View metadata, citation and similar papers at core.ac.uk brought to you bnyORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com o I
(/f){ll'ﬂ(l ‘(y

scIENcE@DIRECT° MATHEMATICAL
ANALYSIS AND

ACADEMIC
PRESS 3. Math. Anal. Appl. 276 (2002) 40-63 P LICATIONS

www.elsevier.com/locate/jmaa

Hankel convolution operators
on entire functions and distributions

M. Belhadj and J.J. Betancor

Departamento de Analisis Matematico, Universidad de La Laguna, Islas Canarias,
La Laguna, Tenerife 38271, Spain

Received 16 October 2000
Submitted by B.C. Berndt

Abstract

In this paper we study the Hankel convolution operators on the space of even and entire
functions and on Schwartz distribution spaces. We characterize the Hankel convolution
operators as those ones that commute with Hankel translations and with a Bessel operator.
Also we prove that the Hankel convolution operators are hypercyclic and chaotic on the
spaces under consideration.
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1. Introduction

The Hankel integral transformation appears taking different forms in the
literature (see, forinstance, [23,27,35]). Here we define the Hankel transformation
h,, through [23]

7 (@) (x) = / (60) (e (1)y#FLdy,  x € (0, 00),
0
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where by J,, we represent the Bessel function of the first kind and onder
Throughout this paper we will always assume that the ordés greater than
—1/2. If n € N the Hankel transform,_»),»> of order(n — 2)/2 appears when
it calculates the Euclidean Fourier transform of functions define®dhaving
radial symmetry.

The convolution operation by the Hanke|-transformation was investigated
by Hirschman [24], Haimo [22] and Cholewinski [13].

To simplify we denote byL1 , the spacel’((0, o0), x?**1dx), wheredx
represents the Lebesgue measurédno), that is, a measurable functighis in
Ly, if, and only if, [o° | f(x)[x%1dx < cc.

If f, g € L1, the Hankel convolutiorf #, g of f andg of ordery is defined
by
y2u+l

— dy, a.e. 0, ,
N TE S R 1€ (000

(f #.8)(x) Z/f(y)(ﬂxg)(y)
0

where the Hankel translation operatar., x € (0, 00), is given through

e ¢]

(utxg)(y)zfg(z)DM(x,y,z)
0

Z2;L+1

——dz, a.e. 0, .
N TE S y € (0.00)

Also ,10g = g. Here a.e. is understood to be with respect to the Lebesgue measure
and the kerneD,, is defined by

DM(x,y,Z)Z(2"1"(/0L+1))2/()Cf)f”JM()Cf)(yt)f“lu(yt)(zt)fM
0

x Tzt L de,  x,y,z€(0,00).

The Hankel transformation satisfies the following interchange formula with
respect to #-convolution [24, Theorem 2.d]

hu(f#u g):hu(f)hu(g)v fngLl,M-

In the sequel, since any confusion is unliked, we write#x € (0, o), andD
instead of #, ,7x, x € (0, 00), andD,,, respectively.

Zemanian [33—-35] studied the Hankel transformation on distribution spaces.
He considered, for the Hankel transformation, the following form

Hy () (x) = / Y20, (e () dy,  x € (0, 00).
0

It is clear thath,, and H,, are closely connected. Then, all the results obtained by
Zemanian forH,, can be transmitted th,, .
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Inspired by Zemanian’s investigations, Altenburg [1] developed a distribu-
tional theory for Hankel's:,, transformation.

In [1] it was defined the spacH consists of all those complex and smooth
functionsg on (0, co) such that, for every:, n € N, the quantity

1 n
(—D> ¢(x)
X

is finite. H is equipped with the topology generated by the fanjty ,}m nen
of seminorms. Thug{ is a Fréchet space arig, is an automorphism of{ [1,
Satz 5]. The Hankel transformation is defined ®h the dual space df{, by
transposition.

Leta > 0. According to [1], the spacB® consists of all the functiong € H
such thatp (x) = 0, x > a. B? is a complete subspace &f. Moreover3¢ is
continuously contained if8?, provided that O< a < b < co. The union space
B =J,-oB“ is equipped with the inductive topology. The Hankel transform
h, (B of B4, a > 0, can be characterized by using [34, Theorem 1].

According to [18, Corollary 4.8] the spag@¢ coincides with the spac8even
of all the even functions in the Schwartz spageMoreover, for everys > 0,
the space3* agrees with the spac®, considered by Trimeche [31] and that is
constituted by all the functiong € Seyensuch thaip (x) =0, |x| < a. Then, the
spaceD, = | J,. o Da [31] coincides with the spads.

As in [31], £, denotes the space of all those complex valued, smooth and even
functions defined omR. &, is endowed with the usual topology and it coincides
with the spaca*“*l/zé’M where&,, is the space introduced in [5] as it was defined
as follows. A complex and smooth functighdefined on(0, co) is in &, if and
only if, for everyk € N, there exists the following limit

im (14 k
an(;+(x dx) A

The convolution for the Hanke¥,, transformation can be defined by making a
straightforward modification in the convolution # defined by Hirschman [24]. The
study of the distributional Hankel convolution was started by de Sousa-Pinto [28]
who considered only the ordar= 0. In a series of papers Betancor and Marrero
[5—7,25] have investigated the Hankel convolution on the Zemanian’s distribution
spaces. More recently, Betancor and Rodriguez-Mesa [9] have defined the Hankel
convolution of distributions with exponential growth.

In this paper we study Hankel convolution operators on the Schwartz
distribution spaces and on the spadg(C) of even and entire functions. It is
organized as follows. In Section 2 we define the Hankel transformation on the
dual spaceH,(C)’ of H,.(C). The Hankel convolution operators 6t.(C), &,
and their duals are studied in Section 3. We characterize the linear and continuous
mappings fromH,(C) into itself that commute with the Hankel translation

y)n,11(¢): sup (1+x2)m

x€(0,00)
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for eachz € C, as the Hankel convolution operators defined by the functionals in
H.(C)'. The corresponding result on the spdzewas obtained in Section 4.
Suppose now thaX is a topological linear space affdis a continuous linear
operator fromX into itself. An elementc € X is called hypercyclic fo" when
the sef{7"x: n € N} is dense inX. The importance of hypercyclic vectors derives
from the study of closed invariant subsets. The paper of Grosse-Erdman [21] is
a excellent survey of the state of art concerning hypercyclic operators, that is,
operators having hypercyclic vectors. According to Bonet [11] (see also Devaney
[16] and Banks et al. [2]), we say thd&tis a chaotic operator if" satisfies the
following two conditions:

(i) T istopologically transitive, that is, for every pair of open gétandV of X
there exists € N for whichT"(U) NV # .

(i) The set of periodic vectors df is dense inX. As usual, we say that a vector
x € X is periodic forT when there exists € N such thatl”x = x.

Note that each hypercyclic operator is topologically transitive.

Godefroy and Shapiro [20] extended the celebrated classical results of Birkhoff
[10] and MacLane [26] proving that every partial differential operator that is not a
scalar multiple of the identity operator is hypercyclic and chaotiaC8n(R").
Recently, Bonet [11] established that the usual convolution operators that are
not scalar multiples of the Dirag&-functional are hypercyclic and chaotic on the
Beurling ultradifferentiable functions.

In Sections 3 and 4 we establish, inspired by the ideas of Bonet [11], that the
Hankel convolution operators defined by functionalstjnare hypercyclic and
chaotic oné, and D, when onD,, the strong topology is considered. Recently,
Betancor and Bonilla [4] investigated the hypercyclicity of Hankel and Fourier
convolution operators on certain Banach spaces.

Throughout this paper we always denote @Gya positive constant that can
change from a line to the other one. We need to use some properties of the Bessel
functions that can be encountered in the extensive monograph of Watson [32].

2. The Hankel transfor mation on the space H.(C)’ the dual of H,(C)

By H.(C) we denote the space of the even and entire functions. We equip
H.(C), as usual, with the topology of the uniform convergence on the compact
subsets oC. If we define, for every: € N, the normp, by

pn(f)= sup |[f(@)] feH(C),

|z]<n+1

the system{ p,},en generates the topology {.(C). ThusH,.(C) is a Fréchet
space [29, p. 231].
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Itis clear thatH, (C) is continuously contained in the spa&g that is,H. (C)
is a subspace df, and the topology of{.(C) is finer than the one induced in
H.(C) by &,.

The dual space df{,.(C) is represented b¥{.(C)'. It is clear that, for every
z € C, the functionf;(t) = 2*I" (u + D) (zt) " Ju(zt), t € C, is in H.(C). We
define the Hankel transfori, (T') of T € H.(C)’ by

hu(T)(z) = 2T (w4 D(T (@), (zt) " Ju(z1)), z€C.
Note that, since for everye C, the series

- (—DF
DRI (zt) = )%, teC,
(&) (er) ];22"+Mk!1“(u+k+1)( T te
converges irt,(C), we can write that, for every € H,.(C)/,

(—Dk
22K\ M (u+k+1)

o
hu(D@=Tp+1)Y 2T @),1%*), zeC.

k=0
Henceh, (T) € H.(C) provided thatl’ € H.(C)'.

In [1] we defined the Hankel transformation on the spécéhat is contained
in H.(C)'". According to [5, Proposition 4.6] the definition given for the Hankel
transformation ort{,(C)" extends the definition of the Hankel transformation
oné&,.

We now characterize the functions iH.(C) that belong to the image
h, (He(C)) of H.(C)' by h,. Our next result, that is a Hankel version of the
one presented in [30, pp. 474-475] for the Fourier transformation, shows that
h,(H.(C)') is actually independent f.

Proposition 2.1. Let f be a function i, (C). Then the following assertions are
equivalent.

(i) There existg” € H.(C)’ such thatf = h,(T).
(i) The functionf is of exponential type, that is, there exist B > 0 for which
|f(z)| < BeAll, z eC.

Proof. Suppose firstly that = 1, (T), for someT € H.(C)". SinceT € H.(C)',
there existC > 0 andr € N such that

(T, 8)| <C suplg(z)], g€ H(C).
lzl<r
Hence, by using the Hahn—Banach theorem, duality arguments and by arguing as
in [29, p. 231] (see also [6]), we can find a complex meaguhaving bounded
support such that

(T.g) = / ¢ dr(), g eHe(C).
C
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In particular, it has

hy(TY(@)=2T(n+1) /(zt)‘“]u(zt) drt), zeC.
c

According to [19, (5.3.b)], we can write
|h (T)(2)| < Cel, zeC,

wherea > 0 is such that the support afis contained in the dis® (0, a) centered
in the origin and of radius.

Henceh,(T) is an even and entire function of exponential type.

Assume nowf is a function inH,(C) of exponential type, that is, for certain
A,B>0,|f(z)] <Bell, zeC.

We put

Z2k

o0
- . zeC.
1@ kZ::O“" T (e k+1) ©©

Note that thuszy, = (Aﬁf)(O), for everyk € N, whereA,, denotes the Bessel

operator; 2#~1pz2rtip,
According to the Cauchy integral formula, it follows that

k| <Ce?RR=2%  keNandR > 0.
22K\ M (u+k + 1)

Hence, Stirling’s formula implies that, for evekye N andR > O,
lax| < C2% (u + k)R e P 2 (u + k) kKb e * N 2rk AR R,
Then, by taking, for every e N\ {0}, R = %, it follows
k k
|ax| < C(%) (n+ ) 2Vk A% < oM, (2.1)
for someM > 0.

Suppose nowy is a closed simple path having the origin in its interior. For
everym € N, we have that

1
— | zt)y "I, z)t 2 L ar
o7 /(z ) HJu(zt)
Y

2mi e 2RI (W + K+ 1)

- Y
_ (=1ymz2m
S 22mtumM(w+m+1)
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Hence, since by (2.1) the seri®s>~_,a,(—1)"z~2"~1 converges for every
z € Cwith |z| > M, if y represents the circle with center in 0 and radits then

f@)= /}n)ﬂdﬁ&o2ﬂ§:( D"amt=?"Ydr, zeC. (2.2)

m=0

We now define the functiondl onH,.(C) by

=D~ 2l
(T.8)=—— /gUZF( gy dt, geH,(C).

ThusT € H.(C)'. Indeed, for everyg € H,.(C), from (2.1) it follows that
[(T.g)] < g € H,(C).

lz|<2M

Moreover (2.2) says thét, (T) = f. O

Remark 1. According to Proposition 2.1 the Hankel transformation of an element
of H.(C)’ is always actually the Hankel transform of a complex measur€ on
having compact support. The Hankel transforms of measurgg, on) has been
studied, for instance, in [15].

Remark 2. Proposition 2.1 can be seen as an extension of [5, Theorem 4.9] where
Paley—Wiener type theorem for Hankel transforms of the elements ofere
established.

We now establish a uniqueness theorem for Hankel transforrig ¢8)’. Our
next result will be also useful in the sequel.

Proposition 2.2. If V is a subset o€ having adherence points, then the linear
space
My =spar{(.2) " Ju(2): z€V}
generated by the functiorgs.) ™" J,(z.), z € V, is dense irf. (C).
In particular, if T € H.(C)" andh,(T) = 0thenT =0.

Proof. Suppose thaf" € H.(C) andT = 0 on My. There exists a complex
measure. having compact support [29, p. 231] such that

(T, f) = / FOArD.  feH(C).

The functionF = 1, (T) is even and entire. Moreover, singe=0 on My,
F=0o0onV.HenceF =0o0nC.



M. Belhadj, J.J. Betancor / J. Math. Anal. Appl. 276 (2002) 40-63 47

Differentiating under the integral sign we obtain
AkFay=/(4§%nyﬂJ(nyna) keNandzeC
123 . 23 ’ s
C
where A, represents the Bessel operator*~1Dz?*+1D. Hence, for every
k€N,
k k, 2k
A”F(O) =2 (u + l)/(—l) = dA(t)
C

= (=Dk2" P (u+ (T @), 1*)=0.

Then(T, f) =0, foreveryf € H.(C).
Hahn—-Banach theorem allows to conclude the desired result.

3. Hankel trandation and Hankel convolution on the spaces H,(C) and &,
and their duals

We start this section by studying the Hankel translation operator on the space
H.(C).
In[14, p. 7] it was established that, for everg N,

’

O ) Frn+p+DHIr(p+1) 201—k) . 2k
Te(t )(y)—]§)<k>p(n_k+y,+1)1“(k+u+l)x Y

x,y € [0, 00). (3.1)

Recently, in [4] a new proof of (3.1) has been presented.
Let f € H.(C) and assume thaf(z) = ) ;2 arz?*, z € C, whereg; € C,
k € N. For everyx, y € [0, co), we can write

x+
J 2u+1

_ - 2n 2
() = / DOC,Y,Z)(;)“"Z )2u1"(u+1) dz
lx—y| "=

x+y
ZZ,qul

o0
= D(x,y, 22— d
Zan/ (3.9 G 4
n=0 oy

Zia i(") Al Al x2n—k) 2%
o \W T—k+p+ DIk +p+1) '
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We now define the Hankel translatef of f € H,.(C) by
o n
1) = n =,
(= /)() n;“ ];(1) Fn—k+p+ DIk +u+1)
z,t€C. 3.2
Note that, for every,r € C,

Z|a"|2()F(n—k+u+1)F(k+u+1)|l d

2/4+1

2]+
— 2n
= / D(lzl, ltl, x (Zmnlx )m X

n=0
[lz|—1e]]

Hence the series defining f converges uniformly on each compact subset of
We can interchange the order of summation to obtain that

o]

(Tzf)(f)_z Fu+d ZkZ( ) 201-k),, Fn+p+1)

k4 p+1) "Tn—k+pn+1)’
z,t €C.
Thus we prove that, f is in H.(C), for everyz € C.

Proposition 3.1. (i) For every z € C, the Hankel translationr, defines a
continuous linear mapping frof, (C) into itself.
(i) Let f € H.(C). Then thgnonlinea) mappingF s defined by

Fy:C— H.(C)
72— 1. f,

is continuous fronC into H,.(C).

Proof. (i) Let z € C. For everyf € H.(C), t, f is also inH,.(C). Suppose now
that{f,},en is a sequence it (C) such thatf, — f, asv — oo, in H.(C) and
7, fy — g, asv — 00, iIn H,(C).

SinceH, (C) is continuously contained ifi,, f, — f,asv — oo, in&,. Then,
by [31, Proposition 8.3, f, — t, f, asv — oo, in &. Hence, since convergence
in & and convergence ik, (C) imply pointwise convergence, f = g.

Closed graph theorem allows to conclude thalefines a continuous mapping
from H,.(C) into itself.

(i) Let zg € C. Assume thafz, },eny (o) IS @ sequence i@ such that, — zo,
asv — oco. We have to see that, f — t,,f, asv — oo, uniformly in each
compact subset df. Leta > 0. We choosé > 0 such thatz,| < b, v € N. By
[24, (2), 2] we can write
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|72 () (1) = T2 (") O] < 721 (v2") (1#1) + 71201 (v*") (I1])

c

2n y2,u+1
2/4+1
/D (Izol, I71, ¥)y zuF(MJrl) 2™

, veN\{0}and|?| <a,

wherec =a + b.
Hence, iff(z) = Z;‘fzoanzz’l, z € C, then for every > 0, there existag € N
such that

Z an(fzu( )(t) - Tzo 2n (t) <2 Z |an|c <é,
n=ng n=ng

forv e N\ {0} and|t| < a.
Moreover, it is clear that

no—1

z:%au ) ()

no—1
_iz 22() Fn+p+Dr(uw+1) 200
I'n—k+pu+DIrk+p+1""

no—1
— Z aanO (t) asv — oo,

uniformly in |t| <a.
Thus we can conclude that, f — 1, f, asv — oo, uniformly in the disc
D(0, b) with center in the origin and radius and the proof is finished. O

Proposition 3.1, (i), allows to define the Hankel convolutibr# f of T €
H.(C) and f € H.(C) as follows
(T#f)(z):(TaTZf>v ZEC.
Note that Proposition 3.1, (ii), implies thAat# f is a continuous function o@, for
everyT € H.(C) and f € H.(C). Moreover, as we will prove in the following,
T # f isin H,(C), for eachT € H.(C)' and f € H.(C).
Proposition 3.2. Let T € H.(C)'. Then the mapping defined by

Fr(f)=T#f., [feH.(C),
is a continuous linear mapping frofi, (C) into itself.
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Proof. Let f € H.(C) and z € C. Assume thatf(s) = Z;‘;Oantz", t € C.
According to (3.2) and by taking into account that the series converges uniformly
in every compact subset @f, we can write

(T#f)(@) =T, . f)
=Y an(T ). 7. (y*") ()

n=0
_ia i(n) Fn+upu+DIr(u+1)
e \k) T~k +p+ DI k+p+1)

x 22070(T (1), %), zeC.

HenceT # f is an entire function.

To see that the mapping; is continuous we use the closed graph theorem.
Assume thaf{ f,},en iS @ sequence ift{.(C) such thatf, — f, asv — oo,
in H.(C), andT # f, — g, asv — oo, in H.(C). By Proposition 3.1, (i), for
everyz € C, 7, f, — 1, f, asv — o0, in H,.(C). Hence, sincel € H,.(C),
(T#£,)(@) — (T#f)(z),asv — oo, foreveryz € C. Theng = T # f. The closed
graph theorem allows now to conclude tlt is a continuous mapping.o

We define the Hankel convoluticd¥ T of S andT < H,.(C)’ as the functional
onH,.(C) given through

(SHT, fy=(S,T#f), feH(C).

Note that, according to Proposition 32#T < H,.(C)’, for eachS, T € H.(C)'.
By proceeding as in [17, Proposition 6] we can prove that the mapping defined by
(S, T) — S#T is bilinear and continuous fror.(C)" x H.(C)’ into H.(C)’,
whenH,(C)’ has the strong topology.

We now establish the interchange formula involving distributional Hankel
transformation and convolution.

Proposition 3.3.If S, T € H,.(C)' then
hy(SHT) =hy, ($h,(T).

Proof. By [24, (1), Section 2], we can write

hy (S#T)(2)
=2'T (u+ D((S#T) (1), (z1) " Tu(2D))
=2 (n+ D(S®. (T (), 7 ((2) T T (2)) (W)
=(SO). (T, 2T (u+ D) T (22" T (1 + D (zy) " Ju(zy)))
=h,(9(@h(T)(z), zeC. O
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The following algebraic properties for the Hankel convolutiorf¢n(C)’ can
be proved by using Propositions 2.2 and 3.3.

Proposition 3.4. LetT, R, S € H.(C)'. Then

() THR=R#T.
(i) THR#S)=(T#R)#S.
(iiiy T#6=T, where, as usual denotes the Dirac functional.

We now characterize the Hankel convolution operatof$i(C) as those linear
and continuous mappings frof,(C) into itself which commute with Hankel
translations and Bessel operators. Our result is inspired in [20, Proposition 5.2]
concerning to the usual convolution operators on entire functions. Similar
properties for Hankel convolution operators on Zemanian spaces can be found
in [3,7].

Proposition 3.5. Assume thaL is a continuous linear mapping frof, (C) into
itself. The following assertions are equivalent.

() L commutes with,, thatis,Lt, =1,L, on’H.(C), for everyz € C.
(i) L commutes with the Bessel operatdy, = ;~2*~1Dz?**1D, that is,
LA, =A,L onH.(C).
(i) There exists a complex measuren C having compact support for which

(L)) = / (@)D dMD), e Ho(C).
C

(Note that the property says that there exi#ts H,(C)’ such thatLf =
T#f, f€HA(C).)

(iv) There exists an entire functich of exponential type such that= @ (A,)
on’H.(C), thatis, if@(z) = > o yanz", z € C, then

Lf =) aAlf, feH(C),

n=0

where the series convergestf, (C).

Proof. (i) = (ii). Let f be inH,.(C). Suppose thaf (¢) = ij"zoantzn, teC.
If A, represents the Bessel operatof*“~1Dr2“+1D, we can write

o0
Auf() =) and(n+ wn®"P, zeC.
n=0
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We are going to prove that
L f=f
I < =A,f, 3.3
am Cuz? wf (3.3)

wherec,, = 1/4(u + 1) and the convergence is understooddp(C).
A straightforward manipulation, by splitting the interior sum, allows us to write

()@ — f @)

cuz?

n—1

:4(M+1)ian2(n> F'n+pu+DHI'(n+1) 2(1—k)

2k
Z
72 Fn—k+pu+Drk+up+1)

t

n=1 k=0

B > Fn+p+DI(+1) 5, g
_«“+D;%%” rn+twlrnt2
4(u+1) IFn+u+HI'(n+1)

z:”z:<>rm—k+u+brw+u+n

n=2
x Z2(n k)tZk

00 n—2
I''h+upu+HI'(n+1)

=AufO)+4p+DY any (")
S Trn—k+p+Ir'k+up+1)

x Z2(n—k—2) l2k ,

for eachr e C andz € C\ {0}.
Hence to see (3.3) we have to show that

n—2
2 n I'n+pu+DHI(nw+1) 2An—k—2),2%
Ilm Z ng zan Z <k) 72 1% =0,

I'h—k+pu+Drk+upu+l)"
(3.4)

uniformly in every compact subset Gf.
Leta > 0. As it was mentioned above the series

F'n+pu+DHI'(n+1) 201—k) 1,12k
EZMMZ:(>pm_k+M+Dr@+M+D|| 4

converges uniformly in¢| < a, for everyz € C. Moreover, it has
I'n+u+LHI'(w+1) o
>3 (1) 2
Fn—k+p+Hrk+up+1)

B S IR ETES TS N
F(n—k+p+DIk+p+1)

lt| <aand|z| <1
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Hence (3.4) holds uniformly in¢| < a. Thus (3.3) is proved when the
convergence is understood. (C).
Then we can infer that, if (i) holds

. Lf _sz — lim L< T f - f) <|m . f _2f>
cuz z—0 cuz z—0 Cul
=L(ALf).
Hence (i) implies (ii).
(i) = (i). Assume thatf € H.(C) and it is given by f (1) = Y °° ja,t?",
teC.
Let z € C. We can write

Aulf =l

e¢]

_ I'p+1) Zk £2(n=k) 'h+up+1)
(@)1= ZF(u+k+1) Z() Tn—k+p+1)
2k
:r(u+1)2 < (a8 )@), zieC. (35)

= 22 (uw+ k + Dk!

The last series is uniformly convergent in every compact sub<et of
Then, from (ii) it follows that

2 L(aky)
T (utk+ Dk

L(z.f)= rw+b§j

ZZk

« 2211+ k + DK!

—F(M+1)Z ARL(S)

=1 (Lf).

Hence,L commutes with Hankel translations.
(i) = (iii). Assume that (i) holds. We define the functioffalon H,.(C) as
follows

(T, f)=L(NHO0), [feHA(C).

It is clear thatT is in H,.(C)’. Hence, there exists a complex measuren C
having compact support [29, p. 231] such that

(ﬂﬁ=/f®ﬁm,f€m@) (3.6)
C
Then by using (3.6) it follows that

(Lf)(z) = 1(Lf)(0) = L(z; f)(0)
:/(tzf)(t) dr(t), zeCandf e H.(C).
C
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(iii) = (iv). Assume that

(L)) = / (. /) di(t). zeCandf e Ho(C).
C

for some complex measukeon C having bounded support.
Let f € H.(C). According to (3.5), sincér, f)(t) = (t; f)(z), z,t € C, it has

> r 1
(Lf)() = / S TWED a4k oy an

22 (1 + k 4+ 1)k!

Y I'(u+1) .
_;ZZkF(MvaJrl)k!(Auf)(Z)

x /rz"dm), zeCandf € Ho(C). (3.7)
C

Here we have taken into account that the series is, for eyer{C, uniformly
convergentin the support af

We denote, for every € N, Ay = fc 12k d).(r). We chooseM > 0 such that
|t| < M, for everyr in the support oh.. Then, it follows

|xk|</|t|2"d|x|<r><M2"|x|<C>, keN, (3.8)
C

where|A| represents the total variation measure. of
The function® is defined by

o I'(u+ D
d(z) = k C.
2 kZ_OZZkF(M-l-k-l-l)k!z ‘€

From (3.8) it follows that

e¢]

|zM? [

|)Lk| k
<C
];22"1“(“+k+1)k!|z| kZ:()ZZkF(u+k+1)k!

o0 2k
lzM <] M?|z|
gCEO 0 =Ce , zeC.
k=

Hence® is an entire function of exponential type.
Moreover, (3.7) can be rewritten

(Lf)@) = (@A) f)(@), zeCandfeH.(C).

Note also that the series in (3.7) converges uniformly in every compact subset
of C.
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(iv) = (i). Suppose now that, for everye H,.(C),

(L@ =) a(4yf)@), zeC,

k=0

for a certaing, € C, k € N, where the series convergestify (C).
Hence, if f € H.(C), sincet; A, f = A, f, z € C, according to Proposi-
tion 3.1, (i), itis concluded that

T (L)) =) art (AN f) (1) = Y ar Ay (z. ))(1)
k=0

k=0
=L(t, f)®), t,zeC. O

Remark 3. Note that (3.5) can be rewritten as follows
. f=®,(An)f. feH.(C)andzeC,

where®, represents, for eache C, the function defined by
L2 )

t", teC.
22K (u+ k + Dk! €

() =T(u+1))
k=0

Remark 4. The condition (iv) in Proposition 3.5 can be replaced by the following
finer property:

(iv') There exists an entire functich such thatL = @(4,,) on H.(C) and that
there existA, B > 0 for which

|®(2)| < AL.(BY/Iz]). zeC.

Herel, (z) = z7*1,(z), z € C, wherel, denotes the modified Bessel function of
the first kind and ordeg [32, p. 77].

In the following we obtain a Hankel version of [20, Theorem 5]. We obtain a
new class of hypercyclic operatorsty (C).

Proposition 3.6. Assume thaL is a continuous linear mapping froft, (C) into
itself which commutes with the Hankel translationfor everyz € C. ThenL has
an invariant and hypercyclic manifold that is denseHp(C) and L is a chaotic
operator onH,(C), provided thatL is not a multiple of the identity operator.
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Proof. According to Proposition 3.5 there exists an entire functidnof
exponential type such thdt = ®(A)), that is, if @(z) = Y, ganz", z € C,
whereaq, € C, n € N, then

Lf =) anALf. feH.(C),

n=0
where the series convergestify (C).
For everyx € C, we define the functiori, by
Ju(@) = (za) " J, (za), zeC.

We have thatA, j, (z) = —a?jy(2), o, z € C. Hence, for every € C,
o0
Lju = Zan (_O‘Z)nja =0 (_az)ja- (3.9)
n=0

To simplify we define¥ (z) = ®(—z?), z € C.
From Proposition 2.2 it now follows that the range lofis dense inH,(C),
provided thatL £ 0. Indeed, suppose thét is not zero identically. Then the set

V={zeC: ¥()#0}

is an open and non-empty subsetfHence, according to Proposition 2.2, the
linear spaceMy generated byj,}acy isdense i, (C). SinceMy is contained
in the range of_, it follows that the range of. is a dense subset &f,(C).

Assume thatL is not a multiple of the identity. The is not a constant
function. The well known Liouville theorem implies that the sé&s and W»
defined by

Wi={zeC: |¥(2)| <1}

and
Wo={zeC: |¥(2)] > 1},

are not-empty open sets @ According to (3.9), it is clear that, for evenye N,
L"jo =¥ (@)"ju, a€C. (3.10)

In particular, if « € W1 then, from (3.10) we infer that lip, . L" jo = 0,
uniformly in every compact subset &. Hence lim_. L" f = 0, in H.(C),
for every f € My, .
We now define the mappingon {ju}ocw, by
Sjou = mjas a € Wa,
and S is extended to the linear spadelw, generates by j,}ocw, as a linear
mapping. ThusS mapsMy, into itself and

. 1 .\ .
(LS)ju = L(W}a) = ju, a€ W
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Hence,(LS)f = f, f € Mw,. Moreover, by proceeding as above, we obtain that
lim, o S"f =0, inH,(C), for eachf € My,.

According to [20, Corollary 1.5], it follows that has hypercyclic vectors. We
denote byg a hypercyclic vector of..

We are going to see that there exists an invariant and hypercyclic manifold with
respect ta that is dense it (C).

Let p be an holomorphic polynomial not identically zero. The@L) is a
continuous linear mapping frofi,(C) into itself and, as it is not hard to show,
p(L) = p(®)(4,). Hence p(L) commutes with Hankel translatian, for every
z € C. Moreover, sinced is not constant irC, the range ofp(L) is dense in
H.(C). We now define the manifold1 through

M={p(L)g: pis aholomorphic polynomil

Itis clear thatM is invariant forL.
On the other hand, for everye N and every holomorphic polynomigl, it
has

L"p(L)g =p(L)L"g.

Hence, ifp is a holomorphic polynomial, since the $ét'¢: n € N} and the range
of p(L) are dense ifH,.(C), the sef{ L" p(L)g: n € N} is also dense ift,(C).

Thus, we prove thatM is a dense manifold of{,(C) that is constituted by
hypercyclic vectors.

We now prove thaL is chaotic inH(C).

Since ¥ is entire and nonconstant, there existg& N such that¥ (G,) N
aD(0, 1) contains a non-empty and open subset of the boun@iawy, 1) of the
unit disc D(0, 1). Here, for everyn € N, G,, represents the closure of the disc
D(0, m) with center in the origin and radius. The setE defined by

E={z€G, ¥(z) =1, for somel € N}

is infinity. HenceE has an adherence point@,. Then, by Proposition 2.2, we
can prove that the linear space

Mg =spaniij,: o € E}

generates byj,}ock is dense i, (C). Here, as abovegy (z) = (a¢z) ™ J, (az),
zeCanda € E.
Assume thatx € E. There exist$ € N such thaw («)! = 1. Hence

L'(jo) =¥ (@) jou = jo-
Thus, we see thaj, is a periodic point ofL. Then Mg is constituted by
periodic points ofL andL is chaotic orH,.(C). O

Remark 5. A continuous linear operatat on a topological linear spack is
called cyclic if there exists a vectore X for which the span of the orbft.” x},,en
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is dense inX. In this casex is called a cyclic vector of.. It is obvious that ifL

is a hypercyclic operator oX then L is also a cyclic operator oX. Hence,
according to Proposition 3.6 If is a continuous linear mapping froki, (C) into
itself that commutes with Hankel translationsz € C, thenL is a cyclic operator
onH,.(C) provided thatl is not a multiple of the identity operator. Moreover, by
proceeding as in [12, p. 86], where the Bessel functifnsx € C, replace the
exponential functions, we can see that there exists a dense linear mawifofd
H.(C) such that each nonzero elementidfis cyclic for every continuous linear
mapping fromH, (C) into itself commuting with Hankel translations, z € C,
that is not a multiple of the identity operator.

We now study the hypercyclicity and the chaoticity of the Hankel convolution
operators org.

Proposition 3.7. Suppose thal € &,. Then the Hankel convolution operatby
defined or€, by Fr(¢) =T #¢, ¢ € &, is hypercyclic and chaotic, provided that
T is not a multiple of the Diraé-functional.

Proof. Since the spacef.(C) is continuously contained ifi(w) the restriction
of T to H.(C) is in H.(C)'. Also the restriction of the mapping; to H,.(C)
defines a continuous linear mapping fréfa(C) into itself.

Suppose thatFr (f) = Af, f € H.(C), for somex € C. Then, for every
f €He(C)

Fr(f)O) =T #f)(0) =(T,10f)=(T, f) =1/ (0).

HenceT = Ad.
Moreover, from (3.5) it follows that, for every € H,.(C),

Fr(f)@)=(T..f)=T(u+1))_ (A% )@
k=0

— 22k ( + k + k!
x (T(1),1*), zeC.

Thus Proposition 3.5 implies thdt; commutes with the Hankel translatianp,
for everyz € C.

Hence, ifT is not a multiple of the Diraé-functional, from Proposition 3.6 it
deduces that the mappirfyr is hypercyclic inH,(C).

We will prove thatH,(C) is a dense subspace &f. Then, according to [11,
Lemma 1] and Proposition 3.6, we obtain ti#atis hypercyclic and chaotic ié.

The density property of{.(C) in &, follows from Hahn—Banach theorem.
Indeed, letl’ € &, suchthalT, f) =0, f € H.(C). In particular, for every € C,

(T, z)™"Ju(z0))=0.
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In other wordsf,(T)(z) =0, z € C. Then, according to [5, Proposition 4.6], we
obtain that

(T, ) =(hu(T), hu($))=0, ¢ €D,

Hence, sincé, is a dense subspace &f, it follows that7 = 0 oné&,. Then
the Hahn—Banach theorem implies t#&t(C) is dense irt,.
Thus the proof is finished. O

As a consequence of Propositions 3.6 and 3.7 we obtain Hankel versions of
celebrated results of Birkhoff [10], concerning the usual translation operators,
and of MacLane [26], about the differentiation operators.

Corollary 3.8. (i) For everyz € C \ {0}, the Hankel translation operator, is
hypercyclic and chaotic o#, (C) and oné,.
(i) The operatorA,, is hypercyclic and chaotic oi. (C) and oné,.

4. Hankel convolution operatorson the spaces D, and itsdual

In this section we study the Hankel convolution operators on the sgaces
andD,, the dual space db,.
If T €&, by using [5, Proposition 4.7, (3.1) and (3.2)], we can see that

(T #¢9) =T #(1:¢), Au(T#9) =T #(Aug).
UHT #P)=T#(Y #¢),

for everyy, ¢ € D, andx € (0, o).

In the following we characterize the Hankel convolution operatorsign
as those linear and continuous mappingsyninto itself that commutes with
Hankel translations, with Bessel operators or with Hankel convolutions. In
Proposition 3.5 we established the corresponding result on the $pace).
Analogous properties on Zemanian spaces were shown in [3,7,8].

Proposition 4.1. Let L be a continuous linear mapping fro®, into itself. The
following assertions are equivalent.

() L commutes with Hankel translations, that is, for every (0, o0), L1, =
oL onD,.
(i) There exists &unique T € &, suchthatLy =T #¢, ¢ € D.
(i) L commutes with Hankel convolutions in the following sense, for each
¢ Y €Dy, L@#Y) =9 #L(Y).
(iv) L commutes with Hankel convolution in the following sense, for every
peD,andT €&, L(T#¢) =T #L(¢).
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Moreover (i) (or, equivalently,(ii), (iii) and (iv)) implies that the following
holds(v) L commutes with the Bessel operaity, thatisLA, = A, L, onD;.

Proof. (i) = (ii). We can proceed as in the proof of [7, Theorem 2.3].
(i) = (iii). Itis sufficient to take into account [5, Proposition 4.1].
(iii) = (iv). Let T € &,. We choose a functiotr € D1 such that

/ V()X dx =24 M (u + 1).
0

For everym € N, we define

Y (¥) =m* 2y (mx),  x € (0, 00),
and

T =T#Y,,

by invoking [5, Propositions 3.5 and 4.1] and by taking into accountfitagfines
a continuous convolution operator frd into itself, we conclude that, for every
¢ €Dy,

Tn#¢p—TH#Ho, asm— oo,
in the sense of convergenceln.
By (iii), since T;, € Dy, m € N [5, Proposition 4.8], we can write
T#(L¢)= lim T, #L(p)= lim L(T, #¢)=L(T #¢).
m—00 m— 00

Thus (iv) is shown.
(iv) = (i). Letx € (0, o0). As usual, we define the Hankel translation operator
7, onD,, by transposition, that is, if’ € D, the functionak, T is defined by

<T)CT7¢>:(T’ Tx¢>v ¢€D*

Sincet, is a continuous linear mapping frof, into itself [5, Corollary 3.3],
7,T € D, for eachT € D.,.
By denoting bys the Dirac functional, we have that

)= (T 80)#p, ¢eD,.
Indeed, ifp € D, it follows
(120) #P(y) = (Ta, Typ) = (8, Tx Ty @) = (3, Ty(fx¢)>
= () (y), y€(0,00).

Moreover, it is not hard to see, according to [5, Proposition 4.4],4h&a¢& &,.
Hence, from (iv) it follows that, for every € D,,

T (L§) =1, #Lop = L(1,:d # ) = L(1:9).
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HenceL commutes with the Hankel translation operator

Thus we have prove that the properties (i)—(iv) are equivalent.

To finish the proof of this proposition we are going to prove ttiat= (v).
Assume that there exisf € &, such that

Lop=T#¢p, ¢eDs.
According to [1, Lemma 8, (b), (6)], we can write, for every D,,
hu(AuL(@))(x) = —xth(T)(X)hM@)(X)
=hyu(L(Au$))(x), x € (0,00).

Hence, from the uniqueness property of Hankel transformatiorDgnit
follows that

AL =LAu¢, ¢ €Dy
Thus we establish thdt commutes with the Bessel operaig,. O
Remark 6. We do not know if condition (v) implies property (i) (and then (i),
(i) and (iv)) in Proposition 4.1. The procedure developed in [3] does not work

now because there is not any functigiz O in D, having compactly supported
h,, transform.

Since &, is the space of convolution operators I, the elements of,
define Hankel convolution operators @. If S € D, andT € &, the Hankel
convolutionS # T of S andT is the functional inD), defined by

Moreover, we can establish that the Hankel convolution operator associated to
T € &, is continuous orD,.

Proposition 4.2. Let T € &,. The mapping?r defined by
Fr ZD; — D;
S— SH#T,
is continuous fronD,, into itself, when orD,, we consider the weakor the strong

topology.

Proof. It is sufficient to take into account that the mappipg— T # ¢ is
continuous fronD, into itself. O

Finally, it is shown that the Hankel convolution operator associated to every
element of€, is hypercyclic and chaotic.
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Proposition 4.3. Let T € £,. Assume thaf is not a multiple of the Dirac
s-functional. Then the Hankel convolution operatsf defined as in Proposi-
tion 4.2 is hypercyclic and chaotic o®,, whenD,, is equipped with the strong
topology.

Proof. According to Proposition 3.7 the functiond@l € £, defines a Hankel
convolution operator od, that is hypercyclic and chaotic. Sinég is a dense
subspace oD, whenD, is endowed with the strong topology, by invoking [11,
Lemma 1], we conclude thatr is hypercyclic and chaotic of,, when onD,
we consider the strong topology™
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