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If A is the adjacency matrix of a graph G, then 4, is the adjacency matrix of the
graph on the same vertex set in which a pair of vertices is adjacent if and only if
their distance apart is i in G. If G is distance-regular, then A4, is a polynomial of
degree i in 4. It is shown that the converse is also true. If 4, is a polynomial in 4,
not necessarily of degree i, G is said to be distance-polynomial. It is shown that this
is a larger class of graphs and some of its properties are investigated.

1. INTRODUCTION

A graph G (finite, undirected, without loops or multiple edges) is called
distance-transitive if whenever u, v, x, y are vertices of G and the distance
from u to v is the same as that from x to y, then there is an automorphism of
G sending u to x and v to y. Distance-transitivity is a global property of a
graph which induces a local property usually referred to as a type of
regularity. In order to give a precise definition we need the concept of inter-
section number of a graph. Let u, v be a pair of vertices of a graph G and
denote by d(u, v) the distance from u to v in G. That is, d(u, v) is the length
of the shortest path from u towv. The intersection number s;(u,v) is the
number of vertices w, satisfying d(u, w) =i, (v, w) = j with o(u, v) = 1.

DEFINITION. A graph G is called distance-regular if for all pairs of
vertices u, v of G, with 9(u, v) =/, the intersection numbers s;(%, v) depend
only on i, j, and / and not on u, v.

Distance-transitive graphs are distance-regular (see [1, Chap. 20]). The
converse is not true. A counterexample may be found on p. 139 of [1] or in
[2]. In fact it seems clear from available evidence that no regularity (local)
property implies any transitivity (global) property.

In this article we will examine distance-regularity and some variations of
it. The principal device that we will use is a class of matrices which describe
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“distance” in a graph G and a polynomial algebra defined by one of these
matrices.

DEFINITION. Let G be a graph with n vertices, {u;}7_,. The ith distance
matrix A; is an n X n matrix defined by

(Al)rs =1 if 3(u,, us) =i

=0  otherwise.

Clearly, 4, is the identity matrix and 4, =4 is the so-called adjacency
matrix of G. 4, is defined for 0 i< d, d the diameter of G. The relation
between the matrices {4;} and the intersection numbers is given by
(AiAj)rs = sijl(ur’ us)’ where a(ur’ us) =1

The set of all polynomials with complex coefficients in 4 forms an algebra
called the adjacency algebra. It has dimension s, as a vector space, where s is
the number of distinct eigenvalues of the matrix A. (See [1, p. 12].) The key
fact that will be the starting point of our investigation is that when G is
distance-regular, then each A4, is a polynomial of degree i in the matrix 4.
(See [1, pp. 136-137].) In Section 2 we will show, among other things, that
the converse also holds. In particular distance-regularity may be charac-
terized by the fact that 4 acts, by left multipication, as a linear operator on
the vector space spanned by {4;}%_,. A similar result for association
schemes can be found in [3, p. 660].

In Section 3 we relax the condition that A, has degree i in 4 and show that
there exist graphs in which each 4; is a polynomial of degree possibly
greater than 7 in A. We call such a graph distance-polynomial. It remains an
open question whether this property is associated with some sort of tran-
sitivity.

In Section 4 we consider two other classes of graphs: those in which the A4,
commute as matrices and those in which a specialized version of
commutativity holds. This latter class of graphs are called super-regular and
they are related to vertex-transitive graphs.

We will show by examples that all of these classes are distinct.

2. DiSTANCE-REGULAR GRAPHS

In this section we will prove that distance-regularity can be characterized
in several ways in terms of the matrices 4;.

2.1. THEOREM. Let G be a graph of diameter d and A,, the ith distance
matrix of G. Then the following are equivalent:
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(a) G is distance-regular.
(b) A, is a polynomial of degree i in A for i =0,...,d.

(¢} A acts by left multiplication as a linear operator on the vector
space (I, A, A,,..., A,).

Progf. 1. (b)= (c). Since each A4, is a polynomial of degree i in 4 it
follows from the proof of 20.7 in [1] that {4,,4,,..,4,} is a basis for the
adjacency algebra of 4. Thus (c) follows.

2. (c)= (a). For each i =0,..,d, A4, =Y7_,a,A;.

Let v,, v, be a pair of vertices satisfying o(v,,v,)=r<i{—2. Then
(44,),, = s5,,;,(v,, v,) is the number of vertices of G a distance of 1 from v,
and a distance of i from v,. But since d(v,, v,) = r < i — 2, there are no such
vertices and (44,),, = 0. Hence,

d
0=(44)),,= 2 ai{d;) = a;
j=0
since (4,);;=1 and (4,),,=0 for all i+ r, Thus for all r<i—2, a;,,=0.
Now assume that v,, v, are a pair of vertices of G with d(v,,v,) =521+ 2.
By a similar argument, a,, =0 for all s >> i + 2. Hence we have

AA; =, Ao oA+ ae A

It is now routine to conclude from this relationship that G is distance-
regular.

3. (a)= (b). This is just Theorem 20.7 of [1].

3. DISTANCE-POLYNOMIAL GRAPHS

DEFINITION. Let G be a graph with 4, a polynomial in 4 for each i=
0, 1,...,d, with d the diameter of G. Then G is called a distance-polynomial
graph.

Every distance-regular graph is, of course, distance-polynomial. We now
show that these two classes are distinct.

3.1. LEeMMA. If the graph G is regular, connected and of diameter 2,
then G is distance-polynomial.

Proogf. Consider the sum I+A4,+A4,=J. Since G is regular and
connected, J is a polynomial in 4, say J=¢(4). Then 4,=J—-1-A4,=
J—I—-A=q(A)—I—A, a polynomial in4. Thus G is distance-
polynomial. 1
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FIGURE 1

The simplest example (pointed out to me by Paul Terwilliger) of a
distance-polynomial graph which is not distance-regular is the prism G
(Fig. 1). G clearly has diameter 2, is connected and is regular. Thus G is
distance-polynomial. It is straightforward to check that G is not distance-
regular and that 4, is a cubic in 4.

A distance-polynomial graph which is not distance-regular need not have
diameter 2. One can show, for example, that the graph consisting of two p-
cycles, with neighboring vertices joined as in Fig, 2, is distance-polynomial
but not distance-regular whenever p is an odd prime.

4. SUPER-REGULAR GRAPHS

A further weakening of the requirement that 4; is a polynomial in 4 is the
condition that the 4;’s commute with one another. Since each A, is a real
symmetric matrix, this condition implies that each A4, is a polynomial in a
fixed matrix B which is itself a polynomial in the A/’s, but which can be
different from A.

FIGURE 2
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We have not been able to characterize these graphs, but we will show that
a somewhat larger class of graphs can be completely described in terms of a
regularity property.

DEFINITION. Let v be a vertex in the graph G of diameter d. The
generalized degree of v is the d-tuple (k,,..., k,), where k; is the number of
vertices whose distance from v isi. The graph G is called super-regular if
each vertex has the same generalized degree.

4.1. THEOREM. Let G be a connected graph of diameter d. G is super-
regular if and only if (A4,A)),; = (4;4,),s for every pair of adjacent vertices
u,,u,.

Progf. Let G be super-regular and consider the sum J=4,+
A 4. +A4, Then AJ=Y%,A4;A; and clearly k,=(4,J)),=
>4 o (4,4)),, for any pair (r, s). Now suppose that d(u,, u;) = 1. Then, since
(A;A))s =5;1(u,, u;), and s, =0 if [{ — j| > 1 (triangle inequality), we have
ki=S;i_1y1 + Sin + Sigpn at (u,,u;). Since G is super-regular (4,J),,=
(J4;),;- Thus we also have k;=s; pu+Si+Saeinn at (4, u).
Subtracting the last equations we get

0=s5y-1y1 — Si—nir T Sig+ 1 — S+ vt at (u,,u,).

If i=1, 0= (5401 — So1r) + (S121 — S211)- But §19, =50, =1, and s0 s,;, =
S51;- We will now show that s;;,,,, =5, ,n by induction oni. Suppose
Sti-nit = Sii—n1- Then since 0= (5;;_ 11 — Si—1yi1) + i 11 — Sus nin)s We
have ;.11 =S+ 1nn- Thus (4;4,),,=(4,4,),, for all r, s such that u, is
adjacent to u,, and j=i—1, i, i+ 1. But for all other values of j,
(4,;4;),,="0 and the proof is complete in one direction. ~Now suppose,
conversely, that s;;,(u,, u;) =s;;,(u,, u;) for every pair of adjacent vertices

FIGURE 3
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u,, u;. Let k(r)=(4,/),, be the number of vertices of G a distance of i
fromu,. Then as before, k,(r)=s;4_1); + 81 +Sigy1n at (u,,u;). Also
ki(s)= A )r = Sa_nin + San + S i at (4, u).

It foliows from the hypothesis that k,(s) = k,(r). We can now choose a
vertex u, adjacent to u, and different from u, and show that k,(r) =k,(s) =
k;(t). Since G is connected, k; is the same for all vertices. Repeating the
argument for all i = 1,...,d we get that G is super-regular. 1

A graph which is super-regular but does not have commuting A,’s is given
by Fig. 3. It is easy to check that the generalized degree of any vertex is
(3,4, 4). But 5,,,(1,2) =1 while s,,,(1,2) =0 and hence 4,4, # 4,4, even
if we were to restrict attention to entries representing vertices a distance of 2
apart.
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