CORE

On Distance-Regularity in Graphs

Paul M. Weichsel
Department of Mathematics, University of Illinois, Urbana, Illinois 61801
Communicated by N. L. Biggs
Received June 18, 1981

Abstract

If A is the adjacency matrix of a graph G, then A_{i} is the adjacency matrix of the graph on the same vertex set in which a pair of vertices is adjacent if and only if their distance apart is i in G. If G is distance-regular, then A_{i} is a polynomial of degrec i in A. It is shown that the converse is also true. If A_{i} is a polynomial in A, not necessarily of degree i, G is said to be distance-polynomial. It is shown that this is a larger class of graphs and some of its properties are investigated.

1. Introduction

A graph G (finite, undirected, without loops or multiple edges) is called distance-transitive if whenever u, v, x, y are vertices of G and the distance from u to v is the same as that from x to y, then there is an automorphism of G sending u to x and v to y. Distance-transitivity is a global property of a graph which induces a local property usually referred to as a type of regularity. In order to give a precise definition we need the concept of intersection number of a graph. Let u, v be a pair of vertices of a graph G and denote by $\partial(u, v)$ the distance from u to v in G. That is, $\partial(u, v)$ is the length of the shortest path from u to v. The intersection number $s_{i j l}(u, v)$ is the number of vertices w, satisfying $\partial(u, w)=i, \partial(v, w)=j$ with $\partial(u, v)=l$.

Definition. A graph G is called distance-regular if for all pairs of vertices u, v of G, with $\partial(u, v)=l$, the intersection numbers $s_{j j l}(u, v)$ depend only on i, j, and l and not on u, v.

Distance-transitive graphs are distance-regular (see [1, Chap. 20]). The converse is not true. A counterexample may be found on p. 139 of [1] or in [2]. In fact it seems clear from available evidence that no regularity (local) property implies any transitivity (global) property.

In this article we will examine distance-regularity and some variations of it. The principal device that we will use is a class of matrices which describe
"distance" in a graph G and a polynomial algebra defined by one of these matrices.

Definition. Let G be a graph with n vertices, $\left\{u_{j}\right\}_{j=1}^{n}$. The i th distance matrix A_{i} is an $n \times n$ matrix defined by

$$
\begin{aligned}
\left(A_{i}\right)_{r s} & =1 & & \text { if } \quad \partial\left(u_{r}, u_{s}\right)=i \\
& =0 & & \text { otherwise. }
\end{aligned}
$$

Clearly, A_{0} is the identity matrix and $A_{1}=A$ is the so-called adjacency matrix of $G . A_{i}$ is defined for $0 \leqslant i \leqslant d, d$ the diameter of G. The relation between the matrices $\left\{A_{i}\right\}$ and the intersection numbers is given by $\left(A_{i} A_{j}\right)_{r s}=s_{i j l}\left(u_{r}, u_{s}\right)$, where $\partial\left(u_{r}, u_{s}\right)=l$.

The set of all polynomials with complex coefficients in A forms an algebra called the adjacency algebra. It has dimension s, as a vector space, where s is the number of distinct eigenvalues of the matrix A. (See [1, p. 12].) The key fact that will be the starting point of our investigation is that when G is distance-regular, then each A_{i} is a polynomial of degree i in the matrix A. (See [1, pp. 136-137].) In Section 2 we will show, among other things, that the converse also holds. In particular distance-regularity may be characterized by the fact that A acts, by left multipication, as a linear operator on the vector space spanned by $\left\{A_{i}\right\}_{i=0}^{d}$. A similar result for association schemes can be found in [3, p. 660].

In Section 3 we relax the condition that A_{i} has degree i in A and show that there exist graphs in which each A_{i} is a polynomial of degree possibly greater than i in A. We call such a graph distance-polynomial. It remains an open question whether this property is associated with some sort of transitivity.

In Section 4 we consider two other classes of graphs: those in which the A_{i} commute as matrices and those in which a specialized version of commutativity holds. This latter class of graphs are called super-regular and they are related to vertex-transitive graphs.

We will show by examples that all of these classes are distinct.

2. Distance-Regular Graphs

In this section we will prove that distance-regularity can be characterized in several ways in terms of the matrices A_{i}.

[^0](a) G is distance-regular.
(b) A_{i} is a polynomial of degree i in A for $i=0, \ldots, d$.
(c) A acts by left multiplication as a linear operator on the vector space $\left\langle I, A_{1}, A_{2}, \ldots, A_{d}\right\rangle$.

Proof. 1. (b) \Rightarrow (c). Since each A_{i} is a polynomial of degree i in A it follows from the proof of 20.7 in [1] that $\left\{A_{0}, A_{1}, \ldots, A_{d}\right\}$ is a basis for the adjacency algebra of A. Thus (c) follows.
2. (c) \Rightarrow (a). For each $i=0, \ldots, d, A A_{i}=\sum_{j=0}^{d} a_{i j} A_{j}$.

Let v_{1}, v_{2} be a pair of vertices satisfying $\partial\left(v_{1}, v_{2}\right)=r \leqslant i-2$. Then $\left(A A_{i}\right)_{12}=s_{1 i r}\left(v_{1}, v_{2}\right)$ is the number of vertices of G a distance of 1 from v_{1} and a distance of i from v_{2}. But since $\partial\left(v_{1}, v_{2}\right)=r \leqslant i-2$, there are no such vertices and $\left(A A_{i}\right)_{12}=0$. Hence,

$$
0=\left(A A_{i}\right)_{12}=\sum_{j=0}^{d} \alpha_{i j}\left(A_{j}\right)_{12}=\alpha_{i r}
$$

since $\left(A_{r}\right)_{12}=1$ and $\left(A_{i}\right)_{12}=0$ for all $i \neq r$. Thus for all $r \leqslant i-2, \alpha_{i r}=0$. Now assume that v_{3}, v_{4} are a pair of vertices of G with $\partial\left(v_{3}, v_{4}\right)=s \geqslant i+2$. By a similar argument, $\alpha_{i s}=0$ for all $s \geqslant i+2$. Hence we have

$$
A A_{i}=\alpha_{i(i-1)} A_{i-1}+\alpha_{i i} A_{i}+\alpha_{i(i+1)} A_{i+1}
$$

It is now routine to conclude from this relationship that G is distanceregular.
3. $(a) \Rightarrow(b)$. This is just Theorem 20.7 of $[1]$.

3. Distance-Polynomial Graphs

Definition. Let G be a graph with A_{i} a polynomial in A for each $i=$ $0,1, \ldots, d$, with d the diameter of G. Then G is called a distance-polynomial graph.

Every distance-regular graph is, of course, distance-polynomial. We now show that these two classes are distinct.
3.1. Lemma. If the graph G is regular, connected and of diameter 2, then G is distance-polynomial.

Proof. Consider the sum $I+A_{1}+A_{2}=J$. Since G is regular and connected, J is a polynomial in A_{1} say $J=q(A)$. Then $A_{2}=J-I-A_{1}=$ $J-I-A=q(A)-I-A, \quad$ a polynomial in A. Thus G is distancepolynomial.

Figure 1
The simplest example (pointed out to me by Paul Terwilliger) of a distance-polynomial graph which is not distance-regular is the prism G (Fig. 1). G clearly has diameter 2 , is connected and is regular. Thus G is distance-polynomial. It is straightforward to check that G is not distanceregular and that A_{2} is a cubic in A.

A distance-polynomial graph which is not distance-regular need not have diameter 2. One can show, for example, that the graph consisting of two p cycles, with neighboring vertices joined as in Fig. 2, is distance-polynomial but not distance-regular whenever p is an odd prime.

4. Super-Regular Graphs

A further weakening of the requirement that A_{i} is a polynomial in A is the condition that the A_{i} 's commute with one another. Since each A_{i} is a real symmetric matrix, this condition implies that each A_{i} is a polynomial in a fixed matrix B which is itself a polynomial in the A_{i} 's, but which can be different from A.

Figure 2

We have not been able to characterize these graphs, but we will show that a somewhat larger class of graphs can be completely described in terms of a regularity property.

Definition. Let v be a vertex in the graph G of diameter d. The generalized degree of v is the d-tuple (k_{1}, \ldots, k_{d}), where k_{i} is the number of vertices whose distance from v is i. The graph G is called super-regular if each vertex has the same generalized degree.
4.1. Theorem. Let G be a connected graph of diameter d. G is superregular if and only if $\left(A_{i} A_{j}\right)_{r s}=\left(A_{j} A_{i}\right)_{r s}$ for every pair of adjacent vertices u_{r}, u_{s}.

Proof. Let G be super-regular and consider the sum $J=A_{0}+$ $A_{1}+\cdots+A_{d}^{\prime}$. Then $A_{i} J=\sum_{j=0}^{d} A_{i} A_{j} \quad$ and clearly $\quad k_{i}=\left(A_{i} J\right)_{r s}=$ $\sum_{j=0}^{d}\left(A_{i} A_{j}\right)_{r s}$ for any pair (r, s). Now suppose that $\partial\left(u_{r}, u_{s}\right)=1$. Then, since $\left(A_{i} A_{j}\right)_{r s}=s_{i j 1}\left(u_{r}, u_{s}\right)$, and $s_{i j 1}=0$ if $|i-j|>1$ (triangle inequality), we have $k_{i}=s_{i(i-1) 1}+s_{i i 1}+s_{i(i+1) 1}$ at $\left(u_{r}, u_{s}\right)$. Since G is super-regular $\left(A_{i} J\right)_{r s}=$ $\left(J A_{i}\right)_{r s}$. Thus we also have $k_{i}=s_{(i-1) i 1}+s_{i i 1}+s_{(i+1) i 1}$ at $\left(u_{r}, u_{s}\right)$. Subtracting the last equations we get

$$
0=s_{i(i-1) 1}-s_{(i-1) i 1}+s_{i(i+1) 1}-s_{(i+1) i 1} \quad \text { at }\left(u_{r}, u_{s}\right)
$$

If $i=1,0=\left(s_{101}-s_{011}\right)+\left(s_{121}-s_{211}\right)$. But $s_{101}=s_{011}=1$, and so $s_{121}=$ s_{211}. We will now show that $s_{i(i+1) 1}=s_{(i+1) i 1}$ by induction on i. Suppose $s_{(i-1) i 1}=s_{l(i-1) 1}$. Then since $0=\left(s_{i(i-1) 1}-s_{(i-1) i 1}\right)+\left(s_{i(i+1) 1}-s_{(i+1) i 1}\right)$, we have $s_{i(i+1) 1}=s_{(i+1) i 1}$. Thus $\left(A_{i} A_{j}\right)_{r s}=\left(A_{j} A_{i}\right)_{r s}$ for all r, s such that u_{r} is adjacent to u_{s}, and $j=i-1, i, i+1$. But for all other values of j, $\left(A_{i} A_{j}\right)_{r s}=0$ and the proof is complete in one direction. Now suppose, conversely, that $s_{i j 1}\left(u_{r}, u_{s}\right)=s_{j i 1}\left(u_{r}, u_{s}\right)$ for every pair of adjacent vertices

Figure 3
u_{r}, u_{s}. Let $k_{i}(r)=\left(A_{i} J\right)_{r s}$ be the number of vertices of G a distance of i from u_{r}. Then as before, $k_{l}(r)=s_{i(i-1) 1}+s_{i i 1}+s_{i(i+1) 1}$ at (u_{r}, u_{s}). Also $k_{i}(s)=\left(J A_{i}\right)_{r s}=s_{(i-1) i 1}+s_{i i 1}+s_{(i+1) i 1}$ at $\left(u_{r}, u_{s}\right)$.

It follows from the hypothesis that $k_{i}(s)=k_{i}(r)$. We can now choose a vertex u_{t} adjacent to u_{s} and different from u_{r} and show that $k_{i}(r)=k_{i}(s)=$ $k_{i}(t)$. Since G is connected, k_{i} is the same for all vertices. Repeating the argument for all $i=1, \ldots, d$ we get that G is super-regular.

A graph which is super-regular but does not have commuting A_{i} 's is given by Fig. 3. It is easy to check that the generalized degree of any vertex is $(3,4,4)$. But $s_{122}(1,2)=1$ while $s_{212}(1,2)=0$ and hence $A_{1} A_{2} \neq A_{2} A_{1}$ even if we were to restrict attention to entries representing vertices a distance of 2 apart.

References

1. N. Biggs, "Algebraic Graph Theory," Cambridge Univ. Press, London, 1974.
2. G. M. Adel'son-Vel'skil, B. Ju. Veisfieler, A. A. Teman, and I. A. Faradzev, Example of a graph without a transitive automorphism group, Soviet Math. Dokl. 10, 440-441.
3. F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes," North-Holland, Amsterdam, 1977.

[^0]: 2.1. Theorem. Let G be a graph of diameter d and A_{i}, the ith distance matrix of G. Then the following are equivalent:

