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Aleksandra Nita-Lazar,3 Stephan Diekmann,4 and Yamini Dalal1,*
1Laboratory of Receptor Biology and Gene Expression, National Cancer Institute
2Laboratory of Biomedical Engineering and Physical Sciences, National Institute of Biomedical Imaging and Bioengineering
3Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases
NIH, Bethesda, MD 20892, USA
4Fritz Lipmann Institute, Jena, Germany
5These authors contributed equally to this work
*Correspondence: dalaly@mail.nih.gov

http://dx.doi.org/10.1016/j.cell.2012.05.035
SUMMARY

In eukaryotes, DNA is packaged into chromatin by
canonical histone proteins. The specialized histone
H3 variant CENP-A provides an epigenetic and struc-
tural basis for chromosome segregation by replacing
H3 at centromeres. Unlike exclusively octameric
canonical H3 nucleosomes, CENP-A nucleosomes
have been shown to exist as octamers, hexamers,
and tetramers. An intriguing possibility reconciling
these observations is that CENP-A nucleosomes
cycle between octamers and tetramers in vivo. We
tested this hypothesis by tracking CENP-A nucleo-
somal components, structure, chromatin folding,
and covalent modifications across the human cell
cycle. We report that CENP-A nucleosomes alter
from tetramers to octamers before replication and
revert to tetramers after replication. These structural
transitions are accompanied by reversible chap-
erone binding, chromatin fiber folding changes, and
previously undescribed modifications within the
histone fold domains of CENP-A and H4. Our results
reveal a cyclical nature to CENP-A nucleosome
structure and have implications for the maintenance
of epigenetic memory after centromere replication.
INTRODUCTION

Every metaphase chromosome has a centromere, a unique

chromatin structure to which kinetochore complexes and

spindle microtubules attach during mitosis (Bloom and Joglekar,

2010). Centromeric chromatin is comprised of nucleosomes

containing a centromere-specific histone H3 variant, CENP-A,

which is required for establishing the kinetochore prior to every

mitotic event over the replicative life span of eukaryotic cells.
Thus, CENP-A is a key epigenetic determinant of centromere

identity and function.

In contrast to canonical nucleosomes, which organize the

bulk of eukaryotic genomes into octamers composed of H2A,

H2B, H3, and H4, CENP-A nucleosomal structure remains

controversial. Whereas yeast and human CENP-A can assemble

into conventional octameric nucleosomes in vitro (Camahort

et al., 2009; Tachiwana et al., 2011), humanCENP-A also assem-

bles into rigidified protein tetramers in vitro (Black et al., 2004;

Sekulic et al., 2010). Furthermore, octameric (Camahort et al.,

2009), hexameric (Mizuguchi et al., 2007), and right-handed

(Furuyama and Henikoff, 2009) CENP-A nucleosomes have

been documented in yeast, whereas tetrameric ‘‘hemisomes’’

containing CENP-A, H2A, H2B, and H4 have been identified in

asynchronous Drosophila and human cells (Dalal et al., 2007;

Dimitriadis et al., 2010). In contrast, a recent study using overex-

pressed CENP-A has reported the presence of unstable oc-

tamers in fly cells (Zhang et al., 2012). These studies point to

an inexplicable variability in structure for a nucleosome whose

function is both critical and conserved.

An unexplored possibility to explain such variability in struc-

ture might be that CENP-A nucleosomal organization is dynamic

over the cell cycle, so that CENP-A forms octamers after

completion of assembly at G1, but transits through stable tetra-

meric intermediates (Allshire and Karpen, 2008; Probst et al.,

2009) that are generated after replication (Dalal and Bui, 2010;

Henikoff and Furuyama, 2010; Black and Cleveland, 2011) or

mitosis (Bloom and Joglekar, 2010). To investigate this hypoth-

esis, we tracked CENP-A nucleosomes over the cell cycle in

human cells by using a combination of chromatin biochemistry,

atomic force microscopy (AFM), coimmunoprecipitation (co-IP)

experiments, Förster resonance energy transfer (FRET), and

liquid chromatography coupled to tandem mass spectrometry

(LC-MS/MS). We report that native CENP-A nucleosome are

tetrameric at early G1, convert to octamers at the transition

from G1 into S phase, and revert back to tetramers after

replication, a state they assume for the rest of the cell

cycle. These structural changes are accompanied by reversible
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Figure 1. CENP-A Nucleosomes Are Heterotypic throughout the Cell Cycle and Bind the Chaperone HJURP at G1, G1/S, and G2 Phases but

Not at S Phase

Denaturing protein gel analysis of (A) native CENP-A IP from long chromatin arrays shows CENP-A contains H2A, H2B, and H4 at all points of the cell cycle and

binds kinetochore proteins CENP-C and CENP-N (WB panel).

(B and C) Native CENP-A IP from short chromatin arrays (B) and mononucleosomal input (C) demonstrate that CENP-A is always associated with H2A, H2B, and

H4, but not with H3.

(D) Western blot of HJURP within the CENP-A IP from (B) demonstrates loss of the HJURP at S phase, and return of HJURP at G2 phase.

(E) Extracted chromatin fibers stained for HJURP (green) and CENP-A as centromeric marker (red) demonstrate that HJURP is lost from centromeric fibers at S

phase but enriched in G2 and G1 phases. Scale bars, 1 mm. See also Figure S2.
binding of the CENP-A chaperone HJURP and changes in chro-

matin fiber folding. Furthermore, we uncover previously unde-

scribed covalent modifications in both CENP-A and H4 histone

fold domains, which occur at the key transition point from G1

into S phase. We discuss implications of our findings for the

inheritance of centromeric domains after replication.

RESULTS

Heterotypic CENP-A Nucleosomes Bind the Chaperone
HJURP at G1 and G2 Phases but Not at S Phase
We first examined whether histone or kinetochore components

in the centromeric fiber change over the cell cycle. To address

this, human cells were synchronized at early G1, G1/S, S,

G2/M, and M phases (Experimental Procedures and Fig-

ure S1A available online). Chromatin arrays were released from

these cells by mild nuclease digestion, followed by chromatin

immunoprecipitation (ChIP) with an anti-CENP-A antibody to

enrich for native CENP-A nucleosomes (Dimitriadis et al., 2010)

(Figure S1B).

Components present within long- and short-length arrays of

bulk chromatin (BC) and CENP-A chromatin were analyzed

on high-sensitivity protein gels (Experimental Procedures). As
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expected, BC from these cells depicts the normal equivalence

of canonical histones, within which CENP-A is detectable (Fig-

ure S2A, western blots [WB]). Our previous results demonstrated

that CENP-A purified fromasynchronous human cells associates

with H2A, H2B, and H4 on long-, moderate-, and short-length

chromatin arrays even when H3 is depleted, suggesting that

CENP-A nucleosomes are heterotypic (Dimitriadis et al., 2010).

We next examined whether CENP-A transits through a homo-

typic state (i.e., H2A/B free; Mizuguchi et al., 2007) during the

human cell cycle. However, whether from G1, G1/S, S, and

G2/M cells, long CENP-A chromatin arrays contain H2A, H2B,

and H4 (Figure 1A). Such arrays are associated with key inner

kinetochore proteins such as CENP-C and CENP-N (Figure 1A,

WB) (Carroll et al., 2010; Screpanti et al., 2011) and contain H3

(Figure 1A, two-color WB), indicative of alternating domains typi-

cally found at centromeres (Sullivan and Karpen, 2004). Centro-

meric immunoprecipitates (IPs) are enriched in CENP-A and

depleted in H3 (Figure S2B) and contain centromere-specific

alpha satellite DNA (Figure S2C), supporting their centromeric

origin. When the arrays are made shorter by prolonging

nuclease treatment, until the input is almost exclusively

mononucleosomes, CENP-A nucleosomes copurify with core

histones H2A, H2B, and H4 in equimolar amounts, even when
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Figure 2. CENP-A Nucleosomes Alter from Tetramers to Octamers at S Phase

Single-molecule AFM measurements depicting (A) heights and (B) volumes of purified H3 and bulk chromatin (BC) nucleosomes show they have octameric

dimensions. In contrast CENP-A nucleosomes are tetramers at G2/M,M, early G1, andG1/S but are octamers in early and late S phases. Red dotted line indicates

octameric particle values. BC values are in gray, H3 values are in green, and CENP-A values are in blue. Average values for heights and volumes are indicated

under each graph. Table 1 gives a detailed overview of the data. See also Figures S3, S4A, and S4B.
H3 is completely depleted within the IP (Figures 1B and 1C).

Thus, these data indicate that H2A and H2B are intrinsic compo-

nents of native CENP-A nucleosomes derived from active

centromeres at all points of the cell cycle examined.

In parallel, we also analyzed the CENP-A histone chaperone

HJURP in CENP-A chromatin arrays. At G1 phase, consistent

with its role in depositing CENP-A (Dunleavy et al., 2009; Foltz

et al., 2009; Shuaib et al., 2010), HJURP is bound to chromatin

(Figure S2D, HJURP IP) and specifically to short CENP-A

chromatin arrays (Figure 1D, CENP-A IP, HJURPWB). However,

in contrast to its yeast homolog Scm3, which is bound to centro-

meres throughout the cell cycle (Xiao et al., 2011), we observed

that HJURP is diminished in CENP-A chromatin from G1/S

through S (Dunleavy et al., 2011) but reappears at G2 phase

(Figure 1D, CENP-A IP, WB). A reciprocal HJURP IP likewise

demonstrates that CENP-A copurifies with HJURP during G1,

is depleted at S, but returns during G2/M phase (Figure S2D,

HJURP IP, CENP-A WB).

To test this observation further, we performed HJURP immu-

nofluorescence on centromeric chromatin fibers (Sullivan and

Karpen, 2004). These data show that HJURP localizes onto

centromeric fibers at G1 and G1/S, is absent at S phase, but re-

turns at G2 phase (Figures 1E and S2E). Thus, HJURP associa-

tion to CENP-A chromatin is cell-cycle-dependent (Figures 1D,

1E, S2D, and S2E).

CENP-A Nucleosomes Cycle between Tetramers and
Octamers In Vivo
HJURP is known to be a CENP-A deposition chaperone (Hu

et al., 2011, Foltz et al., 2009, Dunleavy et al., 2009, Shuaib

et al., 2010). The loss of HJURP binding from CENP-A chromatin

at the G1 into S transition might signal completion of assembly,
heralding a structural shift in CENP-A nucleosomes. To test this

idea, we turned to single-molecule analysis of native CENP-A

chromatin. AFM is a powerful single-molecule imaging method

(Zlatanova and van Holde, 2006) that has been used extensively

to investigate chromatin dynamics (Shukla et al., 2010; Torigoe

et al., 2011, Bintu et al., 2011). Using AFM, we have previously

shown that native CENP-A nucleosomes contain H2A, H2B,

and H4, but not H3, and are tetrameric rather than octameric in

asynchronous fly and human cells (Dalal et al., 2007; Dimitriadis

et al., 2010). To investigate whether CENP-A nucleosomes alter

their structure over the cell cycle, we used AFM to measure

dimensions of native CENP-A chromatin obtained from experi-

ments described above (Figures 1A, 1B, and 1D).

Consistent with previously published results (Dimitriadis et al.,

2010), BC nucleosomes are exclusively octameric, averaging

2.6 nm in height and 268 nm3 in volume (Figures 2A, 2B, and

S3A and Table 1). To ensure that IP or AFM conditions do not

alter nucleosomal features, we immunopurified control H3 nucle-

osomes fromG1/S andG2 phases of the cell cycle. Control H3 IP

nucleosomes remain within the octameric range (Figures 2A

and 2B overlay of BC and H3-IP, Table 1, and Figures S3B

and S3C). In contrast, native CENP-A nucleosomes similarly

purified present remarkably variable structures over the cell

cycle. At early G1, the point at which new CENP-A assembles

at centromeres (Hemmerich et al., 2008; Jansen et al., 2007;

Schuh et al., 2007), CENP-A nucleosomes are tetrameric, aver-

aging 1.5 nm high and 125 nm3 in volume (Figures 2A, 2B, and

S3and Table 1). At the G1/S transition, CENP-A nucleosomes

have a broader distribution, with the majority averaging 1.9 nm

high and 168 nm3 in volume, and an octameric subfraction,

averaging 2.5 nm high and 251 nm3 in volume (Figures 2A, 2B,

and S3 and Table 1). As cells enter S phase, the overwhelming
Cell 150, 317–326, July 20, 2012 ª2012 Elsevier Inc. 319



Table 1. AFM Measurements of CENP-A Nucleosomal Dimensions Indicate a Change in Structure over the Cell Cycle

Cell-Cycle Phase Nucleosome N Heights (nm) Volume (nm3) Diameter (nm) N Inferred Organization

G2/M CENP-A 479 1.8 ± 0.27 198 ± 72 14.6 ± 2.20 584 tetramer

M CENP-A 1177 1.8 ± 0.38 190 ± 53 14.2 ± 2.03 498 tetramer

Early G1 CENP-A 169 1.5 ± 0.5 125 ± 35 13.7 ± 1.93 169 tetramer

G1/S CENP-A 1372 1.9 ± 0.28

2.5 ± 0.77

168 ± 33

251 ± 80

12.7 ± 0.76 288 transition to octamer

Early S CENP-A 188 2.7 ± 0.34 273 ± 53 13.3 ± 1.86 246 octamer

Late S CENP-A 177 2.6 ± 0.5 242 ± 52 13.2 ± 1.36 124 octamer

G1/S BC 281 2.9 ± 0.5 345 ± 56 14.4 ± 1.78 394 octamer

G2/M BC 419 2.6 ± 0.6 268 ± 92 13.6 ± 1.25 497 octamer

G1/S H3 98 3.2 ± 0.4 300 ± 46 13.1 ± 1.32 98 octamer

G2 H3 126 3.3 ± 0.16 302 ± 65 12.8 ± 1.0 126 octamer

Bolded numbers denote values within the predicted range for canonical octameric nucleosomes, values rounded up to 1 decimal point. N = number of

nucleosomes measured. BC = bulk chromatin; H3 = H3 IP; CENP-A = CENP-A IP.
majority of CENP-A nucleosomes are indistinguishable from H3

octameric nucleosomes, averaging 2.7 nm high and 273 nm3 in

volume (Figures 2A, 2B,and S3 and Table 1). In late S phase,

CENP-A nucleosomes persist as octamers, averaging 2.6 nm

high and 242 nm3 in volume (Figures 2A, 2B, and S3 and

Table 1). In contrast, postreplicative CENP-A nucleosomes

from G2/M phase also form nucleosomal arrays (Figure S3) but

are consistent with tetrameric dimensions, averaging 1.8 nm

high and 198 nm3 in volume (Figures 2A and 2B and Table 1).

CENP-A nucleosomes from early mitotic cells (Experimental

Procedures) remain tetrameric, averaging 1.8 nm high and

190 nm3 in volume (Figures 2A, 2B, and S3 and Table 1). Thus,

CENP-A nucleosomes cycle between tetrameric and octameric

configurations in vivo.

Octameric volumes for S phase CENP-A nucleosomes could

result from an increase not just in height but also in diameter,

perhaps resulting from nonhistone binding. A priori, this possi-

bility seems less likely because histone gels depict an equiva-

lence of CENP-A, H2A, H2B, and H4, but no significant enrich-

ment of other small proteins that might contribute to octameric

dimensions at S phase (Figure 1B). Nevertheless, we also exam-

ined diameters of CENP-A nucleosomes. These data show

that CENP-A nucleosomal diameters are similar over the cell

cycle, and consistent with the observed lateral diameter of H3

nucleosomes (Figure S3). Therefore, volume increase in CENP-A

nucleosomes from late G1 through late S reflects doubling of

nucleosomal heights, supporting the interpretation that they

form octamers.

To confirm that CENP-A nucleosomes transition to octamers

at S phase and back to tetramers at G2/M, we examined their

DNA content. G1/S, S, and G2/M CENP-A short chromatin

arrays were treated with proteinase K to remove histones, and

contour lengths of nucleosomal DNA released were measured

by AFM (Experimental Procedures). At G1/S, CENP-A mononu-

cleosomal DNA ranges from 100–150 bp (Figures S4A and S4B).

In contrast, by S phase, CENP-A nucleosomes yield multiples

of �150–200 bp of DNA, consistent with classical octameric

organization. By G2/M, CENP-A nucleosomal DNA decreases

to �115 bp in length, consistent with previous measurements
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of the CENP-A mononucleosomal footprint in vivo (Ando et al.,

2002), and with diminutive heights and volumes observed in

our analyses above (Figures 2A and 2B).

We sought an alternative approach to confirm that CENP-

A:CENP-A intranucleosomal interactions are increased at S

phase. In order to perform this experiment, we used a stable

cell line expressing GFP-CENP-A alongside native (untagged)

CENP-A (Dimitriadis et al., 2010) and collected cells at G1/S

and S phase as before. Mononucleosomal input chromatin

was extracted from these G1/S and S phase cells under condi-

tions used previously (Figure 1C) and an anti-GFP antibody

used to perform IP. Previous data have shown that EGFP-

CENP-A in these cells is associated with the core histones

H2A, H2B, and H4 (Dimitriadis et al., 2010). Here, the EGFP-

tagged nucleosomes were analyzed for EGFP-CENP-A relative

to native CENP-A content by using an anti-CENP-A antibody,

followed by quantitative laser scanning. As can be seen, very

little native CENP-A is present in the G1/S phase EGFP-

CENP-A IP. In contrast, native CENP-A is enhanced 7-fold

in the S phase EGFP-CENP-A IP (Figure S4C, CENP-A WB).

These data support the interpretation that CENP-A:CENP-A

intranucleosomal interactions are increased at S phase and

are consistent with octameric dimensions uncovered by AFM

experiments.

Thus, AFM analyses, DNA measurements, and co-IP analyses

(Figure 2A, 2B, S4A–S4C, and Table 1) indicate that, whereas

canonical H3 nucleosomes have octameric dimensions through-

out the cell cycle, CENP-A nucleosomes are predominantly

tetramers in early G1 phase, alter to octamers at the end of G1

through S phase, and revert to tetramers after replication.

The CENP-A Chromatin Fiber Is Highly Dynamic In Vivo
We were intrigued by the possibility that changes in CENP-A

structure and components observed above might be reflected

in chromatin fiber folding. To test whether chromatin fiber folding

changes in vivo, we measured interactions between CENP-A

molecules in living cells by using FRET. FRET occurs when two

fluorescently tagged proteins are within 10 nm of each other

in vivo, which is the average distance between nucleosomes
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Figure 3. FRETMeasurements Reveals the CENP-AChromatin Fiber

Undergoes a Transition at G1/S Phase

FRET measurements between CENP-A C termini and H3 C termini across the

cell cycle. H3 FRET is constant across the cell cycle (red), whereas CENP-A

FRET shows high FRET in G1 (Black bars) but no FRET from S through M

(mitosis) or C (Cytokinesis) phase (Grey bars). Black or red bars, significant

FRET (p < 0.001); gray bars, no FRET. See also Table S1, S2, and Figure S5.
in arrays, and thus has been used to study chromatin fiber inter-

actions (Hellwig et al., 2008, 2011; Hemmerich et al., 2008).

EGFP-CENP-A localizes accurately and can partially rescue

CENP-A depletion within centromeres (Kalitsis et al., 2003). It

associates with H2A, H2B, H4, and DNA in vivo (Dimitriadis

et al., 2010), is able to interact with CENP-C (Trazzi et al.,

2009), and has been widely used as a surrogate for tracking

native CENP-A behavior (Wan et al., 2009).

We assessed interactions between centromere-localized

C-terminal and N-terminal EGFP- and mCherry- CENP-A pairs

by using synchronized cell populations (Figures S1A and S5A).

Equivalently tagged control H3.1 pairs show significant FRET

between each other at all points of the cell cycle, including at

mitosis, consistent with a globally compacted chromatin fiber

(Figures 3, S5B and Table S1). In contrast, C terminally tagged

CENP-A pairs yield remarkably different results. In early G1, we

observed significant CENP-A-EGFP:CENP-A-mCherry FRET

(p < 0.001; Figure 3 and Table S1). The FRET signal remains

high over G1 and at G1/S (Figure 3 and Table S2). However,

2 hr into S phase, the FRET signal drops to background

levels (Figure 3) and remains insignificant throughout the

subsequent G2 and mitosis phases. Analysis of N terminally

tagged CENP-As similarly yields high FRET during G1 and

G1/S but no appreciable FRET during S, G2, and M phases (Fig-

ure S5C and Table S1).

FRET detection between CENP-As in G1 is consistent with

CENP-A assembly, which peaks at G1 (Hemmerich et al.,

2008; Jansen et al., 2007), increasing CENP-A occupancy on

the centromeric chromatin fiber and possibly resulting in a highly

compacted fiber (Marshall et al., 2008). Conversely, loss of FRET

between N and C terminally tagged CENP-A pairs, from mid S
to the next G1 is indicative of lack of physical proximity between

CENP-A termini, possibly resulting from greater spatial dis-

tances between CENP-A nucleosomes, a more extended

chromatin fiber (Dalal et al., 2007), or from inner kinetochore

proteins binding to CENP-A termini (Hellwig et al., 2011; Carroll

et al., 2010; Trazzi et al., 2009), thus preventing higher-order

compaction.

In order to confirm our interpretation that the FRET data reflect

chromatin fiber folding, we analyzed FRET before and after

disrupting the chromatin fiber with mild nuclease treatment.

We first confirmed FRET occurs between C terminally tagged

CENP-A in untreated G1 phase nuclei (Figure S5D and Table

S2), which recapitulated our in vivo results above (Figure 3). In

contrast, upon treating G1 phase nuclei with mild nuclease

(MNase), thus disrupting higher-order chromatin fiber folding

in situ, FRET between C terminally tagged CENP-A in late G1

disappears (Figure S5D and Table S2). From these data, we

infer that CENP-A FRET reflects interactions between CENP-A

nucleosomes within a densely packed chromatin fiber during

G1. Conversely, the loss of FRET between CENP-As in S phase

suggests that the centromeric chromatin fiber is altered as cells

transition from G1 into S phase.

We were curious to test whether disappearance of FRET

between CENP-A arrays in early S phase could be due to

disruption by of CENP-A chromatin fiber by DNA polymerases.

We synchronized and released cells into G1/S in the presence

of aphidocolin, an inhibitor of DNA polymerases a and d, thus

blocking replication. Because the cells are stalled at G1/S, we

observe continued CENP-A/CENP-A FRET for 4 hr (Figure S5E).

In contrast, after synchronizing and releasing cells at G1/S, but

inhibiting DNA polymerase only one hour after replication has

initiated, FRET between CENP-As is lost (Figure S5E, Table

S2). This behavior is similar to that of wild-type cells, which

lose FRET by mid S phase (Figure 3). Because centromeres

are late replicating in human cells (Shelby et al., 2000), 1 hr of

DNA polymerase activity is insufficient for the replication

machinery to run through human centromeres. Thus, the loss of

CENP-A FRET signal by mid S phase likely derives from a less

folded centromeric chromatin fiber in advance of replication.

The Histone Fold Domains of CENP-A and H4 Have
Modifications at G1/S
AFM and FRET experiments indicate that CENP-A structural and

dynamic transitions peak during G1/S (Figures 2A, 2B, and 3),

concurrent with the loss of HJURP binding in S phase (Figures

1C and 1D). We were curious to know whether covalent modifi-

cations within CENP-A/H4 could contribute to the changes

noted above. We purified DNA-bound CENP-A/H4 complexes

from G1/S, S, and G2/M cells (Figure S1C), excised them from

gels (Figure S6A), and subjected them to LC-MS/MS (Experi-

mental Procedures).

Six unique peptides from CENP-A were identified (Experimen-

tal Procedures). Remarkably, in G1/S phase-derived CENP-A,

the mass spectra revealed enrichment of an ion that corre-

sponds to a doubly charged tryptic peptide containing acety-

lated Lysine 124 (m/z 714.90, Figures 4A and S6B). Pep-

tide fragmentation in MS/MS mode and manual validation

allowed unequivocal confirmation of the CENP-A peptide
Cell 150, 317–326, July 20, 2012 ª2012 Elsevier Inc. 321



Figure 4. CENP-A Lys124 and H4 Lys79 Are Acetylated at G1/S Phase

(A) MS/MS spectrum showing CENP-A K124 is acetylated in the peptide ‘‘VTLFPK(acetyl)DVQLAR’’. Location of the parent peptide ion prior to fragmentation is

indicated with a blue diamond. Peptide fragmentation ions identified are indicated in the spectra and on the peptide sequence. Themasses of ions b9, y8, y9, y10

are diagnostic of K124 acetylation. See also Figure S6B.

(B) MS/MS spectrum showing fragmentation of H4 ‘‘K(acetyl)TVTAM(oxi)DVVYALK’’ as a doubly charged, monoisotopic ion, m/z 748.90 (�0.83 ppm difference

from the theoretical m/z). Location of the parent ions prior to fragmentation is indicated with a green diamond. Peptide fragmentation ions identified are indicated

in the spectra and on the peptide sequence. All fragment ions of the b series have masses diagnostic of K79 acetylation. See also Figure S6C.

(C) Model of the CENP-A octamer showing two CENP-As (red), DNA (blue), core histones (gray), CENP-A K124 (yellow), and CENP-A H115, R118, and D125

(green). Dotted lines represent distances (Å) between residues.

(D) Distance (Å) between H4K79 and DNA and H4K79 and CENP-A F84. Models were generated in PyMol by using published crystallographic coordinates

(Tachiwana et al., 2011). See also Figure S6.
as ‘‘119VTLFPK(acetyl)DVQLAR130’’ (Figures 4A and S6B). Simi-

larly, LC-MS/MS analysis of CENP-A-bound H4 from G1/S

phase cells also revealed an acetylation site on H4’s Lysine 79

residue in the tryptic peptide ‘‘79K(acetyl)TVTAMDVVYALK91,’’

showing the sequence of fragment ions that confirm the

presence of the acetyl group on K79 (m/z 748.90, Figures 4B

and S6C).

Whereas histone fold domain (HFD) modifications in histone

H3 have been identified that impact the pseudo-dyad of

the canonical octamer in vitro (Neumann et al., 2009; Simon

et al., 2011), there have been no such reports for histone vari-

ants such as CENP-A. The structural consequence of CENP-A

K124 and H4 K79 acetylation, buried in the interface of the

HFD and DNA in octamers, is likely to be significant (Figures

4C and 4D). CENP-A K124 is located within the a3-helix

domain and is within 7Å of the DNA double helix at the

pseudo-dyad of the octamer (Figure 4C). Adding an acetyl

group to K124 could have the structural consequence of

neutralizing the positively charged lysine surface, which might

loosen histone-DNA contacts. Similarly, H4 K79 is located
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within the Loop 2 domain juxtaposed near the DNA double helix

(Figure 4D), and an acetylation on this residue could loosen

the DNA-histone interface, thereby increasing accessibility of

the CENP-A nucleosomal interior to nonhistone proteins or to

chromatin remodelers.

DISCUSSION

Our data indicate that heterotypic CENP-A nucleosomes

(Figures 1A–1C) undergo significant changes in binding of

the chaperone HJURP (Figures 1D, 1E and S2), nucleosomal

structure (Figures 2A, 2B, S3, and S4), chromatin fiber folding

(Figures 3 and S5), and covalent modifications (Figures 4A, 4B,

S6B, and S6C), during the transition from G1 into S phase

(summarized in Figure S7). These findings are significant

because they reconcile previous contradictory observations

of CENP-A octamers and tetramers in diverse organisms,

which likely reflect cycling of the CENP-A nucleosomes.

Although we did not directly observe CENP-A hexameric or

homotypic tetramer intermediates during the transition from



Figure 5. Cyclical Oscillations of HJURP and CENP-A Drive

Centromere Dynamics

Model depicting how cyclical oscillations in CENP-A nucleosomal structure

could derive from changes in HJURP chaperone binding mediated by chro-

matin remodeling, histone modifications, and cell-cycle events such as

replication.
G1 into S phase, it is plausible that such intermediates exist

during interconversion between heterotypic tetramers and

octamers.

Our findings implicate novel mechanisms in the assembly-

disassembly kinetics of the centromeric fiber. One speculative

mechanism whereby CENP-A nucleosomes could be converted

from one form to another in vivo is through the action of

chromatin remodelers (Perpelescu et al., 2009; Torigoe et al.,

2011). The chromatin remodeler RSF, which binds to centro-

meres at late G1 and is required for CENP-A inheritance (Perpe-

lescu et al., 2009), could initiate reorganization of the CENP-A

chromatin fiber and recruit histone acetyltransferases that

catalyze acetylation of CENP-A and H4, delaying the formation

of stable octamers (Figure 5). At the end of G1, loss of such

modifications, accompanied by chromatin remodeling, could

influence the release of the chaperone HJURP, thus resulting

in the stabilization of the four helix bundle in the CENP-A

octamer (Hu et al., 2011). A plausible alternative scenario is

that changes in intrinsic stability (Conde e Silva et al.,

2007), or processes such as transcription (Bintu et al., 2011),

may alter CENP-A nucleosomal structure directly at various

points of the cell cycle. CENP-A mononucleosomes have

been demonstrated to be inherently unstable when subjected

to unwinding stress in vitro (Dechassa et al., 2011), and, ectop-

ically expressed CENP-A can be detected in the dimeric form in

fly cells, suggesting that unstable CENP-A octameric nucleo-

somes might also exist in vivo (Zhang et al., 2012). Such

unstable octameric CENP-A nucleosomes could disassemble

during passage of DNA replication machinery. Consequently,

our observation of the return of the chaperone HJURP concur-

rent with CENP-A tetrameric nucleosomes at G2 phase

might reflect HJURP-dependent recycling of old CENP-A into

tetrameric nucleosomal intermediates, after late replication of

centromeric DNA in human cells (Dunleavy et al., 2011; Shelby

et al., 2000). This state would persist until a burst of new

CENP-A protein at the next G1 promotes completion of

octamers prior to replication (Figure 5). New avenues that arise

from this work include elucidating how HJURP is released and

rebound over the cell cycle, identifying histone modifiers and

chromatin remodelers that target CENP-A, and the mechanism

by which CENP-A chromatin is reorganized throughout the cell

cycle.

In the absence of new CENP-A assembly during replication,

random segregation of old CENP-A would be expected to result

in unequal centromere domains at sister centromeres, unequal

attachment to the mitotic spindle, and subsequently aneuploidy.

It is plausible that an evolutionary conserved mechanism exists

to ensure distribution of CENP-A nucleosomes after centromeric

DNA replication. Thus, it is likely that cycling of CENP-A nucleo-

somal structure occurs in other organisms and that such cycling

will track closely with assembly by CENP-A chaperones. Our

observations that histone modifications, chromatin fiber folding,

and chaperone binding changes accompany structural transi-

tions in the centromere provide insight into a fundamental

problem arising from replication-independent assembly of

histone variants. These findings reveal a cyclical nature for

CENP-A nucleosomes that is likely to play a critical role in centro-

mere inheritance.
EXPERIMENTAL PROCEDURES

Chromatin Immunoprecipitation

Human cell lines HeLa and HEK293 were synchronized at various stages of

the cell cycle by using a double-thymidine block (see Cell-Cycle Synchroniza-

tion), harvested, washed twice with PBS + 0.1% Tween, and nuclei were ex-

tracted with TM2 Buffer (20 mM Tris [pH 8.0], 2 mM MgCl2) supplemented

with 0.5% Nonidet P40 Substitute (Sigma Cat number 74385). For mitotic

cells, early prophase cells were used which retain nuclear membranes, along

with an antibody specific to phosphorylation of CENP-A Ser 7. To release

chromatin, MNase (Sigma Cat number N3755) digestion was performed at

0.2–0.4 units/ml for 30 s, 2.5 min, and 4 min at 37�C to generate long,

moderate, and short chromatin arrays, and the reaction stopped with 10 mM

EGTA. An aliquot of nuclei was used for extracting and analyzing DNA to
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confirm bulk chromatin array length. Remaining nuclei were extracted over-

night at 4�C in 103 volume of low-salt buffer (0.53 PBS, 5 mM EGTA,

0.5 mM PMSF). Chromatin IP was performed by using Dynabeads Protein G

(Invitrogen catalog number 100-07D) or prehydrated sepharose-protein G,

with primary antibodies as listed below. Three biological replicates were per-

formed for each experiment.

Antibodies Used for ChIP and Western Blot

CENP-A, rabbit CENP-A (Santa Cruz catalog number sc-22787) and rabbit

CENP-A (Millipore catalog number 07-574); Mitotic CENP-A, rabbit phos-

pho-serine 7 CENP-A (Millipore catalog number 07-232) (early prophase cells

still have nuclear membranes); HJURP, goat HJURP (Santa Cruz catalog

number sc-168091); CENP-C, goat CENP-C (Santa Cruz catalog number sc-

11285); and CENP-N, goat CENP-N (Santa Cruz catalog number sc-69152).

Chromatin Fiber Analysis by Immunofluorescence

PBS-washed HeLa cells were counted and diluted to 300,000 cells/ml in

hypotonic buffer (75 mM KCl, 13 PBS). After 10 min of incubation at room

temperature, 200 mL of cells were cytospunned for 10 min at 4,000 rpm, lysed

for 15 min in lysis buffer (2.5 mM Tris HCl [pH 7.5], 0.5 mM NaCl, 1% Triton

X-100, 0.4 M urea), fixed for 10 min in fixation buffer (4% PFA [paraformalde-

hyde], 13 PBS), and permeabilized for 7 min in permeabilization buffer (0.1%

Triton X-100, 13 PBS). After blocking for 30min in 13 PBS supplemented with

0.5% BSA and 0.01% Triton X-100, extracted fibers were incubated overnight

at 4�C with mouse anti-CENP-A (1:200, Abcam) or rabbit anti-HJURP (1:50,

Santa Cruz) antibodies diluted in blocking buffer. After three washes with 13

PBS supplemented with 0.05% Tween, slides were incubated for 3 hr at

room temperature with Alexa Fluor 488 goat anti-rabbit IgG (1:300, Invitrogen)

or Alexa Fluor 568 goat anti-mouse IgG (1:300, Invitrogen). DNA was counter-

stained with DAPI (50 ng/ml in 13 PBS). Extracted fibers were observed with

a DeltaVision RT system (Applied Precision) controlling an interline charge-

coupled device camera (Coolsnap; Roper) mounted on an inverted micro-

scope (IX-70; Olympus). Images were captured by using a 1003 objective at

0.1 mm z sections, deconvolved, and projected by using softWoRx. Two

biological replicates and three technical replicates each were performed.

AFM Imaging of Chromatin and DNA

Imaging of CENP-A, bulk chromatin and DNA was performed as described

(Dimitriadis et al., 2010) with the following modifications. Imaging was per-

formed by using standard AFM equipment (Multimode AFM and the Bio-

scope Catalyst, Bruker-Nano, Inc., Santa Barbara, CA) with silicon cantilevers

(OTESPA and TESP-SS with nominal resonances of �300 kHz, stiffness of

�42 N/m, and tip radii of 3–7 nm and FESP with �75 kHz, 2.8 N/m and

7 nm, respectively, Bruker-Nano) in noncontact tapping mode. Usually, 5 ml

stock solution of CENP-A chromatin or 1,0003 diluted solution of bulk chro-

matin fraction was deposited on APS-mica pretreated with magnesium2+.

APS-mica was prepared as previously described (Dimitriadis et al., 2010).

The samples were incubated for 10 min, rinsed gently to remove salts, and

dried in a stream of inert Argon before imaging. Images were acquired at

high resolution and preprocessed on the NanoScope instrument software.

AFM Image Analysis

Automated image analysis was performed as described (Dimitriadis et al.,

2010) by using NIH ImageJ software (NIH) and Nanoscope Software (Veeco/

Bruker AFM). An algorithm was developed to first localize the nucleosomes

under investigation and then perform automated statistical analysis of their

height and volume distributions. To achieve this, images were thresh-holded

to remove probe convolution that causes objects to appear dilated in AFM

imaging. Using particle analysis routines, the base area (at half-height) and

total height of all nucleosomes in each image were automatically measured.

Filters were employed to reject particles that were not circular or elliptical in

shape, thereby ensuring that measurements were made of nucleosomes at-

taching to the mica in the same orientation, and therefore projecting a uniform

shape. For the particles segmented this way, the radii of the equivalent circles

were calculated and their statistical distributions plotted and fitted with

Gaussian functions. The histograms always displayed a peak of �12–14 nm,

slightly larger diameter than the known nucleosomal radius of �11 nm, which
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represents residual dilation from the finite AFM tip size of 2–3 nm. Sub-popu-

lationwithin one standard deviation of the peak of theGaussianwas chosen for

further statistics of heights and volumes. Volumes were computed as the sum

of pixel values within the segmented base of each particle. In addition to arrays

ranging from 5-15 CENP-A nucleosomes, various large protein complexes

(diameter > 25 nm, height > 10 nm) were observed associated with CENP-A

tetrameric nucleosomes. These likely reflect kinetochore proteins, remodeling

complexes or polymerases, and are the subject of ongoing analysis. Three bio-

logical replicates and 2 technical replicates were performed for each experi-

ment. BC from the same preparation was imaged in parallel to get the baseline

octameric range.

Contour Length Measurement of CENP-A Nucleosomal DNA by AFM

Aliquots of CENP-A and control BC nucleosomes were treated with proteinase

K (0.2 mg/ml, Sigma) for 30 min, equilibrated with 1% SDS in 100 mM Tris pH

8.0, phenol:chloroform extracted (Sigma), ethanol precipitated and dissolved

in 13 PBS for imaging by AFM as above (see AFM imaging of chromatin).

Images were collected and exported to Image J (NIH). DNA populations

were thresholded at roughly half-height. The perimeter and area of each

DNA chain were automatically measured by using particle analysis. Mean

width and length were computed in OriginPro (OriginLab Corp., Nothampton,

MA). For each molecule we measure both its projected area and its perimeter.

These two quantities uniquely determine both the width and the length of the

molecule by solving the two equations A = L*w+p*w2, p = 2*L+2*p*w for the

length (L) and the width (w) of the molecule, where A is the projected area

and P the perimeter. The second terms in the right hand sides of the two equa-

tions apply a small correction to the length at the two ends of the DNA chains

for the AFM tip convolution. Particles were filtered to exclude contaminants by

using low circularity criteria to restrict measurements to linear particles.

Cell-Cycle Synchronization of Hep-2 and HeLa Cells

For cell-cycle-dependent analysis in late G1, S phase, G2, and mitosis, cells

were arrested by double-thymidine treatment in late G1, at the initiation of early

S phase. Cells were blocked with a final concentration of 5 mM thymidine for

18 hr. Cells were released and grown in fresh media for 9 hr, followed by

a second cell-cycle block with 5 mM thymidine for 18 hr. Synchronized cells

were released into S phase by washing and cultivation in fresh media. For

FRET analysis cells were harvested and fixed with 4% paraformaldehyde in

PBS immediately before release and for 8 - 10 hr every 2 hr. Most cells were

in late S phase 6 hr after release and were in G2 or mitosis 8 hr after release.

For analysis of HEp-2 cells in G1 transfected cells were synchronized by

a thymidine block followed by a release for six hours and a subsequent

12 hr treatment with the CDK1 inhibitor RO-3306 (Calbiochem) at a final

concentration of 9 mM. RO-3306 reversibly arrests the cells in late G2 at the

initiation of mitosis (Vassilev et al., 2006). Synchronized cells were washed

and then released into mitosis in fresh media, to enter in G1, 1.5 - 2 hr after

release. To identify the cell-cycle stages, cells in parallel experiments were

transfected with EGFP-CENP-A and mCherry-PCNA and analyzed for the

localization pattern of CENP-F and PCNA at each time point. G1 and G2 cells

were identified by immunostaining of CENP-F. This protein is diffusely located

in the nucleus during G2, forms distinct foci at the kinetochores during mitosis

and is not detectable during G1 (Figure S6). Early, mid, and late S phase were

identified via the localization pattern of PCNA (Figure S6). Mitotic phases were

identified by DAPI staining of DNA, which was stimulated with 405 Diode laser

at low intensity and detected via a 420 nm long path filter.

Imaging and Acceptor Bleaching FRETMeasurements and Plasmids

for FRET Study

Please refer to Supplemental Experimental Procedures for FRET analysis.

Large-Scale Purification of Endogenous CENP-A for LC-MS/MS

For each experiment, 10 large flasks of confluent HeLa and HEK cell lines were

synchronized and released at G1/S, mid S, and G2/M phase, by performing

double 5 mM thymidine blocks. Human CENP-A proteins were purified simi-

larly to (Wang et al., 2008), with the following modifications. Cells were lysed

and nuclear slurries prepared with 10% hydroxylapatite (HAP, Acros Organics

Catalog number 37126-1000) in 13 PBS supplemented with 0.35 M NaCl,



0.2 mM EDTA, 0.5 mM PMSF for several hours. The same buffer was used to

gently remove nonhistone proteins away from the HAP-Chromatin matrix, 3

times for 15 min each. The HAP-chromatin matrix was then incubated with 1

3 PBS supplemented with 2 M NaCl to release histones from the DNA-bound

HAP matrix overnight. Under these conditions, histone H3/H4 dimers and

H2A/H2B dimers are released from DNA (Dalal et al., 2005). The 2 M NaCl/

PBS eluted histone preparation was concentrated �10 fold by using Amicon

centrifugation, dialyzed down to 0.35 M NaCl/PBS. This input was tested

was sequentially immunoprecipitated with anti-H3 antibody (Santa Cruz

Catalog number sc-8654) to preclear excess H3, followed by anti-CENP-A

antibody (Santa Cruz Catalog number sc-22787). Eluted CENP-A IP com-

plexes were analyzed on preparative SDS PAGE gels, an aliquot of which

was confirmed by western blot analysis. The remaining was used for gel exci-

sion and LC-MS/MS analysis.

Mass Spectrometry Analysis

The components of histone IPs were processed for preparative SDS-PAGE

(Invitrogen Novex Midi Gel System), and stained with Coomassie Brilliant

Blue (Bio-Rad), bands around 11k and 13k were sliced for histone H4 and

CENPA respectively, and each band was in-gel digested with sequencing

grade modified trypsin (Promega, Madison, WI) (An et al., 2006). The resulting

peptides were analyzed by LC-MS/MS at two different settings.

Liquid Chromatography-Tandem Mass Spectrometry

The first set of samples (HeLa and HEK293 cells) was run at the NIAID proteo-

mics core facility. LC-MS/MS was performed on nano-HPLC system (Proxeon

EASY; ThermoElectron, Bremen, Germany) connected to a hybrid mass spec-

trometer (Velos/Orbitrap; ThermoElectron, Bremen, Germany). Each sample

was injected via an auto-sampler and directly loaded on to packed analytical

column at the flow rate of 1.2ul/min and the sample was subsequently sepa-

rated at the flow rate of 400 nl/min. The mobile phases consisted of water

with 0.1% formic acid (A) and 100% acetonitrile with 0.1% formic acid (B). A

linear gradient from 5 to 65% of solvent B was employed over a period of

60 min to separate peptide mixture. Eluted peptides were introduced into

the mass spectrometer through a nano-electrospray source (ThermoElectron,

Bremen, Germany). The spray voltage was set at 1.7 kV and the heated capil-

lary at 250�C. Orbitrap was operated in the data-dependent mode in which

each cycle consisted of one full-MS survey (m/z, 380–2,000) and subsequently

10th MS/MS scans. The targeted ions count in the mass spectrometer trap

was 500,000 for full-MS scans and 10,000 for MS/MS scans. Peptides were

fragmented in the linear ion trap by using collision-induced dissociation with

helium and the normalized collision energy value set at 35%.

The rest of the samples were analyzed at the LSB Cellular Networks

Proteomics Group, and nano-HPLC system (NanoLC 2D; Eksigent, Dublin,

CA) connected to a hybrid mass spectrometer (LTQ Velos with ETD; Thermo-

Electron, Bremen, Germany). Each sample was injected via an auto-sampler

and loaded onto a C8 cap trap (0.2 2mm, 2 ml bed volumn;Michrom bioresour-

ces, Auburn, CA) and the sample was subsequently separated by in house

packed column with Magic C18 AQ beads (200 A, 5 mm, 50 mm 3 30 cm,

Michrom Bioresources, Auburn, CA) at a flow rate of 200 nl/min. The mobile

phases consisted of water with 0.1% formic acid (A) and 100% acetonitrile

with 0.1% formic acid (B). A linear gradient from 5 to 65% of solvent B was

employed over a period of 60 min to separate peptides. Eluted peptides

were introduced into the mass spectrometer through a nano-electrospray

source (ThermoElectron, Bremen, Germany). The spray voltage was set at

2 kV and the heated capillary at 250�C. LTQ was operated in the data-depen-

dent mode in which each cycle consisted of one full-MS survey and subse-

quently 10th order double play with CID and ETD decision tree. The targeted

ions count was same as described previously. MS measurements were per-

formed with the Orbitrap mass spectrometer at 60,000 resolution with accu-

racy better than 10 ppm. Peptides were fragmented in the linear ion trap by

using CID set at 35% and electron transfer dissociation with reaction time

150 ms by using enabled supplemental activation.

Six different peptides (CENP-A amino acid residues: 17–28, 30–42, 57–63,

100–107, 119–124, and 119–130) of CENP-A were identified in this study

by using trypsin (cleaving C-terminal to lysine, K or arginine, R). Sequence

coverage was 37.14% (52 identified amino acids/140 total amino acids3 100).
Database Search

Protein identification was performed against the human UniProt database and

database including CENPA, histone H4, and ubiquitin by using a software

packages (ProteomeDiscoverer 1.2 equippedwith the Sequest search engine;

Thermo Fisher Scientific, San Jose, CA; and IP2 equipped with the Sequest

and ProLuCID; Integrated Proteomics Application, San Diego, CA). For Pro-

teome Discoverer, both databases were indexed with assumptions for fully

enzymatic tryptic cleavage with two missed cleavages and the combination

of following possible protein modifications: Met oxidation, Ser, Thr, Tyr phos-

phorylation, Lys acetylation, Lys ubiquitination, and Arg and Lys mono-, di-,

and trymethylation.

The search result from Proteome Discoverer was filtered with high peptide

confidence value and false discovery rate targeting 0.01. For IP2, MS spectra

were extracted from raw data by using RawXtractor and the database contain-

ing CENPA, histone4, and ubiquitin was used for the search. Previously

described PTMs were used and allow a maximum of three on each peptide.

The search result from IP2 was filtered with DTASelect 2.0 (Tabb et al.,

2002). The peptides passing the criteria were manually validated.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures,

seven figures, and two tables and can be found with this article online at
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