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Ce-wts-1 plays important roles in Caenorhabditis elegans development
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a b s t r a c t

The Hippo–Warts pathway defines a novel signaling cascade involved in organ size control and
tumor suppression. However, the developmental function of this pathway is less understood. Here
we report that the Caenorhabditis elegans homolog of Warts, Ce-wts-1, plays important roles during
worm development. The null allele of Ce-wts-1 causes L1 lethality. Partial loss of Ce-wts-1 function
by RNAi reveals that Ce-wts-1 is involved in many developmental processes such as larval develop-
ment, growth rate regulation, gut granule formation, pharynx development, dauer formation, life-
span and body length control. Genetic analyses show that Ce-wts-1 functions synergistically with the
TGF-b Sma/Mab pathway to regulate body length. In addition, CE-WTS-1::GFP is enriched near the
inner cell membrane, implying its possible membrane-related function.
� 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Cell proliferation, differentiation and programmed cell death
are essential processes during animal development. Any aberration
in these processes may lead to tumorigenesis. Mutations of two
classes of genes, protooncogenes and tumor suppressor genes,
can lead to cancer development [1].

Recently, the Salvador–Hippo–Warts cascade was identified as
a new tumor suppressor network [2]. The signal from extracellular
milieu is received by transmembrane proteins, such as Fat. Then it
is relayed by cytoplasmic proteins, including Expanded, Merlin,
Hippo, Salvador, Warts (Wts; also called Lats in mammals), and
Mats. Finally, it leads to the phosphorylation and inhibition of Yor-
kie, a transcriptional coactivator that positively regulates cell pro-
liferation and survival. A lack of these tumor suppressors leads to
overgrowth in a variety of tissues in Drosophila melanogaster, while
a gain-of-function leads to reduced proliferation and ectopic apop-
tosis [3]. The importance of this pathway is emphasized by its
simultaneous and unisonous control of cell proliferation and apop-
tosis, and its evolutionary conservation. The increasing evidence
also indicates that the deregulation of this pathway occurs in hu-
man tumors.
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To understand how inactivation of tumor suppressors leads to
tumorigenesis, it is common to decipher the pathways in animal
developmental processes. The developmental roles of the Hippo–
Warts pathway are poorly documented, especially in C. elegans
[2]. In this report, we explored the function of Warts, a core com-
ponent of the Hippo/Warts pathway, in worm development.

We identified the C. elegans homolog of warts, Ce-wts-1. Null al-
lele of Ce-wts-1 leads to L1 lethality. Partial depletion of Ce-wts-1
exhibits many defects during development. Genetic analyses show
that Ce-wts-1 genetically interacts with the TGF-b pathway and
other small mutations. The expression pattern of Ce-WTS-1::GFP
reveals that Ce-WTS-1 is mainly expressed intracellularly near
the membrane.

2. Materials and methods

2.1. Strains

The nematode C. elegans was maintained as described by
Brenner [4]. Worms were grown at 20 �C unless otherwise noted.
The following alleles were used in this work: LGI: rnt-1(ok351),
mef-2(gv2), Ce-wts-1(ok753); LGII: sma-6(wk7), eat-2(ad465),
eat-3(ad426); LGIII: sma-2(e502), sma-3(e491), daf-7(e1372); LGIV:
sma-4(e729), tax-6(p675), eat-1(ad427), pha-3(ad607); LGV:
dbl-1(wk70), sma-1(ru18); LGX: kin-29(oy38), pha-2(ad472),
sma-5(n678) [5]. The transgenic markers are: juIs76 (Punc-25::gfp)
for D-type neurons, wIs51 (scm-1::gfp), jcIs1 (ajm-1::gfp) for seam
cells, fwEX1(pRF4, Ce-wts-1::gfp).
lsevier B.V. All rights reserved.
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2.2. Construction of Ce-wts-1::gfp reporter

The Ce-wts-1::gfp reporter contains the promoter, coding se-
quence and 3’UTR (T20F10, nt 17 884–27 380). gfp was inserted
at the C-terminus of Ce-wts-1. The reporter DNA was coinjected
with pRF4 (rol-6) and at least two transgenic lines were analyzed.

2.3. RNAi and microinjection

Single-stranded RNA was transcribed from the T7 and SP6-
flanked PCR templates. The PCR template used for synthesizing
RNA is: Ce-wts-1 (cDNA, nt 1645–2620). The single-stranded RNAs
were annealed and injected into N2 and different mutants. Eggs
laid between 24 and 48 h after microinjection were collected for
further analyses.

2.4. Body length measurement

L4 hermaphrodites grown at 20 �C were transferred to fresh NGM
plates. One day later, animals were mounted on 5% agarose pad and
photographed under 10� or 20� objectives with Zeiss AxioCam.
Only animals with split vulva, mature oocytes and few embryos
(62) were used for body length measurement by Image J [5].

2.5. Measurement of seam cell size

The ajm-1::gfp that specifically marked the seam cell membrane
was used to measure the seam cell area [6,7]. Late L3 larvae were
picked and seam cells were photographed under 100� objective.
Three consecutive cells ideal for measurement were selected per
worm and measured by Zeiss AxioVision.
3. Results

3.1. Ce-wts-1 encodes the warts homolog in C. elegans

Searching C. elegans database revealed a worm homolog of
warts, T20F10.1, which we named Ce-wts-1. Similar to Warts in
fly and mammals, Ce-wts-1 encodes a kinase of the Nuclear Dbf-
2-related (NDR) family [8,9]. The predicted Ce-WTS-1 product
contains 908 amino acids, with a characteristic Serine/threonine
kinase domain between aa502 and aa807. The Ce-WTS-1 kinase
domain is 54% identical to those of fly Warts and human LATS
kinase domains. ok753 allele of Ce-wts-1 (provided by C. elegans
Gene Knockout Consortium), contains a frame-shift deletion from
aa544 to aa657, and causes L1 lethality (data not shown). We in-
jected a 10 kb genomic DNA which contains 2 kb promoter, 6 kb
coding region and 2 kb 30UTR of Ce-wts-1 into heterozygous
ok753 worms, and found that this Ce-wts-1 genomic DNA could
completely rescue ok753�/� lethality, indicating that the L1 lethal
arrest of ok753�/� is due to Ce-wts-1 mutation (data not shown).
Since ok753 removes most of the kinase domain, which has been
demonstrated to be crucial for Warts function [10], we believe that
ok753 may be a null allele of Ce-wts-1. We also noted that Ce-wts-1
genomic DNA lacking the first 1 kb intron failed to rescue ok753�/�,
suggesting that the first intron may contain positive gene regula-
tory elements.

3.2. Loss of Ce-wts-1 function has pleiotropic effects in C. elegans
development

Because ok753�/� animals arrest at L1 stage, we could not ex-
plore the developmental role of Ce-wts-1 beyond L1 stage. Alterna-
tively, we used RNAi to create the partial loss of Ce-wts-1 function.
We synthesized Ce-wts-1 double-stranded RNA (dsRNA) and
microinjected it into worms. We checked the specificity of Ce-
wts-1(RNAi) by injecting it into fwEX1(pRF4, Ce-wts-1::gfp) worms.
The results showed that the expression of Ce-wts-1::gfp was largely
eliminated by Ce-wts-1(RNAi), confirming that the dsRNA is indeed
targeting Ce-wts-1 gene (Fig. 1I and J). We found Ce-wts-1(RNAi)
caused many developmental defects, including larval lethality,
constitutive dauer and longer lifespan, growth retardation, less
gut granules, distorted pharynx, and small body size.

3.2.1. Larval lethality
As shown in Fig. 1A, 47% (n = 241) of RNAi-treated worms die at

different larval stages, and 53% of them can grow to the adult stage.

3.2.2. Growth retardation
Decrease of Ce-wts-1 activity leads to slow growth (Fig. 1B). It

took nearly 95 h for severely affected worms to grow to the young
adult stage at 20 �C. The rest worms took about 73 h to enter the
young adult stage, while N2 worms needed about 55 h. Interest-
ingly, Lats1�/� knockout mice also display decreased growth rate
[11], suggesting the function of Ce-wts-1 in regulating animal
growth may be conserved.

3.2.3. Constitutive dauer formation and long lifespan
Data from the Ruvkun lab showed that inactivation of Ce-wts-1

by RNAi feeding could make worms live longer [12]. Our experi-
ments confirmed this observation (data not shown). Study from
the Kenyon lab showed that a weak allele of daf-2 lives longer,
while a strong allele becomes dauer worm at L2 stage [13]. We
thus examined the role of Ce-wts-1 in dauer formation. In C. ele-
gans, the TGF-b dauer pathway inhibits entry into dauer stage
in wild-type worms, and DAF-7 is its ligand. daf-7(e1372) is a
temperature-sensitive mutation. At 15 �C, only a small fraction
of daf-7 mutants get into dauer stage. At 25 �C, 100% become dau-
er worms. When Ce-wts-1 dsRNA was injected into daf-7 worms
at 15 �C, the percentage of dauer worm increased from 13%
(n = 50) to 79% (n = 153) (Fig. 1A), suggesting a genetic interaction
between the Hippo–Warts pathway and the TGF-b dauer
pathway.

3.2.4. Less gut granules
Gut granules can be visualized by its autofluorescence under

microscopic DAPI channel. We found that autofluorescence from
gut granules drastically diminished in Ce-wts-1(RNAi) worms
(Fig. 1C and D).

3.2.5. Distorted pharynx
We found that in the slower-growing RNAi worms, the phar-

ynxes were distorted to some extent (Fig. 1E and F). This pheno-
type is also found in other small mutants.

3.2.6. Small body size
In D. melanogaster, loss of warts function leads to tissue over-

growth [9]. However, Lats1�/� knockout mice exhibit small size/
decreased weight, although there are hyperplastic changes in
the pituitary [11]. In C. elegans, knockdown of Ce-wts-1 also dis-
played the small body size phenotype (Fig. 1G and H). At young
stage, the body length of RNAi-treated worms was 29% shorter
than that of wild-type animals (n = 37) (Table 1). We checked
whether the small body size phenotype was the consequence of
less cells. We injected Ce-wts-1 dsRNA into juIs76 and wIs51,
which specifically marked D-type neurons and hypodermal seam
cells [14]. We found in Ce-wts-1(RNAi) worms, numbers of D-type
neurons and hypodermal seam cells (19.8 ± 0.8, 16.0 ± 0.8, n = 15)
were similar to those of wild-type worms (18.9 ± 0.3, 16.0 ± 0.4,
n = 15). We then measured seam cell size using jcIs1(ajm-1::gfp)
that labels the seam cell membrane [6,7]. In late L3 Ce-wts-1(RNAi)
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Fig. 1. Ce-wts-1(RNAi) causes pleiotropic defects in worm development. (A) Depletion of Ce-wts-1 activity lead to larval lethality and increased constitutive dauer formation
(Daf-c). (B) Ce-wts-1(RNAi) worms grew much slower than N2. (C and D) Knockdown of Ce-wts-1 caused decreased gut granules (arrows, pictures were taken at the same
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GFP was largely eliminated by Ce-wts-1(RNAi) (J), compared with worms before RNAi (I).

3160 Q. Cai et al. / FEBS Letters 583 (2009) 3158–3164
worms, the average area of seam cells was 83.4 ± 17.6 lm2

(n = 52), significantly smaller than that of wild-type worms
(117.4 ± 11.3 lm2, n = 39; P < 0.001). These results imply that
smaller cell size may be responsible for the small size phenotype
in Ce-wts-1(RNAi) worms.
3.3. Ce-wts-1 synergistically interacts with small genes

To explore how Ce-wts-1 interacts with signaling pathways dur-
ing development, we choose the small phenotype of Ce-wts-1(RNAi)
worms to do genetic analyses. In C. elegans, four pathways have



Table 1
Genetic interactions between Ce-wts-1 and other Small mutations.

Genotype Body length (mm)a (means ± S.D.) Relative value of the mean body length Protein References

N2 0.96 ± 0.04 100
Ce-wts-l(RNAi) 0.68 ± 0.07 71b Serine/threonine kinase
dbl-1(wk70) 0.59 ± 0.04 62 Ligand of TGF-b signaling [15]
dbl-1; Ce-wts-l(RNAi) 0.43 ± 0.04 45b

sma-2(e502) 0.54 ± 0.04 57 R-Smad [16,18]
sma-2; Ce-wts-l(RNAi) 0.43 ± 0.04 44b

sma-3(e491) 0.60 ± 0.05 62 R-Smad [16,18]
sma-3; Ce-wts-1(RNAi) 0.39 ± 0.02 41b

sma-4(e729) 0.52 ± 0.02 61 Co-Smad [16,18]
sma-4; Ce-wts-1(RNAi) 0.48 ± 0.01 50b

sma-6(wk7) 0.59 ± 0.03 61 Type I receptor of TGF-b signaling [17]
sma-6; Ce-wts-1(RNAi) 0.44 ± 0.03 46b

lon-1(e185) 1.03 ± 0.04 107 With homology to CRISP protein [29]
lon-1; Ce-wts-1(RNAi) 0.96 ± 0.07 100
lon-2(e678) 1.01 ± 0.05 105 Glypican protein of HSPG [30]
lon-2; Ce-wts-1(RNAi) 0.75 ± 0.03 78b

sma-1(ru18) 0.67 ± 0.06 70 bH-spectrin [19]
sma-1; Ce-wts-1(RNAi) Embryo lethal
sma-5(n678) 0.50 ± 0.03 52 Serine/threonine kinase [27]
sma-5; Ce-wts-1(RNAi) L1 lethal
kin-29(oy38) 0.62 ± 0.05 65 Serine/threonine kinase [28]
kin-29; Ce-wts-1(RNAi) L1 lethal
eat-1(ad427) 0.80 ± 0.04 83 a-Actinin associated LIM protein [5]
eat-1; Ce-wts-1(RNAi) L1 lethal
eat-3(ad426) 0.76 ± 0.06 79 Dynamin-like GTP binding protein [25]
eat-3; Ce-wts-1(RNAi) L1 lethal
pha-2(ad472) 0.73 ± 0.05 76 Homeodomain transcription factor [26]
pha-2; Ce-wts-1(RNAi) L1 lethal

a Body length was only measured for young adult worms with split vulva, mature oocytes and 62 embryos. At least 15 worms were measured per genotype.
b These body length data differ significantly from those of wild-type and the parental single mutants in unpaired t-test (P < 0.005).
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been reported in regulating body length [5]. These pathways are: a
TGF-b Sma/Mab pathway including dbl-1, sma-2, sma-3, sma-4 and
sma-6 [15–18]; a spectrin pathway including sma-1, spc-1 and unc-
70 [19–21]; a calcineurin pathway including tax-6 and cnb-1
[22,23]; a feeding defective pathway including eat-1, eat-2, eat-3,
pha-2, pha-3, etc. [5,24–26]. In addition, there are still some small
genes that have not been assigned to these pathways, like sma-5,
kin-29, etc. [27,28]. To explore whether Ce-wts-1 also genetically
interacts with these mutations, we injected Ce-wts-1 dsRNA into
dbl-1(wk79), sma-2(e502), sma-3(e491), sma-4(e729), sma-6(wk7);
sma-1(ru18); tax-6(p675); eat-1(ad427), eat-2(ad465), eat-
3(ad426), pha-2(ad472), pha-3(ad607); sma-5(n678), rnt-1(ok351),
kin-29(oy38), tph-1(mg280).

Inactivation of TGF-b Sma/Mab pathway leads to worms with
60–70% of body length of wild-type (Table 1). However, when
Ce-wts-1 dsRNA was injected into TGF-b Sma/Mab pathway mu-
tants, the double mutants’ body length was only 41–50% of wild-
type (Table 1). In addition, double mutants grow much slower,
usually taking 6–7 days to enter adulthood. The brood size of dou-
ble mutants also drastically decreased (data not shown). According
to previous studies [15], wk70 is a null allele of dbl-1. Double muta-
tions of dbl-1 and sma-2/sma-3/sma-4 did not enhance the Small
phenotype of single mutants. Therefore, there is strong redundancy
between Ce-wts-1 and TGF-b Sma/Mab pathway in regulating body
length. Additionally, lon-1, which was negatively regulated by TGF-
b Sma/Mab pathway [29], could suppress Ce-wts-1 Small pheno-
type, which indicated lon-1 was downstream of Ce-wts-1 (Table 1).
Moreover, the Long phenotype of lon-2, an upstream regulator of
TGF-b Sma/Mab pathway [30], was suppressed by Ce-wts-1(RNAi)
(Table 1). Based on these data, we conclude that Ce-wts-1 functions
redundantly with TGF-b Sma/Mab pathway, sharing the same up-
stream regulator and downstream target.

We also found that Ce-wts-1; sma-1 was totally embryonically
lethal; Ce-wts-1; sma-5, Ce-wts-1; kin-29, Ce-wts-1; eat-1, Ce-wts-
1; eat-3, Ce-wts-1; pha-2 were 100% L1 lethal, while other double
mutants did not exhibit obvious synthetic phenotypes (Table 1).
The synthetic larval lethality of these double mutants implies Ce-
wts-1 synergistically interacts with sma-5, kin-29, sma-1, eat-1,
eat-3, pha-2 to regulate worm early development.

3.4. Ce-WTS-1 is expressed near the cell membrane

To determine the temporal and spatial expression patterns of
Ce-wts-1, we constructed Ce-wts-1::gfp fusion gene and microin-
jected it into wild-type animals. The fusion gene contains a full
length genomic Ce-wts-1 DNA, with gfp ligated in frame to its
C-terminus. This fusion reporter could fully rescue ok753�/� lethal
phenotype, suggesting it may reveal the endogenous expression
pattern of Ce-WTS-1.

The expression of Ce-wts-1 begins at the comma stage (Fig. 2A
and B) and proceeds during the entire larval and adult stages. Ce-
WTS-1::GFP was detectable in many tissues, including pharynx,
gut, vulval, spermathecal, and seam cells (Fig. 2C–I). The subcellu-
lar localization of Ce-WTS-1 appears to be close to the membrane
or membrane-associated, i.e., in gut apical membrane, vulval cell
membrane, spermathecal cell membrane and seam cell membrane,
by comparing Ce-WTS-1 expression patterns with NHX-2::GFP
expression in gut [31], AJM-1::GFP expression in vulval, spermath-
ecal and seam cells [32]. However, the ‘DAS’ transmembrane do-
main prediction program predicted no transmembrane domain in
CE-WTS-1 (data not shown). In addition, neither fly Warts or
human LATS1 contains transmembrane domains [33]. Therefore,
Ce-WTS-1 is likely accumulated intracellularly near the cell mem-
brane and may interact with membrane or membrane associated
proteins.

4. Discussion

In this report, we have identified a C. elegans homologue of the
tumor suppressor warts. Ce-WTS-1 has the characteristic Serine/
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threonine kinase domain of the Nuclear Dbf-2-related (NDR) fam-
ily. Like human Lats1 [11], loss of Ce-wts-1 function leads to larval
lethality, slow growth rate and small animal size/decreased
weight. However, we have not observed obvious tissue over-
growth or hyperplastic cells in Ce-wts-1(RNAi) worms, which is dif-
ferent from warts’ role in inhibiting tissue growth in D. melanogaster.
Further efforts are required to verify whether Ce-wts-1 inhibits tis-
sue over-growth.

It is known that cytoplasmic Warts inhibits Yorkie translocation
into nucleus by phosphorylating Yorkie. Recently, several studies
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in human cultured cells indicated that plasma membrane anchor-
ing is important for Lats1 kinase activity [34,35]. They showed that
when LATS1 was co-expressed with membrane-bound hMOB1, an
interacting protein of LATS1, its kinase activity greatly increased,
compared with non-membrane-bound hMOB1. However, it is still
unclear whether Warts is physically membrane-attached. In our
study, we constructed a Ce-wts-1::gfp fusion gene and found Ce-
WTS-1 is mainly localized intracellularly near the cell membrane
in multiple tissues of worm. Interestingly, the subcellular location
of T10H10.1, the C. elegans homologue of Warts interacting protein,
Salvador, is also expressed at the membrane region of spermathe-
cal cells (unpublished data). Therefore, the expression pattern re-
vealed by Ce-WTS-1::GFP may provide an in vivo evidence for
membrane anchoring property of Warts and further investigation
is required to address how membrane association is related to
the physiological functions of Warts.

In C. elegans, there are at least two TGF-b-like signaling path-
ways: the TGF-b dauer pathway and the TGF-b Sma/Mab pathway.
Through double mutant analyses, we found that Ce-wts-1 geneti-
cally interacted with both TGF-b pathways in C. elegans. Ce-wts-1
synergistically interacted with daf-7 to inhibit worms entering into
dauer stage and with the Sma/Mab pathway components to regu-
late worm body length. In cancer biology, the TGF-b pathway is a
well-known tumor suppressor pathway and the Hippo–Warts
pathway is a novel tumor suppressor pathway. Considering the
evolutionary conservation of these pathways, it is tempting to
speculate that both the Hippo–Warts pathway and the TGF-b path-
way may coordinate to inhibit the tumorigenesis.

Body size is determined by cell number and cell size. In Ce-wts-
1(RNAi) worms, we did not observe obvious changes of cell num-
ber in D-type neurons and hypodermal seam cells. However, the
size of seam cells in Ce-wts-1(RNAi) worms is obviously smaller
than that of wild-type, implying that the small body size of
Ce-wts-1(RNAi) animals may be due to decreased cell size. Studies
on cell size control in mouse and fly revealed that insulin/IGF-
mTOR-S6K/eIF4E phosphorylation cascade positively regulates
protein synthesis and cell size [36]. The Xu T. lab found that there
was a 25% decrease of growth hormone level in Lats1�/� knockout
mice [11]. Therefore, it is likely that Ce-wts-1 might use similar
insulin/IGF-mTOR-S6K/eIF4E pathway to regulate protein synthe-
sis and body size. Indeed, the Ohshima Y. lab recently showed
there was a drastic decrease of total protein contents in sma-1,
sma-2, sma-4, sma-5 and sma-6 [37]. Thus, total protein contents
and insulin signaling should be measured in Ce-wts-1(RNAi)
worms in future experiments to explore how Ce-wts-1 regulates
body size.
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