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I f  A is the adjacency matrix of a graph G, then Ai is the adjacency matrix of the 
graph on the same vertex set in which a pair of vertices is adjacent if and only if 
their distance apart is i in G. If  G is distance-regular, then Ai is a polynomial of 
degree i in A. It is shown that the converse is also true. If  A, is a polynomial in A, 
not necessarily of degree i, G is said to be distance-polynomial. It is shown that this 
is a larger class of graphs and some of its properties are investigated. 

1. INTRODUCTION 

A graph G (finite, undirected, without loops or multiple edges) is called 
distance-transitive if whenever u, u, x, y are vertices of G and the distance 
from u to u is the same as that from x toy, then there is an automorphism of 
G sending u to x and v to y. Distance-transitivity is a global property of a 
graph which induces a local property usually referred to as a type of 
regularity. In order to give a precise definition we need the concept of inter- 
section number of a graph. Let u, v be a pair of vertices of a graph G and 
denote by a(u, u) the distance from u to u in G. That is, a(u, V) is the length 
of the shortest path from u to v. The intersection number sijl(u, Y) is the 
number of vertices w, satisfying a(u, w) = i, a(~, w) = j with a(u, v) = 1. 

DEFINITION. A graph G is called distance-regular if for all pairs of 
vertices u, u of G, with a(u, V) = 1, the intersection numbers s&u, v) depend 
only on i, j, and 1 and not on u, v. 

Distance-transitive graphs are distance-regular (see [ 1, Chap. 201). The 
converse is not true. A counterexample may be found on p. 139 of [I] or in 
[2]. In fact it seems clear from available evidence that no regularity (local) 
property implies any transitivity (global) property. 

In this article we will examine distance-regularity and some variations of 
it. The principal device that we will use is a class of matrices which describe 
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“distance” in a graph G and a polynomial algebra defined by one of these 
matrices. 

DEFINITION. Let G be a graph with n vertices, {u,}& 1. The ith distance 
matrix Ai is an n x n matrix defined by 

c‘h)rs = 1 if a(~,, u,) = i 

=o otherwise. 

Clearly, A, is the identity matrix and A, = A is the so-called adjacency 
matrix of G. Ai is defined for 0 ( i < d, d the diameter of G. The relation 
between the matrices {Ai} and the intersection numbers is given by 
(AiAj),, = Sijl(U,, us), where a(~,., us) = 1. 

The set of all polynomials with complex coefficients in A forms an algebra 
called the adjacency algebra. It has dimension s, as a vector space, where s is 
the number of distinct eigenvalues of the matrix A. (See [ 1, p. 121.) The key 
fact that will be the starting point of our investigation is that when G is 
distance-regular, then each Ai is a polynomial of degree i in the matrixA. 
(See [ 1, pp. 136-1371.) In Section 2 we will show, among other things, that 
the converse also holds. In particular distance-regularity may be charac- 
terized by the fact that A acts, by left multipication, as a linear operator on 
the vector space spanned by {Ai}!=‘=,. A similar result for association 
schemes can be found in [3, p. 6601. 

In Section 3 we relax the condition that A, has degree i in A and show that 
there exist graphs in which each Ai is a polynomial of degree possibly 
greater than i in A. We call such a graph distance-polynomial. It remains an 
open question whether this property is associated with some sort of tran- 
sitivity. 

In Section 4 we consider two other classes of graphs: those in which the Ai 
commute as matrices and those in which a specialized version of 
commutativity holds. This latter class of graphs are called super-regular and 
they are related to vertex-transitive graphs. 

We will show by examples that all of these classes are distinct. 

2. DISTANCE-REGULAR GRAPHS 

In this section we will prove that distance-regularity can be characterized 
in several ways in terms of the matrices Ai. 

2.1. THEOREM. Let G be a graph of diameter d and A i, the ith distance 
matrix of G. Then the following are equivalent: 



158 PAUL M. WEICHSEL 

(a) G is distance-regular. 

(b) Ai is a polynomial of degree i in A for i = O,..., d. 

(c) A acts by left multiplication as a linear operator on the vector 
space (I, A,, A, ,..., Ad). 

Proof. 1. (b) + (c). Since each Ai is a polynomial of degree i in A it 
follows from the proof of 20.7 in [l] that (A,, A,,..., Ad} is a basis for the 
adjacency algebra of A. Thus (c) follows. 

2. (c) + (a). For each i = 0 ,..., d, AA, = Cid,O a,jAj. 

Let v,, v2 be a pair of vertices satisfying a(~,, v2) = r < i - 2. Then 
(AA,),, = slir(v,, v2) is the number of vertices of G a distance of 1 from vr 
and a distance of i from v2. But since a(v , , VJ = r < i - 2, there are no such 
vertices and (AAi),2 = 0. Hence, 

0 = (AAi)lz = ~ ai,(Aj)lz = ai, 
j=O 

since (Ar)12 = 1 and (A,)12 = 0 for all i # r. Thus for all r < i - 2, ai, = 0. 
Now assume that vj, vq are a pair of vertices of G with a(~,, v.,) = s > i + 2. 
By a similar argument, ai, = 0 for all s > i + 2. Hence we have 

It is now routine to conclude from this relationship that G is distance- 
regular. 

3. (a) * (b). This is just Theorem 20.7 of [ 11. fl 

3. DISTANCE-POLYNOMIAL GRAPHS 

DEFINITION. Let G be a graph with Ai a polynomial in A for each i = 
0, l,..., d, with d the diameter of G. Then G is called a distance-polynomial 
graph. 

Every distance-regular graph is, of course, distance-polynomial. We now 
show that these two classes are distinct. 

3.1. LEMMA. Zf the graph G is regular, connected and of diameter 2, 
then G is distance-polynomial. 

Proof Consider the sum Z + A, + A, = J. Since G is regular and 
connected, J is a polynomial in A I say J = q(A). Then A, = J - Z -A, = 
J-Z-A = q(A) -Z-A, a polynomial in A. Thus G is distance- 
polynomial. I 
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The simplest example (pointed out to me by Paul Terwilliger) of a 
distance-polynomial graph which is not distance-regular is the prism G 
(Fig. 1). G clearly has diameter 2, is connected and is regular. Thus G is 
distance-polynomial. It is straightforward to check that G is not distance- 
regular and that A z is a cubic in A. 

A distance-polynomial graph which is not distance-regular need not have 
diameter 2. One can show, for example, that the graph consisting of two p- 
cycles, with neighboring vertices joined as in Fig. 2, is distance-polynomial 
but not distance-regular whenever p is an odd prime. 

4. SUPER-REGULAR GRAPHS 

A further weakening of the requirement that Ai is a polynomial in A is the 
condition that the Als commute with one another. Since each Ai is a real 
symmetric matrix, this condition implies that each Ai is a polynomial in a 
fixed matrix B which is itself a polynomial in the Ais, but which can be 
different from A. 

FIGURE 2 
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We have not been able to characterize these graphs, but we will show that 
a somewhat larger class of graphs can be completely described in terms of a 
regularity property. 

DEFINITION. Let v be a vertex in the graph G of diameter d. The 
generalized degree of v is the d-tuple (k , ,..., kJ, where ki is the number of 
vertices whose distance from v is i. The graph G is called super-regular if 
each vertex has the same generalized degree. 

4.1. THEOREM. Let G be a connected graph of diameter d. G is super- 
regular if and only if (A,A,),, = (A,Ai)rs f or every pair of adjacent vertices 
q, u,. 

Proof: Let G be super-regular and consider the sum J = A, + 
A, + ... +A’,. Then AiJ= Cjd_O AiAj and clearly ki = (AiJ),, = 
Cjd_O (AiAj),.s for any pair (r, s). Now suppose that a(~,, us) = 1. Then, since 
(AiAJ),, = Sijl(U,, us), and sij, = 0 if (i - jl > 1 (triangle inequality), we have 
ki=Si(i-l)l + Siil + Si(i+l)l at (ur, us). Since G is super-regular (A/J),, = 
(JAi>rs* Thus we also have ki =S(i-l)il + siil + s(~+,)~, at (u,.,u~). 
Subtracting the last equations we get 

O = si(i-l)l - s(i- l)il + si(i+ I)1 - s(i+ 1)il at (q, us). 

If i = 1, 0 = (siol -soil) + (s,,, -sz,,). But s,,,, = soli = 1, and so s12, = 
sZ,i. We will now show that siCi+i)i =s~~+,)~~ by induction on i. Suppose 
s(i-l)il =S~(~-I)I. Then since O= (si(i-l)l -S(i-I)il) + (Si(i+l)l -s(i+~)iJ, we 
have s i(t+l)l =s(itl)il* Thus (AiAj),, = (AjA,)rs for all r, s such that U, is 
adjacent to us, and j = i - 1, i, i + 1. But for all other values of j, 
(AiAj),, = 0 and the proof is complete in one direction. Now suppose, 
conversely, that siil(u,, us) = sji,(u,, u,) for every pair of adjacent vertices 

FIGURE 3 
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u u,. Let k,(r) = (A&,, be the number of vertices of G a distance of i 
frzm u,. Then as before, k,(r) = sifi-i), + sii, + sic,+ i)i at (u,, u,). Also 
Us) = WA = S(i-IHI + Siil + s(i+ I)il at (49 4). 

It follows from the hypothesis that k,(s) = ki(r). We can now choose a 
vertex U, adjacent to U, and different from U, and show that ki(r) = k,(s) = 
k,(t). Since G is connected, ki is the same for all vertices. Repeating the 
argument for all i = I,..., d we get that G is super-regular. I 

A graph which is super-regular but does not have commuting Als is given 
by Fig. 3. It is easy to check that the generalized degree of any vertex is 
(3,4,4). But s&l, 2) = 1 while s,,,(l, 2) = 0 and hence A ,A, # A,A, even 
if we were to restrict attention to entries representing vertices a distance of 2 
apart. 
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