. Karp [7] proved that the problem of minimizing weighted number of tardy jobs on a single machine is NP-
hard even if all the jobs are subject to the same due date. Lawler and Moore [9] presented a pseudo-polynomial-time
algorithm for this problem.

∗ Corresponding author. Tel.: +852 27667364; fax: +852 23302704.
E-mail address: lgtctng@polyu.edu.hk (C.T. Ng).

0304-3975/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2006.12.039

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81984864?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:lgtctng@polyu.edu.hk
http://dx.doi.org/10.1016/j.tcs.2006.12.039

160 L.L. Liu et al. / Theoretical Computer Science 374 (2007) 159–169

Ikura and Gimple [6] may be the first researchers to study the batch scheduling problems. Many results in this
area have since been obtained. Lee et al. [10] provided polynomial-time algorithms for the problems of scheduling
jobs with agreeable processing times and due dates on a single batch processing machine to minimize maximum tar-
diness and number of tardy jobs. Li and Lee [11] proved that the batch scheduling problem with agreeable release
dates and deadlines is strongly NP-hard. They developed polynomial-time algorithms for the problems of minimizing
maximum tardiness and number of tardy jobs when all the jobs have agreeable release dates, due dates and processing
times. Brucker et al. [1] provided an extensive discussion of the problems minimizing various regular objectives on
an unbounded batch processing machine and on a bounded batch processing machine. For the scheduling problems
on a batch processing machine with unbounded capacity, they developed polynomial-time dynamic programming al-
gorithms for several objectives and proved that the problems of minimizing weighted number of tardy jobs and total
weighted tardiness are ordinary NP-hard. For the scheduling problems on a batch processing machine with bounded
capacity, they presented a dynamic programming algorithm for the problem with the total completion time objective
and proved that the problems with due date related objectives are strongly NP-hard. Cheng et al. [3] proved that
scheduling jobs with release dates and deadlines on an unbounded batch processing machine is NP-hard even if all the
jobs are subject to agreeable processing times and deadlines. They developed polynomial-time algorithms for several
special cases. Liu et al. [13] showed that the problem of minimizing total tardiness on a single unbounded batch pro-
cessing machine is NP-hard in the ordinary sense and provided a pseudo-polynomial-time algorithm for the problems
with release dates and several regular objectives on a single unbounded batch processing machine.

Given the strong NP-hardness of the batch scheduling problems with due date related objectives, we study in
this paper the scheduling problems with agreeable processing times and due dates to minimize total tardiness, and
weighted number of tardy jobs. These problems are interesting since in reality the job with a longer processing time is
often assigned a larger due date [2,11], then the jobs satisfy the condition of agreeable processing times and due dates.

The rest of this paper is organized as follows. In Section 2 we discuss the assumptions and notation that will be
used in this paper. In Section 3 we prove that the problem of scheduling jobs with agreeable processing times and
due dates on a batch processing machine to minimize total tardiness is NP-hard even if the machine can process at
most two jobs at the same time. We present a pseudo-polynomial-time algorithm for an NP-hard special case of this
problem. In Section 4 we develop a pseudo-polynomial-time algorithm for the NP-hard problem of scheduling jobs
with agreeable processing times and due dates on a single batch processing machine to minimize weighted number
of tardy jobs, which suggests that this problem cannot be strongly NP-hard unless P = NP. Finally, we draw some
conclusions and suggest some future research directions in Section 5.

2. Assumptions and notations

In this paper we make assumptions and use notation about the jobs and the machine as follows:

• There are n jobs, all of which are available at time zero, to be processed on a single batch processing machine. The
processing time of job J j is denoted by p j , its weight by w j , and its due date by d j . We say that the processing
times and due dates are agreeable if pi < p j implies that di ≤ d j (1 ≤ i < j ≤ n). Since we study the
problems with agreeable processing times and due dates, throughout this paper we assume that all the jobs have
been indexed in non-decreasing order of their processing times and due dates such that p1 ≤ p2 ≤ · · · ≤ pn and
d1 ≤ d2 ≤ · · · ≤ dn .

• The batch processing machine can process up to B jobs at the same time. A batch is called full if it contains exactly
B jobs; otherwise, it is called a partial batch. The processing time of batch Bi is denoted by p(Bi), which is equal
to the longest processing time of the jobs in the batch. The number of jobs in batch Bi is denoted by |Bi |.

We use the common three-field notation to denote the scheduling problems under study. For example,
1|B, agr(p j , d j)|

∑
T j denotes the problem of scheduling jobs with agreeable processing times and due dates on

a single bounded batch processing machine to minimize total tardiness.

3. Minimizing total tardiness

The problem 1|agr(p j , d j)|
∑

T j can be solved in polynomial time [5]. Brucker et al. [1] showed that the problem
1|B = 2|Lmax ≤ 0 is strongly NP-hard, which indicates that the problem 1|B = 2|

∑
T j is strongly NP-hard, too.

Liu and Yu [12] proved that the problem 1|B = 2, r j ∈ {0, r}|Cmax is NP-hard in the ordinary sense. By scheduling

L.L. Liu et al. / Theoretical Computer Science 374 (2007) 159–169 161

the jobs in a backward way, the problem 1|B = 2, r j ∈ {0, r}|Cmax can be transformed into the problem 1|B =

2, d j ∈ {d1, d2}|Lmax ≤ 0, where d1 and d2 are two distinct due dates and 0 < d1 < d2. It follows that the problem
1|B = 2, d j ∈ {d1, d2}|

∑
T j is NP-hard, too. In this section we prove that the problem 1|B, agr(p j , d j)|

∑
T j is

NP-hard even if B = 2 by reducing the partition problem to it. Our reduction is a modification of the one in [13]. We
first introduce a structural property of a class of optimal schedules for the case of B = 2.

Lemma 1. There exists an optimal schedule for the problem 1|B = 2, agr(p j , d j)|
∑

T j such that all the batches
contain consecutively indexed job(s).

Proof. Consider an optimal schedule in which jobs Ji and J j are processed in the same batch Bl and job Js (i < s <

j) is processed in another batch Bk . Let C1 and C2 denote the completion times of batches Bl and Bk , respectively.
If Bl is processed before Bk , exchange job Js and job J j by moving Js to Bl and J j to Bk . Since pi ≤ ps ≤ p j ,

the completion times of all the batches do not increase. Denoting the new completion times of batches Bl and Bk as
C ′

1 and C ′

2, respectively, we have C ′

1 ≤ C1 and C ′

2 ≤ C2. Let Ts , T j and T ′
s , T ′

j denote the tardiness of jobs Js and J j
before and after the job exchange, respectively. Therefore:

T j = max{0, C1 − d j }, Ts = max{0, C2 − ds},

T ′
s = max{0, C ′

1 − ds}, T ′

j = max{0, C ′

2 − d j }.

Because C ′

1 ≤ C1 and C ′

2 ≤ C2, it follows that:

Ts + T j − (T ′
s + T ′

j)

≥ max{0, C1 − d j } + max{0, C2 − ds} − (max{0, C1 − ds} + max{0, C2 − d j }).

Since ds ≤ d j , C1 < C2, we know that both C1 − ds and C2 − d j lie within the time interval (C1 − d j , C2 − ds).
Moreover, C1 − ds − (C1 − d j) = C2 − ds − (C2 − d j) = d j − ds and the non-negative increasing function
x+

= max{0, x} is convex, and we obtain:

Ts + T j − (T ′
s + T ′

j)

≥ (C1 − d j)
+

+ (C2 − ds)
+

− ((C1 − ds)
+

+ (C2 − d j)
+)

= (C2 − ds)
+

− (C2 − d j)
+

− ((C1 − ds)
+

− (C1 − d j)
+)

≥ 0.

Thus, the total tardiness does not increase after the job interchange.
If Bl is processed after Bk , exchange job Ji and job Js by moving Js to Bl and Ji to Bk . Repeat the above arguments;

the total tardiness does not increase after the job interchange either.
Repeating the above procedures, we can construct an optimal schedule with all the batches containing consecutively

indexed jobs. �

3.1. NP-hardness proof

Partition: Given t positive integers {a1, . . . , at } such that
∑

a j = 2A, is there a partition of the index set {1, . . . , t}
into A1, A2 such that

∑
j∈A1

a j =
∑

j∈A2
a j = A?

Given any instance of the partition problem, we first define the following 3t + 1 integers:

Mt =

t∑
i=1

(t − i)ai + 6A,

Mk = 3
t∑

i=k+1

Mi +

t∑
i=1

(t − i)ai + 6A, k = t − 1, . . . , 1,

L1 = 11
t∑

i=1

Mi +

t∑
i=1

(t − i)ai + 4A,

Lk = 2
k−1∑
i=1

L i + 11
t∑

i=1

Mi +

t∑
i=1

(t − i)ai + 4A, k = 2, . . . , 2t + 1.

162 L.L. Liu et al. / Theoretical Computer Science 374 (2007) 159–169

Obviously, the above defined 3t + 1 integers satisfy:

2A � Mt � Mt−1 � · · · � M1 � L1 � L2 � · · · � L2t+1.

We now construct a scheduling instance with n = 6t + 2 jobs and B = 2. For each k (k = 1, . . . , 2t), define three
type k jobs J i

k (i = 1, 2, 3). For k = 1, . . . , t ; i = 1, 2, 3, job J i
2k−1 has the following processing time pi

2k−1 and due
date d i

2k−1.

p1
2k−1 = L2k−1,

p2
2k−1 = L2k−1 + 2Mk,

p3
2k−1 = L2k−1 + 3Mk,

d1
2k−1 = 2

2k−2∑
i=1

L i + 8
k−1∑
i=1

Mi + L2k−1 + 2Mk + 2A,

d2
2k−1 = 2

2k−1∑
i=1

L i + 8
k−1∑
i=1

Mi ,

d3
2k−1 = 2

2k−1∑
i=1

L i + 8
k−1∑
i=1

Mi + 5Mk + 2A.

For k = 1, . . . , t; i = 1, 2, 3, job J i
2k has the following processing time pi

2k and due date d i
2k .

p1
2k = L2k,

p2
2k = L2k + 2Mk + ak,

p3
2k = L2k + 3Mk,

d1
2k = 2

2k−1∑
i=1

L i + 8
k−1∑
i=1

Mi + L2k + 5Mk + 2A,

d2
2k = 2

2k∑
i=1

L i + 8
k−1∑
i=1

Mi + 5Mk − (t − k + 1)ak,

d3
2k = 2

2k∑
i=1

L i + 8
k∑

i=1

Mi + 2A.

In addition, we define two type 2t +1 jobs J 1
2t+1 and J 2

2t+1 with the same processing time p1
2t+1 = p2

2t+1 = L2t+1 and
the same due date d1

2t+1 = d2
2t+1 = 2

∑2t
i=1 L i + L2t+1 + 8

∑t
i=1 Mi + A. According to the definition of processing

times and due dates, we know that:

p1
1 < p2

1 < p3
1 < · · · < p1

k < p2
k < p3

k < · · · < p1
2t < p2

2t < p3
2t < p1

2t+1 = p2
2t+1,

d1
1 < d2

1 < d3
1 < · · · < d1

k < d2
k < d3

k < · · · < d1
2t < d2

2t < d3
2t < d1

2t+1 = d2
2t+1.

Set the threshold value of the total tardiness as

T ∗
= 3

t∑
i=1

Mi +

t∑
i=1

(t − i)ai + A.

We call a schedule satisfying
∑

T j ≤ T ∗ a feasible schedule. According to Lemma 1, any feasible schedule can be
transformed into one with each batch containing consecutively indexed jobs; we call this schedule a feasible schedule
with consecutively indexed jobs, and then we know that there exists a feasible schedule for the constructed scheduling
instance if and only if there exists a feasible schedule with consecutively indexed jobs for it. We will prove that
there exists a feasible schedule with consecutively indexed jobs for the scheduling instance if and only if the partition
instance has a solution.

L.L. Liu et al. / Theoretical Computer Science 374 (2007) 159–169 163

Obviously, the reduction for constructing the scheduling instance is polynomial under binary encoding. We
next explore the properties of any feasible schedule with consecutively indexed jobs. For a given schedule, k =

1, . . . , 2t; i = 1, 2, 3 and k = 2t + 1; i = 1, 2, let T i
k denote the tardiness of job J i

k .

Lemma 2. In any feasible schedule with consecutively indexed jobs, each batch contains only jobs of one type; the
three jobs of the same type must be assigned to two batches; and all the batches are processed in non-decreasing
order of their processing times.

Proof. Consider a schedule in which a type k job and a type h (1 ≤ k < h ≤ 2t + 1) job are processed in the same
batch. The tardiness of the type k job in this batch is at least

Lh − d3
k ≥ Lh −

(
2

k∑
i=1

L i + 8
t∑

i=1

Mi + 2A

)
≥ Lk+1 −

(
2

k∑
i=1

L i + 8
t∑

i=1

Mi + 2A

)

> 3
t∑

i=1

Mi +

t∑
i=1

(t − i)ai + A = T ∗.

Therefore, in any feasible schedule, each batch contains only jobs of the same type.
Consider a schedule in which the three jobs of type k (1 ≤ k ≤ 2t) are assigned to three batches, and the tardiness

of the last type k job is at least:

3Lk − d3
k ≥ 3Lk −

(
2

k∑
i=1

L i + 8
t∑

i=1

Mi + 2A

)
= Lk −

(
2

k−1∑
i=1

L i + 8
t∑

i=1

Mi + 2A

)

> 3
t∑

i=1

Mi +

t∑
i=1

(t − i)ai + A = T ∗.

Since the machine can process at most two jobs at the same time, the three jobs J i
k (i = 1, 2, 3) of the same type

k (k = 1, . . . , 2t) must be assigned to two batches: {J 1
k , J 2

k } and {J 3
k }; or {J 1

k } and {J 2
k , J 3

k }. In the same way, we
know that the two jobs J 1

2t+1 and J 2
2t+1 must be assigned to the same batch.

Consider a schedule in which batch Bk contains one type k job, batch Bh contains one type h (1 ≤ k < h ≤ 2t +1)

job and Bh is processed before Bk . Then the tardiness of the type k job in Bk is at least:

Lh + Lk − d3
k ≥ Lk+1 + Lk −

(
2

k∑
i=1

L i + 8
t∑

i=1

Mi + 2A

)

> 3
t∑

i=1

Mi +

t∑
i=1

(t − i)ai + A = T ∗.

Consider a schedule in which two batches containing type k (1 ≤ k ≤ 2t) jobs satisfy that the batch containing job
J 1

k is processed after the batch containing job J 3
k , and we obtain:

T 1
k > Lk + Lk − d1

k > 2Lk −

(
2

k−1∑
i=1

L i + Lk + 8
t∑

i=1

Mi + 2A

)

= Lk −

(
2

k−1∑
i=1

L i + 8
t∑

i=1

Mi + 2A

)

> 3
t∑

i=1

Mi +

t∑
i=1

(t − i)ai + A = T ∗.

Hence, in any feasible schedule, all the batches are processed in non-decreasing order of their processing times. �

Lemma 3. In any feasible schedule with consecutively indexed jobs, for each k (k = 1, . . . , t), the six jobs of type
2k − 1 and 2k are assigned to four batches: {J 1

2k−1, J 2
2k−1}, {J 3

2k−1}, {J 1
2k}, {J 2

2k, J 3
2k}; or {J 1

2k−1}, {J 2
2k−1, J 3

2k−1},

164 L.L. Liu et al. / Theoretical Computer Science 374 (2007) 159–169

{J 1
2k, J 2

2k}, {J 3
2k}. The first pattern is called 2112 with total processing time 2(L2k−1 + L2k) + 8Mk and the second

pattern is called 1221 with total processing time 2(L2k−1 + L2k) + 8Mk + ak .

Proof. We prove this lemma by induction on k. For the six type 1 and type 2 jobs, if the two batches {J 1
1 , J 2

1 } and
{J 1

2 , J 2
2 } exist, then the total tardiness of J 1

2 and J 3
2 is

p2
1 + p3

1 + p2
2 − d1

2 + p2
1 + p3

1 + p2
2 + p3

2 − d3
2 > 4M1 − 4A

> 3
t∑

i=1

Mi +

t∑
i=1

(t − i)ai + A = T ∗.

If the two batches {J 2
1 , J 3

1 } and {J 2
2 , J 3

2 } exist, then the total tardiness of J 2
1 and J 2

2 is

p1
1 + p3

1 − d2
1 + p1

1 + p3
1 + p1

2 + p3
2 − d2

2 > 4M1

> 3
t∑

i=1

Mi +

t∑
i=1

(t − i)ai + A = T ∗.

Thus, in any feasible schedule with consecutively indexed jobs the six type 1 and type 2 jobs can only be assigned to
four batches: {J 1

1 , J 2
1 }, {J 3

1 }, {J 1
2 }, {J 2

2 , J 3
2 }; or {J 1

1 }, {J 2
1 , J 3

1 }, {J 1
2 , J 2

2 }, {J 3
2 }.

Suppose that there exists a feasible schedule with consecutively indexed jobs such that this lemma is true for
i = 1, . . . , k − 1, but it does not hold for k. Then the total processing time of the (4i − 3)th, (4i − 2)th, (4i − 1)th,
and (4i)th batches is at least 2(L2i−1 + L2i)+8Mi . By computation, if the six jobs of type 2i −1 and 2i are of Pattern
1221, then the tardiness of job J 2

2i−1 is at least 3Mi ; if the six jobs of type 2i − 1 and 2i are of Pattern 2112, then the
tardiness of job J 2

2i is also at least 3Mi . Hence, the total tardiness of the first 4(k − 1) batches is at least 3
∑k−1

i=1 Mi .
For the six jobs of type 2k − 1 and 2k, we can discuss this case similar to the case of type 1 and type 2 jobs. It follows
that the total tardiness will be larger than T ∗ and this is a contradiction to the feasible schedule assumption. �

Let A1 be the index set of k (k = 1, . . . , t) such that the six jobs of type 2k − 1 and 2k are of Pattern 2112 and
A2 = {1, . . . , t}− A1. According to the above discussion, if k ∈ A1, then the total processing time of the four batches
{J 1

2k−1, J 2
2k−1}, {J 3

2k−1}, {J 1
2k}, and {J 2

2k, J 3
2k} is 2(L2k−1 + L2k) + 8Mk , and if k ∈ A2, then the total processing

time of the four bathes {J 1
2k−1}, {J 2

2k−1, J 3
2k−1}, {J 1

2k, J 2
2k}, and {J 3

2k} is 2(L2k−1 + L2k) + 8Mk + ak . Therefore, if
k ∈ A1 (k = 1, . . . , t), then J 2

2k is the only tardy job of the four batches and its tardiness is

3Mk + (t − k + 1)ak +

∑
{ai |i < k, i ∈ A2}.

If k ∈ A2 (k = 1, . . . , t), then J 2
2k−1 is the only tardy job of the four batches and its tardiness is

3Mk +

∑
{ai |i < k, i ∈ A2}.

Combining all the properties we have derived for any feasible schedule with consecutively indexed jobs, we obtain
the following conclusion.

Lemma 4. There exists a feasible schedule with consecutively indexed jobs for the scheduling instance such that∑
T j ≤ T ∗ if and only if

∑
i∈A1

ai =
∑

i∈A2
ai = A holds for the partition instance.

Proof. From the above discussion, the total tardiness is equal to:∑
T j =

t∑
k=1

(
3Mk +

∑
{ai |i < k, i ∈ A2}

)
+

∑
k∈A1

(t − k + 1)ak + 2 max

{
0,
∑
k∈A2

ak − A

}
,

where the third term on the right-hand side is the total tardiness of jobs J 1
2t+1 and J 2

2t+1. Since:

t∑
k=1

∑
{ai |i < k, i ∈ A2} =

∑
i∈A2

(t − i)ai ,

L.L. Liu et al. / Theoretical Computer Science 374 (2007) 159–169 165

we obtain:∑
T j = 3

t∑
k=1

Mk +

t∑
k=1

(t − k)ak +

∑
k∈A1

ak + 2 max

{
0,
∑
k∈A2

ak − A

}
.

Therefore, there exists a feasible schedule with consecutively indexed jobs such that
∑

T j ≤ T ∗ if and only if∑
k∈A1

ak + 2 max{0,
∑

k∈A2
ak − A} ≤ A. Hence,

∑
k∈A1

ak ≤ A and
∑

k∈A2
ak ≤ A. Because

∑
k∈A1

ak +∑
k∈A2

ak = 2A, we get
∑

k∈A1
ak =

∑
k∈A2

ak = A. �

Based on the above lemmas, we obtain the following theorem:

Theorem 1. The problem 1|B, agr(p j , d j)|
∑

T j is NP-hard even if B = 2.

3.2. Pseudo-polynomial algorithm

According to the construction of the scheduling instance from a partition instance in the proof of the NP-hardness
of the problem 1|B, agr(p j , d j)|

∑
T j with B = 2, we know that the constructed scheduling instance satisfies

pi+1 − pi ≤ di+1 − di (i = 1, . . . , n − 1). Therefore, the problem 1|B, agr(p j , d j)|
∑

T j is NP-hard even if B = 2
and pi+1 − pi ≤ di+1 − di (i = 1, . . . , n − 1). We next develop a pseudo-polynomial-time dynamic programming
algorithm for this problem. Before presenting the dynamic programming algorithm, we first provide some structural
properties of a class of optimal schedules. We call batch B j a deferred batch of Bk (or batch B j is deferred by Bk) if
B j is scheduled after Bk and p(Bk) > p(B j), and batch Bk is called a deferring batch of B j .

Lemma 5. For the problem 1|B, agr(p j , d j)|
∑

T j , there exists an optimal schedule in which all the deferring batches
are full, all the deferred batches are partial and all the jobs in the deferred batches are tardy.

Proof. Consider an optimal schedule containing a deferring partial batch. Move jobs from its deferred batches to this
deferring partial batch until it becomes a full batch or it is still a partial batch but all the batches after it have processing
times longer than the processing time of this batch (in this case, it is not a deferring batch any more). The completion
times of the moved jobs decrease and the completion times of the other jobs do not increase, thus the schedule remains
optimal. Repeating the above procedure, we obtain an optimal schedule with all the deferring batches being full.

Consider an optimal schedule containing a full deferred batch Bi . From the above discussion, we can assume that
its deferring batches are full. Denote one of its deferring batches as Bk and the completion times of batches Bk and
Bi as C1 and C2, respectively. Order the 2B jobs in batches Bk and Bi in increasing order of their indices and assign
the B jobs with the smallest indices to batch Bk and the remaining B jobs to batch Bi . After the rearrangement, batch
Bi is not deferred by batch Bk any more. Denote the new completion times of batches Bk and Bi as C ′

1 and C ′

2,
respectively. We have C ′

1 ≤ C1 and C ′

2 ≤ C2 and the completion times of the other batches do not increase. The
tardiness of the jobs that were originally in Bk (Bi) and are now still in Bk (Bi) does not increase. If there is a job Jk
that was originally in batch Bk and is now in batch Bi , then there must exist another job Ji with pk ≥ pi and dk ≥ di
that was originally in batch Bi and is now in batch Bk . Therefore, the decreased tardiness by exchanging jobs Jk and
Ji is

max{0, C1 − dk} + max{0, C2 − di } − max{0, C ′

1 − di } − max{0, C ′

2 − dk}

≥ max{0, C1 − dk} + max{0, C2 − di } − max{0, C1 − di } − max{0, C2 − dk}

= (C2 − di)
+

− (C2 − dk)
+

− ((C1 − di)
+

− (C1 − dk)
+).

Following the proof of Lemma 1, we know that the decreased tardiness is non-negative. Repeating the above
discussions, we obtain an optimal schedule with all the deferred batches being partial.

Consider an optimal schedule in which deferred batch Bi contains at least one job finished on time. Since all the
jobs have agreeable processing times and due dates, in batch Bi the job with the largest index must be on time. Denote
this job as Ji and one of the deferring batches of Bi as Bk . Denote the completion times of batches Bk and Bi as
C1 and C2, respectively. Denote the number of jobs in batch Bk with indices larger than that of job Ji as a. We have
a ≤ B. If a + |Bi | ≤ B, move the a jobs in batch Bk with indices larger than that of Ji to Bi ; otherwise, move
a + |Bi | − B jobs in batch Bi with the smallest indices to Bk and the a jobs in batch Bk with indices larger than that
of Ji to Bi . The completion times of the other batches do not increase, the jobs moved from Bk to Bi are on time, the

166 L.L. Liu et al. / Theoretical Computer Science 374 (2007) 159–169

completion times of jobs moved from Bi to Bk are decreased, and the completion times of the other jobs in these two
batches do not increase. Therefore, the total tardiness does not increase and batch Bi is not a deferred batch of Bk any
more. Repeat the above procedures for an optimal schedule in which all the jobs in the deferred batches are tardy. �

From Lemma 5, we obtain the following lemma, which establishes that the partial batches and the full batches are
arranged in non-decreasing order of their processing times.

Lemma 6. For the problem 1|B, agr(p j , d j)|
∑

T j , there exists an optimal schedule in which all the partial bathes
and all the full batches are arranged in non-decreasing order of their processing times.

Lemma 7. For the problem 1|B, agr(p j , d j)|
∑

T j with B = 2 and pi+1 − pi ≤ di+1 − di (i = 1, . . . , n − 1), if
batch {Ji } is deferred by batch {J j , Jk} in any optimal schedule that satisfies Lemmas 1, 5 and 6, we have pk

2 ≤ pi
(1 ≤ i < j < k ≤ n).

Proof. According to Lemma 1 and the definition of deferred batch, we obtain that pi ≤ p j ≤ pk , di ≤ d j ≤ dk
and pi < pk . Without loss of generality, we assume that batch {Ji } is processed immediately after batch {J j , Jk};
otherwise, following Lemmas 5 and 6, we can find another deferred partial batch and(or) another deferring full batch
such that the partial batch is processed immediately after the full batch and the job in the partial batch is tardy.
Suppose that pk

2 > pi in an optimal schedule σ . Denote the starting time of batch {J j , Jk} as C in σ . We construct
another schedule σ ′ by exchanging batches {Ji } and {J j , Jk} in σ . Then job Ji must be on time in σ ′; otherwise, from
σ to σ ′, the decreased tardiness of job Ji is pk and the increased total tardiness of jobs J j and Jk is at most 2pi .
Since pk

2 > pi , it follows that schedule σ ′ is better than σ and this is a contradiction. We obtain C + pi ≤ di and
C + pk − dk ≤ di − pi + pk − dk = pk − pi − (dk − di) ≤ 0. Hence, job Jk is on time in schedule σ . We consider
five possible cases.
Case 1. Job J j is tardy in σ and job Jk is on time in σ ′, then job J j must be tardy in σ ′. The decreased total tardiness
from σ to σ ′ is

C + pk − d j + C + pk + pi − di − (C + pi + pk − d j) = C + pk − di .

Since job J j is tardy in σ , we have C + pk − d j > 0. Hence, C + pk − di > d j − di ≥ 0.
Case 2. Job J j is tardy in σ and job Jk is tardy in σ ′, then job J j must be tardy in σ ′. The decreased total tardiness
from σ to σ ′ is:

C + pk − d j + C + pk + pi − di − (C + pi + pk − d j + C + pi + pk − dk) = dk − di − pi .

Since dk − di ≥ pk − pi , it follows that dk − di − pi ≥ pk − 2pi > 0.
Case 3. Job J j is on time in both σ and σ ′, so job Jk must be on time in σ ′ since dk ≥ d j . Obviously, the decreased
total tardiness from σ to σ ′ is strictly larger than zero since job Ji is tardy in σ according to Lemma 5.
Case 4. Job J j is on time in σ , job J j is tardy in σ ′ and job Jk is on time in σ ′. The decreased total tardiness from σ

to σ ′ is:

C + pk + pi − di − (C + pi + pk − d j) = d j − di .

If d j > di , we obtain d j − di > 0. The decreased total tardiness is positive. If d j = di , we have 0 = d j − di ≥

p j − pi ≥ 0, thus p j = pi . We construct another schedule σ ′′ by assigning jobs Ji and J j to one batch and this batch
is immediately followed by a batch containing only job Jk . Then jobs Ji , J j , Jk are on time in σ ′′ while job Ji is
tardy in σ . It follows that the decreased total tardiness is strictly larger than zero from σ to σ ′′.
Case 5. Job J j is on time in σ , and jobs J j and Jk are tardy in σ ′. The decreased total tardiness from σ to σ ′ is

C + pk + pi − di − (C + pi + pk − d j + C + pi + pk − dk) = dk − di − pi + d j − C − pk .

Since dk − di ≥ pk − pi , it follows that dk − di − pi ≥ pk − 2pi > 0. Since job J j is on time in σ , we have
C + pk ≤ d j . Hence, the decreased total tardiness is strictly larger than zero.

We have considered all the possible cases and for each case we can construct a better schedule than schedule σ ,
which implies that σ is not optimal. �

Lemma 8. For the problem 1|B, agr(p j , d j)|
∑

T j with B = 2 and pi+1 − pi ≤ di+1 − di (i = 1, . . . , n − 1), the
number of deferred batches of any full batch is at most one in any optimal schedule that satisfies Lemmas 1 and 5–7.

L.L. Liu et al. / Theoretical Computer Science 374 (2007) 159–169 167

Proof. Suppose there are more than one deferred partial batches of full batch Bk in an optimal schedule σ . Denote
the nearest two deferred batches from batch Bk as {Ji } and {J j }, respectively. In accordance with Lemma 7, we have
p(Bk)

2 ≤ pi and p(Bk)
2 ≤ p j . Following Lemmas 5 and 6, we know that jobs Ji and J j are tardy in σ and pi < p j .

Then σ can be represented as the following form:

σ = S0 Bk{Ji }S1{J j }S2,

where S0, S1, S2 are three blocks of batches and S1 contains full batches with processing times longer than or equal
to p(Bk) according to Lemmas 5 and 6.

We construct another schedule σ ′ from σ by assigning job Ji and J j to the same batch and scheduling it
immediately after batch Bk . Hence,

σ ′
= S0 Bk{Ji , J j }S1S2.

If job J j is on time in σ ′, then exchange batches Bk and {Ji } in σ . The jobs in Bk are on time while the tardiness of Ji
is decreased, a contradiction to the optimality of σ . Therefore, both jobs Ji and J j are tardy in σ ′. From σ to σ ′, the
tardiness of job Ji increases by p j − pi , the total tardiness of jobs in S1 increases by at most (p j − pi)|S1|, and the
tardiness of job J j decreases by pi + p(S1), where p(S1) and |S1| denote the total processing time of batches in S1
and the total number of jobs in S1. Therefore, the total tardiness is decreased by at least:

pi + p(S1) − (p j − pi) − (p j − pi)|S1| = 2pi − p j + p(S1) − (p j − pi)|S1|.

Since p(Bk)
2 ≤ pi , p(Bk) > p j and p(Bk)

2 ≤
p(S1)
|S1|

, it follows that 2pi − p j > 0, p j − pi <
p(Bk)

2 ≤
p(S1)
|S1|

and
p(S1) − (p j − pi)|S1| > 0. Hence, the decreased total tardiness is positive and σ is not an optimal schedule. �

We now present a dynamic programming algorithm for the NP-hard problem 1|B, agr(p j , d j)|
∑

T j with B = 2
and pi+1 − pi ≤ di+1 − di (i = 1, . . . , n − 1). According to Lemma 8, the number of deferred batch of any full batch
does not exceed one. Let f (C, j, i) denote the minimum total tardiness when jobs J1, . . . , Ji−1 and Ji+1, . . . , J j are
scheduled such that the unscheduled job Ji is deferred by the full batch containing job J j and the completion time of
the last batch is C . If no unscheduled job is deferred by the batch containing job J j , the minimum total tardiness is
denoted as f (C, j, o).

Let f (0, 0, o) = 0. For C = p1, . . . ,
∑

p j , j = 1, . . . , n, and i < j , the value f (C, j, o) can be obtained by the
following recurrence equations:

f (C, j, o) = min

min
i< j

{ f (C − pi , j, i) + max{0, C − di }},

min
1≤l≤2

{
f (C − p j , j − l, o) +

l∑
k=1

max{0, C − d j−k+1}

}
,

where the first term is taken by adding the deferred batch of the batch containing job J j and the second term is taken
by adding a full or partial batch containing job J j that does not defer any batch.

The value f (C, j, i) can be obtained by the following recurrence equations:

f (C, j, i) = min

f (C − p j , j − 2, i) +

2∑
k=1

max{0, C − d j−k+1}, if i < j − 2,

f (C − p j , j − 3, o) +

2∑
k=1

max{0, C − d j−k+1}, if i = j − 2,

where the two terms are both taken by adding the full batch containing job J j while the first term corresponds to job
Ji being deferred by the batch containing job J j−2 and the second term corresponds to job Ji being job J j−2.

The optimal value is equal to minp1≤C≤
∑n

k=1 pk
f (C, n, o) and the time complexity of this dynamic programming

algorithm is O(n3∑n
k=1 pk), which is a pseudo-polynomial-time algorithm.

4. Minimizing the weighted number of tardy job

We know that the problem 1||
∑

w jU j is ordinary NP-hard even if all the jobs have the same due dates. Thus, the
problem 1|B, agr(p j , d j)|

∑
w jU j is NP-hard, too. In this section we develop a pseudo-polynomial-time algorithm

168 L.L. Liu et al. / Theoretical Computer Science 374 (2007) 159–169

for this problem, and therefore show that the problem cannot be strongly NP-hard unless P = NP. According to Lee
et al. [10], we have the following conclusion.

Lemma 9. There exists an optimal schedule for the problem 1|B, agr(p j , d j)|
∑

w jU j in which all the on-time jobs
are processed before all the tardy jobs and the on-time jobs are arranged in non-decreasing order of their indices.

We now present a dynamic programming algorithm that runs in pseudo-polynomial time. Let F j (k, l, t) denote the
minimum weighted number of tardy jobs when jobs J1, . . . , J j are scheduled, the last on time batch can be expanded
to comprise job Jk and l ≤ B is the number of jobs in the last on time batch, and the completion time of the last on
time batch is t . We develop the following dynamic programming algorithm.

F0(k, l, t) =

{
0, if k = t = 0, l = B,

∞, otherwise.

For j = 1, . . . , n, k = 0, . . . , n, l = 1, . . . , B, and t = 0, . . . ,
∑n

j=1 p j , the recursion equations are

F j (k, l, t) =

min

F j−1(k, l − 1, t), if t ≤ d j ,

min
h≤ j−1,1≤l ′≤B

{F j−1(h, l ′, t − pk)}, if l = 1, t ≤ d j ,

F j−1(k, l, t) + w j , if t ≤ d j ,

F j−1(k, l, t) + w j , if t > d j .

The optimal value is equal to min0≤k≤n,1≤l≤B,0≤t≤
∑n

j=1 p j
Fn(k, l, t) and the optimal schedule is obtained by

backtracking. The time complexity of this algorithm is O(n3 B2∑n
j=1 p j).

5. Conclusions

In this paper we investigated the problem of scheduling jobs with agreeable processing times and due dates
on a single batch processing machine. Lawler [8] showed that the problem 1|agr(p j , d j)|

∑
w j T j is strongly

NP-hard. Therefore, the problem 1|B, agr(p j , d j)|
∑

w j T j is strongly NP-hard, too. We proved that the problem
1|B, agr(p j , d j)|

∑
T j is NP-hard even if B = 2 and pi+1 − pi ≤ di+1 − di (i = 1, . . . , n − 1), and provided

pseudo-polynomial-time algorithms for the problems 1|B, agr(p j , d j)|
∑

T j with B = 2 and pi+1 − pi ≤ di+1 − di
(i = 1, . . . , n − 1) and 1|B, agr(p j , d j)|

∑
w jU j , respectively.

To find efficient algorithms for the problem 1|B = 2, agr(p j , d j)|
∑

T j and the even more general problem
1|B, agr(p j , d j)|

∑
T j are very challenging topics for future research.

Acknowledgements

The authors are thankful to the referees for their helpful suggestions and comments on an earlier version of the
paper. This research was supported in part by The Hong Kong Polytechnic University under a doctoral research
studentship for Liu.

References

[1] P. Brucker, A. Gladky, H. Hoogevreen, M.Y. Kovalyov, C.N. Potts, T. Tautenhahn, S. Van de Velde, Scheduling a batching machine, Journal
of Scheduling 1 (1998) 31–54.

[2] T.C.E. Cheng, M.C. Gupta, Survey of scheduling research involving due date determination decisions, European Journal of Operational
Research 38 (1989) 156–166.

[3] T.C.E. Cheng, Z.H. Liu, W.C. Yu, Scheduling jobs with release dates and deadlines on a batch processing machine, IIE Transactions 33 (2001)
685–690.

[4] J.Z. Du, J.Y.-T. Leung, Minimizing total tardiness on one machine is NP-hard, Mathematics of Operations Research 15 (1990) 483–495.
[5] H. Emmons, One-machine sequencing to minimize certain functions of job tardiness, Operation Research 17 (1969) 701–715.
[6] Y. Ikura, M. Gimple, Efficient scheduling algorithms for a single batch processing machine, Operations Research Letters 5 (1986) 61–65.
[7] R.M. Karp, Reducibility among combnatorial problems, in: R.D. Miller, J.W. Thatcher (Eds.), Complexity in Computer Computations, Plenum

Press, New York, 1972, pp. 85–103.
[8] E.L. Lawler, A “pseudopolynomial” algorithm for sequencing jobs to minimize total tardiness, Annals of Discrete Mathematics 1 (1977)

331–342.

L.L. Liu et al. / Theoretical Computer Science 374 (2007) 159–169 169

[9] E.L. Lawler, J.M. Moore, A functional equation and its application to resource allocation and sequencing problems, Management Science 16
(1969) 77–84.

[10] C.Y. Lee, R. Uzsoy, L.A. Martin Vega, Efficient algorithms for scheduling semiconductor burn-in operations, Operation Research 40 (1992)
764–775.

[11] C.L. Li, C.Y. Lee, Scheduling with agreeable release times and due dates on a batch processing machine, European Journal of Operational
Research 96 (1997) 564–569.

[12] Z.H. Liu, W.C. Yu, Scheduling one batch processor subject to job release dates, Discrete Applied Mathematics 105 (2000) 129–136.
[13] Z.H. Liu, J.J. Yuan, T.C.E. Cheng, On scheduling an unbounded batch machine, Operations Research Letters 31 (2003) 42–48.

	Scheduling jobs with agreeable processing times and due dates on a single batch processing machine
	Introduction
	Assumptions and notations
	Minimizing total tardiness
	NP-hardness proof
	Pseudo-polynomial algorithm

	Minimizing the weighted number of tardy job
	Conclusions
	Acknowledgements
	References

