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Abstract. We show that the Min Cut Linear Arrangement Problem (Min Cut) is NP-complete for 

trees with polynomial size edge weights and derive from this the NP-completeness of Min Cut 

for planar graphs with maximum vertex degree 3. This is used to show the NP-completeness of 

Search Number, Vertex Separation, Progressive Black/ White Pebble Demand, and Topological 

Bandwidth for planar graphs with maximum vertex degree 3. 

1. Introduction 

The Min Cut Linear Arrangement problem (Min Cut) asks, for a given finite 

undirected graph G and positive integer k, if there exists an arrangement of G’s 

vertices along a horizontal line so that, for any vertical line drawn between consecu- 

tive vertices, dividing the set of vertices into those to its left and those to its right, 

there are at most k edges connecting vertices on opposite sides. It is motivated by 

problems of circuit design in which one wants to minimize the number of channels 

needed for wires connecting distinct circuit boards or gates. (A linear layout of a 

graph G is a one-to-one mapping from the vertices of G to the natural numbers, 

describing how vertices are to be laid out along a horizontal line.) The cutwidth of 

a linear layout L of a graph G, denoted by cw( G, L) is the maximum number of 

edges connecting vertices on opposite sides of any vertical line drawn between 

consecutive vertices. The cutwidth ofG, denoted by cw( G), is minimum {cw( G, L) 1 G 

is a linear layout of G}. A related problem the Weighted Min Cut problem, asks, for 

a given finite undirected graph with integer edge weights and a positive integer k, 

whether there is a linear arrangement so that each vertical line drawn between 

consecutive vertices cuts edges (in the sense described above) whose weights sum 

to at most k. The weighted version may more closely model actual circuit design 

problems, as connections in practice may be of different sizes or may consist of 

bundles of wires from board to board or from gate to gate. Due to the importance 
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of the Min Cut problem there is interest in the question: For what classes of graphs 

can one construct a polynomial-time Min Cut algorithm? 

In [25] Yannakakis described an O(n log n) algorithm for the Min Cut problem 

on trees. Yannakakis described a generalized version of the Min Cut problem in 

which nodes have variable heights indicated by integer weights. His algorithm works 

for this generalization, but not for the Weighted Min Cut problem on trees. Earlier 

an O(n logdp2 n) algorithm for the Min Cut problem on trees with maximum vertex 

degree d was described by Chung, Makedon, Sudborough, and Turner [3], who 

also described a characterization theorem for cutwidth in trees. 

In this paper, we show: 

(1) the Min Cut problem is NP-complete even when restricted to planar graphs 

with maximum vertex degree 3 and 

(2) the weighted Min Cut problem is NP-complete even when restricted to trees 

with polynomial size weights. 

We also solve an open problem about the complexity of the search number 

problem described in a recent paper by Megiddo, Hakimi, Garey, Johnson, and 

Papadimitriou [IS] and several related problems. 

Informally, searching an undirected graph G is the process of capturing alien 

intruders using searchers to clear all the edges and vertices. The intruders are mobile 

and can speed about the edges and vertices of the graph with complete knowledge 

of the whereabouts of their pursuers. A search sequence is a sequence of steps of 

the following types: 

(1) placing a searcher on a vertex, 

(2) moving a searcher from a vertex through an edge to a neighboring vertex, and 

(3) removing a searcher from a vertex. 

An edge of G is cleared when there is no possibility of an intruder on that edge. 

An edge e = {x, y} becomes cleared through the process of either having a searcher 

on one end, say x, and moving another searcher through the edge to the other end, 

y, or, when all other edges incident to x are already cleared, moving the one searcher 

on vertex x through the edge e to y. An uncleared edge is contaminated. In the 

beginning all edges are assumed to be contaminated, as they are capable of holding 

an intruder. A cleared edge e can become recontaminated by the movement or 

deletion of a searcher which results in a path without any searchers from a contami- 

nated edge to e. A search sequence that does not allow any recontamination is called 

progressive. LaPaugh [12] has shown that if there is a search sequence that clears 

all the edges of a graph with k searchers, then there is also a progressive search 

sequence that uses k searchers and clears all edges of the graph. That is, allowing 

recontamination does not help to reduce the number of searchers. 

The search Number problem asks, for a given finite undirected graph G and 

positive integer k, whether k searchers are sufficient to clear all the edges and vertices 

of G [20,21]. Megiddo, Hakimi, Garey, Johnson, and Papdimitriou [18] describe 

a proof that the Search Number problem is NP-hard. By showing that recontamina- 

tion does not help, [12] Andrea LaPaugh showed that Search Number is, in fact, 

in NP. In [ 181 it is stated as open problems whether Search Number is NP-complete 
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for planar graphs and graphs with maximum vertex degree 3. We show Search 

Number is NP-complete for planar graphs with maximum vertex degree 3. 

In fact, some of our results rely on earlier results of Makedon and Sudborough 

[16], who show Search Number is identical to Min Cut for graphs with maximum 

vertex degree 3. Makedon, Papadimitriou, and Sudborough [17] also use this 

relationship to obtain a weaker result: Search Number is NP-complete for the class 

of graphs with maximum vertex degree 3. 

The main subject of [ 171 is topological bandwidth. The bandwidth of a linear layout 

L of a graph G, denoted by bw(G, L), is the maximum length of any edge in the 

layout, i.e., max{]L(x) - L(y)1 1(x, y> IS an edge of G}. (It is to be understood that 

the vertices are always assigned to integer points in the line.) The bandwidth of u 

graph G, denoted by b(G), is minimum {b( G, L) 1 L is a linear layout of G}. The 

Bandwidth Minimization Problem (BMP) is the problem of deciding, for a given 

finite undirected graph G and positive integer k, whether the bandwidth of G is at 

most k. Papadimitriou [27] showed BMP to be NP-complete. Garey, Graham, 

Johnson, and Knuth [7] showed BMP to be NP-complete for trees with maximum 

vertex degree 3, and Monien [26] showed that BMP is NP-complete even for trees 

with maximum vertex degree 3 and with search number 2, i.e. the class of 

trees often called caterpillars. The topological bandwidth of a graph G, denoted by 

tb( G), is minimum{b( G’) 1 G’ IS a h omeomorphic image of G}. (G’ is a homeomorphic 

image of G if it is obtained from G by adding some number of degree-2 vertices 

into edges of G.) The Topological Bandwidth problem asks, for a given finite undirec- 

ted graph G and positive integer k, whether tb( G) d k. Topological Bandwidth has 

also been considered recently by Miller [19], Chung [2] and others. We show that 

the Topological Bandwidth problem is NP-complete even for planar graphs with 

maximum vertex degree 3. 

Another graph layout problem has been investigated recently by Lengauer [13], 

Kirousis and Papadimitriou [lo], and Ellis, Sudborough, and Turner [5]. The vertex 

separation of a linear layout L of a graph G, denoted by vs( G, L), is the maximum, 

over all integers i (1~ is [Cl), of the number of vertices in left(i) = {x in ver- 

tices( G) 1 L(x) s i} that need to be deleted from G in order to separate (disconnect) 

all vertices in left(i) from those in right(i) = {x in vertices(G) I L(x) > i}. The vertex 

separation of a graph G, denoted by vs( G), is minimum{vs( G, L) I L is a linear layout 

of G}. The problem is motivated by the general problem of finding good separators 

for graphs, which has been used in algorithm and VLSI layout design [14]. The 

Vertex Separation problem asks, for a given finite undirected graph G and positive 

integer k, whether the vertex separation of G is at most k. It has recently been 

shown to be NP-complete [13]. We show that the Vertex Separation problem is 

NP-complete even for planar graphs with maximum vertex degree 3. 

The modified cutwidth of a linear layout L of G, denoted by mcw(G, L), is the 

maximum, over all integers i (14 i s Ivertices( G)I) of the number of edges connecting 

vertices in left(i) -{L-‘(i)} with those in right(i). (That is, it is the maximum number 

of edges cut by any vertical line drawn through a vertex dividing the remaining 

vertices into those to its left and those to its right.) The modi$ed cutwidth of a graph 
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G, denoted by mcw( G), is minimum{mcw( G, L) 1 L is a linear layout of G}. The 

Modified Min Cut problem asks, for a given finite undirected graph G and positive 

integer k, whether mcw( G) s k. Lengauer [ 131 observed that the Modified Min Cut 

problem is also NP-complete and related it to the Vertex Separation problem. We 

show that the Modified Min Cut problem is NP-complete even for planar graphs 

with maximum vertex degree 3. 

The number of registers needed to perform a computation, i.e., the space needed 

for a computational process, is often considered in papers through studies of various 

pebble games played on directed acyclic graphs (dag’s). For example, Hopcroft, 

Paul, and Valiant [9] show that, for every positive integer k, dags with n vertices 

in which every vertex has at most k predecessors, can be pebbled with O(n/log n) 

pebbles. The rules of the pebble game are simple: 

(1) a (black) pebble can be removed from a vertex at any time and 

(2) a (black) pebble can be placed on a vertex provided that all of its predecessors 

have pebbles. 

The placing of a (black) pebble on a vertex corresponds to computing the value 

represented by the vertex and storing it in memory. The predecessors represent 

values that are needed in the computation and must have been previously computed 

and stored in memory. Gilbert, Lengauer, and Tarjan [8] show that the Pebble 

Demandproblem is PspAcE-complete. The Pebble Demand problem asks, for a given 

finite dag G and positive integer k, whether k pebbles are sufficient to pebble a sink 

of G. (A sink of G is a node in G with no successors.) One is permitted to save 

pebbles in the pebble game by recomputation, i.e., placing a pebble on a vertex, 

removing the pebble, and placing a pebble again on the same vertex. A sequence 

of pebble game steps is progressive if no vertex is pebbled more than once, i.e., 

there is no recomputation. The Progressive Pebble Demand problem asks, for a finite 

dag G and positive integer k, whether k pebbles are sufficient to pebble a sink of 

G by a progressive sequence of steps in the pebble game. Sethi [23] has shown the 

Progressive Pebble Demand problem to be NP-complete. 

A nondeterministic version of the pebble game involving both black and white 

pebbles was introduced by Cook and Sethi [4]. Placing a white pebble on a node 

represents guessing the value corresponding to that node. The rules for the placement 

and removal of white pebbles are the duals of the rules for black pebbles: 

(3) a white pebble can be placed on a vertex at any time, and 

(4) a white pebble can be removed from a vertex provided that all predecessors 

have a pebble (either black or white). 

The rules for playing the black/white pebble game are all of the rules (l)-(4). 

The relationship between nondeterministic and deterministic pebble games has been 

the subject of many recent papers, for example, see Meyer auf der Heide [15], 

Wilber [24], Klawe [ll] and Rosenberg and Sudborough [22]. The Black/ White 

Pebble Demandproblem asks, for a given finite dag G and positive integer k, whether 

k pebbles are sufficient to pebble a sink of G in the black/white pebble game. The 

complexity of the Black/ White Pebble Demand problem is currently open. It is easily 
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seen to be in PSPACE, but it not known to be PSPACE hard. The progressive version 

of the black/white pebble game is defined in the same way as for the regular (black) 

pebble game. Lengauer [13] showed that the Progressive Black/White Pebble 

demand problem is NP-complete. We extend this by showing that the progressive 

Black/ White Pebble Demand problem is NP-complete even when restricted to planar 

dag’s with maximum vertex degree 3. (The degree of a vertex in a dag is taken to 

be the sum of the number of its predecessors and successors.) 

2. Description of results 

We show first that the Weighted Min Cut problem restricted to trees with poly- 

nomial-size edge weights is reducible (by a polynomial-time algorithm) to the Min 

Cut problem for planar graphs. Given a weighted tree T = ( V, E), construct a planar 

graph G(T), which has the same set of vertices as T, and whose edge set is obtained 

by replacing a weight-k edge {x, y} of T with k parallel edges in G(T) connecting 

x and y. Clearly, the cutwidth of T and G(T) are the same. In fact, a linear layout 

of the one is also a linear layout of the other with the same cutwidth. G(T) is not 

a simple graph since it has parallel edges, but it can easily be transformed into a 

simple graph with the same cutwidth. Namely, construct the simple graph, say S(T), 

by placing a degree-2 vertex into each constructed parallel edge of G(T). Since the 

addition or removal of degree-2 vertices does not change cutwidth, T and S(T) 

have the same cutwidth. Moreover, S(T) is planar since it was obtained from a tree 

by the introduction of parallel edges. Consequently, (T, k) is a positive instance of 

the Weighted Min Cut problem if and only if (S(T), k) is a positive instance of the 

Min Cut problem for planar graphs. Notice it is necessary that the edge weights of 

T have polynomial size, for otherwise there would be more than a polynomial 

number of parallel edges in G(T) and the transformation from T to G(T), and 

hence also to S(T), would not be possible in polynomial time. Thus, we have the 

following lemma. 

Lemma 2.1. The Weighted Min Cut Problem restricted to trees with polynomial-size 

edge weights dpolY the Min Cut problem restricted to planar graphs. 

Observe that the planar graph S(T), described in the last paragraph, is a very 

special kind of planar graph. It is a 2-outerplanar graph, where a 1-outerplanar 

graph is simply an outerplanar graph and, for all k > 1, a k-outerplanar graph is a 

planar graph that has embedding in the plane such that if one deletes all the vertices 

and incident edges on one face, say the external face, the result is a (k - l)- 

outerplanar graph [l]. In fact, S(T) has a planar embedding such that if all vertices 

and incident edges on the external face are deleted, the result is a collection of 

isolated vertices. Moreover, G(T) is outerplanar in the class of multigraphs, i.e., 

the graphs in which multiple parallel edges are allowed. An example of the reduction 

described in Lemma 2.1 is shown in Fig. 1. 
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Fig. 1. (a) An edge weighted tree T. (b) The constructed planar graph G(T). (c) The constructed simple 

planar graph S(T). 

Corollary 2.2. The Weighted Min Cut Problem restricted to trees with polynomial size 

edge weights 4 pO,Y the Min Cut problem restricted to 2-outerplanar graphs. (Moreover, 

the Weighted Min Cut problem restricted to trees with polynomial-size edge weights is 

polynomial-time reducible to the Min Cut problem for outerplanar multigraphs.) 

We will show that the Weighted Min Cut problem restricted to trees with poly- 

nomial-size edge weights is NP-complete in Lemma 2.4 by a polynomial-time 

reduction from a restricted version of the following so-called O-l solvability problem 

for linear integer equations. 

O-l Solvability Problem for Linear Integer Equations (denoted by 0, I-LinEq). 

Input: A rectangular matrix A and a column vector b, both of nonnegative integers. 

Question: Does there exist a O-l column vector x such that Ax = b? 
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0, 1-LinEq is easily seen to be NP-complete even when all entries in the matrix 

A and all entries in b are from (0, l}. For example, a straightforward reduction 

from ONE-IN-THREE 3SAT is given by the following. Given a well-formed formula 

w in 3CNF, create a column vector b of m + n l’s and a matrix A with m + n rows 

and 2m columns, where m is the number of variables and n is the number of clauses 

occurring in w. Intuitively, for all i (1 s is m), the (2i - 1)st column corresponds 

to the ith variable in w and the 2ith column corresponds to the negation of this 

variable. For each i (1 G i 4 m), let row i of A have a 1 in columns 2i - 1 and 2i 

(and only in those two columns). Also, for each i (1 G is n), let row m + i have a 

1 in exactly those three columns corresponding to literals that occur in the ith clause 

of w. Then, due to the first m rows of A, it follows that, for all i (1 G is m), exactly 

one of the (2i - 1)st or 2ith entries of a solution vector x is 1, corresponding to 

assigning the value true to either the ith variable or its negation. And, due to the 

last n rows of A, it follows that this solution vector x must give each clause exactly 

one true literal. Thus it follows that w is in ONE-IN-THREE 3SAT if and only if 

there is a solution vector x over (0, l} such that Ax = b. 

We use a restricted version of 0, 1-LinEq, where A is a matrix of positive integers 

with m rows and n columns and b is a column vector of length m such that 

(1) A has an even number of columns, i.e., n is even, 

(2) any O-l vector x such that Ax = b must have irt 0 values, 

(3) the sum of the integers in each row of A is exactly twice the value of the integer 

in the corresponding row of the column vector b, 

(4) the values in the first column and second column of each row of the matrix A 

are equal and greater than all other values in that row. 

(5) for all i, (a): if the sum of r values from the ith row of A is b,, then r=$n, and 

(b): the sum of the smallest value in the ith row of A and the sum of any $n - 1 

values in the (i+ 1)st row of A is larger than b,,, (thus, for example, all elements 

in the ith row are larger than all elements in the (i + 1)st row), 

(6) the first value of the vector b, namely b,, is more than twice as big as the second 

value of the vector b, namely b,. 

Lemma 2.3. The O-l solvability problem for linear integer equations restricted to 

instances which satisfy conditions (l)-(6) listed above is NP-complete in the strong 

sense, i.e., even when the integers in the matrix A have size bounded by a polynomial 

in the size of A. 

Proof. Note that the matrix A produced in the reduction from ONE-IN-THREE 

3SAT, as described above, already satisfies conditions (1) and (2). We need only 

show that such an instance (A, b) of 0, 1-LinEq can be transformed into an instance 

(A’, b’) satisfying all six conditions such that (A, b) is a positive instance of0, 1LinEq 

if and only if (A’, b’) is a positive instance of 0, 1-LinEq. We describe a sequence 

of transformations to accomplish this. 
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Let (A, 6) be an instance of 0, I-LinEq satisfying conditions (1) and (2). For each 

i, let k, denote the sum of the elements in the ith row of A. Form A’ by adding two 

new columns to A, where these two new columns have values 2ki - b, and ki + b, 

respectively in the ith row for all i. Let b’ be the column vector having 2ki in its 

ith row. Observe that (A, b) is a positive instance of 0, 1-LinEq if and only if (A’, b’) 

is a positive instance of 0, 1-LinEq. (That is, if one can select elements in the ith 

row of A whose sum is bi, then one can select the same elements in the ith row of 

A’ together with the new element 2ki - bj to sum up to 2k,. Conversely, if there are 

elements in the ith row of A’ whose sum is 2ki, then the remaining elements in the 

ith row of A’ must also have the sum 2k, since the sum of all ith row elements is 

4ki. Since 2ki - bi must be included in one of these sums and ki + b, in the other, it 

follows that there are elements from the ith row of A whose sum is bi.) Notice that 

(A’, b’) satisfies conditions (l)-(3) above. It satisfies (3) since in each row the sum 

of all elements is 4ki and b: is 2k,. 

Let (A, b) be an instance of 0, 1-LinEq satisfying (l)-(3). Form the new matrix 

A’ by adding two new columns to A, where the new columns have in the ith row, 

for all i, the value 2bi. That is, A’ is the matrix with the new columns as columns 

1 and 2 and the remaining columns exactly the same as in the matrix A. Let b’ be 

the column vector with 36, in its ith row. Then, (A, b) is a positive instance of 

0, 1-LinEq if and only if (A’, b’) is a positive instance of 0, 1-LinEq and (A’, b’) 

satisfies conditions (l)-(4). 

Let (A, b) be an instance of 0, 1-LinEq satisfying conditions (l)-(4), where A has 

m rows and n columns. Let M = 1 +max{b, 11 G 4 m}. Define the matrix A’ by i 

~j~=a,~+(rn-i+l)~M, for all i. Define the column vector b’ by b: = 

b, +;n. (m - i + 1). M. It is straightforward to verify that (A, b) is a positive instance 

of 0, 1-LinEq if and only if (A’, b’) is a positive instance of 0, 1-LinEq. For any i, 

a:j(l)+aa:,j(2)+. . .+ai,,,r,=bj 

+ r.(m-i+l). M+Ui,j,I,+U,,.,,>,+. . .+U;,,(,) 

=b,+in.(m-i+l).M 

* ai,;c~,+&,r(~)+’ * .+ai,,(r)-bi 

=[in--r].(m-i+l).M 

* Iai,,(l)+ai,J(2)+. . .+a,,(y)-bt/ 

=([fn-r].(m-i+l).MI. 

By condition (3), the sum of all elements in the ith row is at most 2. biy SO the left 

side of the equation is at most bi. Therefore, bi 2 I[( n/2) - r] . (m - i+ 1). MI. Con- 

sequently, as M > b, and m - i + 1 > 0, 2 In - r must be 0. So, r = $I. Furthermore, 

the sum of any $rr - 1 elements from row i and an element of row i - 1 is greater than 

[in-l].(m-i+l).M+(m-i+2).M=fn.(m-i+l)*M+M 

>(n/2).(m_i+l).M+b,=b:. 

So, (A’, b’) satisfies condition (5). Observe that (A’, b’) satisfies conditions (I)-(4) 
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as well. In fact, any solution vector x for the instance (A’, b’) is also a solution 

vector for the instance (A, b) and conversely. Note that (A’, b’) also satisfies condi- 

tions (3) and (4), as A’ is created from A by adding a fixed value to each element 

of the ith row of A for all i, and b’ is obtained in a similar and appropriate manner. 

Let (A, b) be an instance of 0, 1-LinEq satisfying conditions (l)-(5). Create the 

matrix A’ by multiplying each entry in row 1 by 2. Let b’ be the column vector 

obtained from b by replacing the first entry b, by 2. b, . It easily follows that the 

result (A’, b’) satisfies (l)-(6) and is a positive instance of 0, 1-LinEq if and only 

if (A, b) is a positive instance of 0, 1-LinEq. 

The reader should observe that the maximum size of any integer in the constructed 

matrix A is 38m + 24. That is, if we start with the initial O-l valued matrix described 

in the paragraphs directly before the statement of Lemma 2.3 and apply the sequence 

of transformations indicated, then the maximum size of any element in the resulting 

m by n matrix A is 38m +24. So, 0, 1-LinEq restricted to instances that satisfy 

conditions (l)-(6) is NP-complete in the strong sense, i.e., it is NP-complete even 

when the integers in the matrix have size bounded by a polynomial in the size of 

the matrix. 0 

Lemma 2.4. 0, 1-LinEq restricted to instances satisfying conditions (l)-(6) spolr the 

Weighted Min Cut problem restricted to trees with polynomial-size edge weights. 

Proof. Let A be the given rectangular matrix, say with m rows and 2n columns, 

and b be the given column vector such that together they form an instance of 

0, 1-LinEq satisfying conditions (l)-(6). We construct a tree T with polynomial-size 

edge weights and an integer k such that there is a O-l column vector x such that 

Ax = b if and only if T has cutwidth k. In fact, the cutwidth bound k is chosen to 

be the first value of the column vector, namely b, . The tree T consists of a central 

vertex, say c, and 2n attached chains of 2m - 1 edges. The ith such chain, denoted 

by Q, has vertices d,,i, dz,i, . . , dzm-,,i. (T is not just a tree, but is a homeomorphic 

image of a star.) Furthermore, for all j (1 d j G n), the edge weights on the jth chain 

are as follows: 

(1) the first edge in the chain has weight a ,.,, i.e., the value in the first row and jth 

column of A, 

(2) for all i (2 s is m), the 2( i - 1)st edge of 0, has weight a,,, , i.e., the value in 

the ith row and jth column of A, and 

(3) for all i (2sis m), the (2i - 1)st edge of 0, has weight E, = b, - b, + a,, , i.e. 

the first value of the vector b minus the ith value of the vector b plus the value 

in the first column and ith row of A. 

Figure 2 describes a tree T constructed from an instance of 0, 1-LinEq. We show 

that T has cutwidth b, if and only if (A, b) is a positive instance of 0, 1-LinEq. 

(ti): Suppose that there exists a O-l valued column vector x such that Ax = b. 

Let U = {j 1 xj = 1) and V = {j 1 xj = O}. It follows that, for every i, the sum of the n 

elements in row i and a column listed in U is bi and the sum of the n elements in 
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Fig. 2. (a) An instance of 0, I-LinEq. (b) The constructed edge weighted tree T. 

row i and a column listed in V is also b,. We assume, without loss of generality, 

that 1 is in U. We describe a layout of T with cutwidth at most b,. 

Lay out those chains in T corresponding to columns whose index is in U to the 

right of the center node c and those chains corresponding to columns whose index 

is in V to the left of c. Let the chains laid out to the right of c be denoted by 

LA,&,..., D,, where it is assumed that D, is the chain corresponding to column 

1. Let the nodes of the ith chain Di be denoted by d,,i, d,,,, . . . , dzm-I,i. The layout 

of the individual nodes is given by the function f described below. The center node 

is assigned to position 0. (The layout ofthe chains to the left of c is done analogously.) 

f(d,,,,)=(2i-l).n+2.j-1,and 

f(d,i+,,j)=f(d,i,.j)+l, 

forl<icm-landlsjsn 

Figure 3 shows the desired layout of the tree T. 

The cut just to the left of a vertex di,j contains all edges in the tree T that connect 

vertices assigned by the layout to a position to the left of d,,, with either d,, itself 
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35 7 32 13 26 26 13 32 I 35 

Fig. 3. A cutwidth 40 layout of the edge weighted tree T described in Fig. 2. 

or a vertex assigned to a position to the right of d,.,. We show that for every vertex 

d, placed to the right of the center vertex c that the cut to the left of di,i satisfies 

the property that the sum of the weights on all its edges is at most b,. As the layout 

to the left of the center vertex c is similar, it follows that the entire layout of T has 

cutwidth at most b,. 

(a) For all j (1 ~j< n), the edges in the cut just to the left of d,%; are those 

connecting d,,, with dz,l for all i (1 < i <j) and edges connecting the center vertex 

c with d,,;, for all i (Jo is n). The weight of an edge connecting d,,i with d,,, is 

a?,, and the weight of an edge connecting c with d,,, is a,,,. Since the second row 

elements are all smaller than the first row elements, the sum of all such weights is 

bounded above by S = sum{a,%; Ij is in U}. Since x is a solution of the given instance 

of 0, 1-LinEq, it follows that S = b, . So, all the cuts to the left of vertex d,, (1 G j s n) 

have edges whose weights sum up to at most b,. 

(b) For all i (l<iGm-1) and all j (lsj G n), the edges in the cut just to the 

left of d,,., are those connecting dzj+,,,. and dz,+2.kr for all k (1 s k<j) when there 

is a vertex d2,+2,1,, i.e., when i < m - 1, and those connecting d,,-,,, and d2r,k, for 

all k (js ks n). The weight of an edge connecting d2,+,,L and dzi+r,h is a,+,,,, and 

the weight of an edge connecting d,,_,,, and d21,k is a,,,. Since the elements in row 

i-t 1 are all less than the elements in row i, the sum of all such weights is bounded 

by S = sum{ai,, /j is in U}. Since x is a solution of the given instance of 0, 1-LinEq, 

it follows that S = 6, < b,. 

(c) For all i (lCiCm-1) and all j (lsj s n), the edges in the cut just to the 

left of d,,+,,, are those connecting d21+,,k and d,,+2,h for all k (1 s k <j) when there 

is a vertex d2,+Z,k, i.e., when i < m - 1; those connecting d?,_,,,, and d,,,, for all k 

(j< kc n), and the edge connecting d,,,, and d,,,,,,. The weight of an edge 

connecting d,,+,,, and d,,,,., is ari2,h, the weight of an edge connecting d2r_,,L 

and dzl,k is a,+,,h, and the weight of an edge connecting d,,,, and d,,,,,, is Ei+,. 

The sum of all such weights is bounded above by S = sum{a,+7,1, 1 k < j and k in 

U}+sum{a,+,,,,Ik>j and kin U}+E,+,. As all elements in row i + 2 are less than 

all elements in row i + 1, it follows that S is bounded above by sum{ ai+],h 1 k in U} - 

a ,+,,, + Ei+, . That is, if a,+2,, is in {a,+2,k I k < j and k in U}, replace it by a,+,,, and 

replace all other elements a,+z,l, in the set by the corresponding ai+l,r. Each number 

is replaced by a greater number and we have replaced sum{a,+7,1,1 k<j and k in 

U}+sum{a,+,,,Ik>j and k in U} by sum{a,+,,,,Ik in U}-a,+,,,. Finally, as x is 

a solution of the given instance of 0, 1-LinEq, it follows that 

S~b,+r--a,,I,l+Ei+, = b,+,-aj+l,l+b,-b,+,+a,+l,l = h. 
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(+): Let f be a layout of T with cutwidth at most 6,. We need to show that there 

is a O-l solution vector x for the instance (A, b) of 0, 1-LinEq. Observe that the 

sum of the weights on the 2n edges incident to the center vertex c is 2b,. Con- 

sequently, the layout must place some of T’s chains entirely to the left of c and the 

remaining chains entirely to the right of c. That is, the cuts just to the right and left 

of the center vertex c must have edges whose weights sum to b, and these weights 

come just from those edges incident to the center vertex c. Consequently, we get a 

partition of the columns of A into R = {i 1 the chain of T corresponding to column 

i is placed to the right of c} and L = {i 1 the chain of T corresponding to column i 

is placed to the left of c}. It follows that 

sum{a,,, 1 i is in L} = b, = sum{a,,, 1 i is in R} 

By condition (5) it follows that there are n elements in R and n elements in L. Let 

{Di 1 i in R} be the set of n chains placed to the right of the center vertex c in the 

layout. For all i, let Q contain the vertices d,,;, d2,i,. . , d,,,_,,;. Let x be the O-l 

vector such that Xi = 1 if and only if i is in R. We show that Ax = b. (We have 

already shown that the first entry in the vector Ax is b, .) 

We now show that the first n positions to the right of c in the layout f must 

contain the vertices in {d,,i 1 z in R}. Assume not. Then there is a j (0 c j < n) such 

that the first j vertices to the right of c form the set {d,,i I i in R(+)} for some subset 

R(+) of R, and the (j+ 1)st vertex to the right of c, say vertex x in some chain Dkr 

is not d,,i for any i. Let R(-) denote the set of indices for chains placed to the right 

of c that do not have their first vertex placed between c and x. As x is not in 

{d,,i) i in R}, it follows from the definition of the tree T that it is incident to an edge 

with weight E,, for some s (1~ s d m). Furthermore, 

(1) there is an edge connecting each of the j vertices in the set {dr,i 1 i in R(+)} 

placed between c and x to the corresponding vertices in the set {d,,, I i in R(+)} and 

the sum of the weights of these edges is sum{a,,i I i in R(+)} and 

(2) there is an edge connecting the center vertex c to each of the n -j vertices 

in the set {d,,, / i in R( -)} and the sum of the weights on these edges is {a,,, 1 i in R( -)}. 

It follows that there is a cut immediately to the right of x with edges whose 

weights sum to at least 

sum{a,,,[iin R(+)-{j}forsomejin R(+)}+sum{a,,,Iiin R(-)}+E,. 

(The value uz,j is not included in this sum if x = d2,j.) An example of the general 

situation described is shown in Fig. 4. 

Substituting the defined value for E,, we obtain 

sum{a,,,Iiin R(+)-{j}forsomejin R(+)} 

+sum{a,,iIiin R(-)}+b,-b,+u,,. 

As the cutwidth is at most b,, this sum must be at most b,. So, 

sum{u,,i/iin R(+)-{j}f orsomejin R(+)}+sum{u,,i~iinR(-)}+u.~,, 

s b,. 
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(b) 

25 

Fig. 4. (a) An instance (A, b) of 0, 1-LingEq. (b) A layout of the constructed edge weighted tree T that 

does not place all vertices adjacent to c as close to c as possible and hence has cutwidth largerthan b, = 85. 

However, as each element in the ith row of A is larger than any element in the 

(i + 1)st row for all i, and the sum of any element in row s with n - 1 elements from 

row s - 1 is larger than b,, it follows that 

sum{a2,i 1 i in R(+) -{j} f or somej in R(+)}+sum{a,,, 1 i in R(-)I 

> b,. 

This contradicts the previous inequality. (An identical argument shows that the first 

n vertices placed to the left of c are those adjacent to c in the tree.) Let R(0) = 

{d,,, / i in R} and, for all j>O, let R(j) = {d2j,ir d,,+,,i 1 i in R}. Similarly, let L(0) = 

{d,,i~iinL}and,forallj>O,let L(j)={d2j,,,d2,+,,,IiinL}. 

We have seen that the layout f assigns all vertices in R(0) to the integers 1,. . . , n 

and all vertices in L(0) to -n, . . . , - 1. We now show that f also places, for all j > 0, 

all vertices in R(j) to the right of all vertices in R( j - 1). Suppose not. Consider 

the first occurrence of a vertex x in U{R(j) Ij > r} to the left of a vertex in R(r). 

As this is the first occurrence of such a situation, the vertices to the left of x are in 

the indicated order. So, the cut just to the right of x contains n - 1 edges of the 

following types: 

(a) those connecting vertices in R(r) with vertices in R(r+ 1); 

(b) those connecting vertices in R(r - 1) with R(r), or 

(c) those connecting a vertex in R(r) with another vertex in R(r). 

Furthermore, there must be at least one edge connecting a vertex in R(r - 1) with 

one in R(r). (The last condition follows from the assumption that there is at least 
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one vertex in R(r) to the right of the misplaced vertex x.) The sum of the weights 

on these n - 1 edges is at least as large as the sum of one value from the rth row 

of A and n - 2 values from the (r+ 1)st row. Also, there is an edge incident to x 

with weight E,, for some s > r. Such a situation is shown in Fig. 5. 

8 

(b) 

11 

Fig. 5. (a) An instance (A, b) of 0, I-LinEq. (b) A layout of the constructed edge weighted tree 7’ that 

does not place all the vertices in R(2) to the right of the vertices in R(1) and hence has cutwidth larger 
than b, = 85. 

As E, = 6, - b, + a,,,, and all elements in the (r + 1)st row are greater than or equal 

to any element in the sth row, the sum of all the weights on edges in the cut to the 

right of x must be at least as large as b, - b,y + S, where S is the sum of n - 1 elements 

in the sth row of A plus one element from the rth row, where s > r. By condition 

(5), S is greater than b,. So, 6, -b, + S > 6,. However, this contradicts the fact that 

the layout f has cutwidth b,. By a similar argument it can be seen that f places, 

for all j > 0, all vertices in L(j) to the right of all vertices in L(j+ 1). 

Observe that f( dz,+,,i ) =f(d2,,i) + 1 must be true, for all i in R. If not, there would 

be a cut between consecutive vertices in the layout with edges having weights E, 
and E,, f > 1. (That is, the edge connecting d,, and d,,+,,i has weight Ej. When 

some other vertex is placed between these two vertices, as it is connected to an edge 

with weight E, for some t, we have a cut with edges of weight E, and E,.) Observe 

that 

E,+E,=b,-b,+a,,,+b,-b,+a,,,=b,+(b,-bj-b,)+a;,,+a,,, 

2 b, + a,,, + a,, ’ b, , 

as b, is more than twice as big as either b, or b, by condition (6). However, this 
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contradicts the fact that the layout has cutwidth b, . A similar argument shows that 

f(d2j+l,i) =f(d2j,i) - 1 is true for all i in L. 

For any j > 0, consider the vertex in R(j) closest to the center vertex c in the 

layout. Let it be d,,, . Then, the sum of the weights on the edges in the cut immediately 

to its right is 

sum{ aj,$ 1 i in R} - uj,p + E, 

= sum{a,,,IiinR}-a;,,+b,--b,+a,,,. 

As f is a layout with cutwidth at most b,, it follows that 

sum{+ i in R}-aj.p+~,,, 4 bj 

and, in fact, as 

aj.p 4 a,,,, sum{ a,, 1 i in R} 4 b,. 

A similar argument shows that sum{aj,, 1 i in L} s b,. By condition (3) on the given 

instances of 0, 1-LinEq, 

sum{ a,, I i in R} + sum{ a,,, ( i in L} = 2bj, 

it follows that sum{+ / i in R} = b,. 

Thus, we have Ax = b. It follows that Ax = b if and only if the weighted tree T 

has cutwidth b,. 0 

Combining Lemmas 2.3 and 2.4 we obtain the following theorem. 

Theorem 2.5. The Weighted Min Cut problem restricted to trees with polynomial edge 

weights is NP- complete. 

Combining Theorem 2.5 with Lemma 2.1 we obtain the next theorem. 

Theorem 2.6. The Min Cut problem restricted to planar graphs is NP-complete. 

Consider the weighted tree T constructed in the proof of Lemma 2.4. We can 

ensure that every edge has weight >2n, by requiring each element of the matrix A 

to be greater than 2n. This can easily be done by adding 2n to each element of the 

matrix and the value in.2n = n2 to each element of the column vector b. As observed, 

the weighted tree T constructed in the proof of Lemma 2.4 is a homemorphic image 

of a star. Consequently, one can form a series-parallel graph, say SP( T), by 

(1) adding a new vertex x and an edge with weight 1 connecting each leaf of T 

to x and 

(2) replacing each of the edges with a weight, say k, by k parallel edges (and 

adding a degree-2 vertex, if desired, to all resulting parallel edges). 

It follows that SP( T) has cutwidth b, + n if and only if T has cutwidth b,. Note 

that, because each of the weights on edges of T are greater than 2n and the sum 
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of the weights incident to the center vertex x is 2. b, , a cutwidth b, + n layout of 

SP( 7) must still place n chains incident to the center vertex c to the right of c and 

the other n chains to the left of c. In fact, a cutwidth b, layout of T can be transformed 

into a cutwidth b, + n layout of SP( T) simply by inserting the vertex x in a position 

next to c and a cutwidth b, + n layout of SP( T) can be transformed into a cutwidth 

b, layout of T simply by deleting x and its 2n incident edges. Figure 6 shows an 

example of such a weighted tree T, the corresponding series-parallel graph SP( T), 

and a layout of SP( T). Thus, we have the following corollary. 

32 

\ 

7 

(b) 

Fig. 6. (a) The series-parallel graph SP( T) constructed from the edge weighted tree T described in Fig. 

2. (b) A cutwidth 42 layout of SP( T). 
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Corollary 2.7. The Min Cut problem restricted to series-parallel graphs is NP-complete. 

Corollary 2.8. 7’he Min Cut problem restricted to 2-outerplanargraphs is NP-complete. 

(Moreover, the Min Cut problem for outerplanar multigraphs is NP-complete.) 

Lemma 2.9. 7’he Min Cut problem for planar graphs spOly the Min Cut problem for 

planar graphs with maximum vertex degree 3. 

Proof. Let G be a planar graph and k be a positive integer. We construct a new 

planar graph G’ by substituting a planar component for each vertex of G. The 

components substituted for vertices are U-shaped walls. The U-shaped wall 

U( m, n, p, q), where n 2 2q, is the graph with the vertex set 

V={(i,j)ll<i<m and lSjSn}u{(i,j)Il~i~m+p and lsjsq} 

u{(i,j)Il~i~m+p and n-qflsjsn} 

and the edge set 

{((Cj), (i,j+ 1)) I f oralli,jsuchthat(i,j)and(i,j+l)arein V} 

u{((i,j),(i+l,j))lforalli,jsuchthat(i,j),(i+l,j)arein Vandatleast 

one of the following is true: (1): i+j is even, (2): j = 1, (3): j = n, (4): 

m<i<m+p and j=q, or (5): m<i<m+p and j=n-q+l}. 

The U-shaped wall U(4, 11,4,4) is shown in Fig. 7. Observe that U(m, n, p, q) has 

maximum vertex degree three if m + q is even and n is odd. (The principal reason 

that U( m, n, p, q) has maximum vertex degree 3 is that the vertical edges are staggered 

from row to row, as shown in Fig. 7. The conditions “m + q is even” and “n is odd” 

ensure that the edges around the periphery of the U-shaped wall do not make 

peripheral vertices have degree 4.) 

Fig. I. The U-shaped wall U(4,11,4,4). The vertices a and b are examples of “connection points”. 
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It is known that the cutwidth of a rectangular wall with m rows and n columns, 

when n > 4m2 is m + 1 [17]. (A rectangular wall with m rows and n columns is just 

U( m, n, 0, O).) In fact, an optimum cutwidth layout simply lays out the wall column 

by column, i.e., all of the vertices in column i are positioned before the vertices in 

column i + 1. Moreover, the vertices within a column are laid out in the following 

order: for all j, the vertex in row j is assigned a position to the left of the vertex in 

row j+l. 

We replace each vertex of G with the U-shaped wall U(2k, 16k2n, 2k, 16k2). It 

has cutwidth 4k+ 1. That is, it has cutwidth at least 4k+ 1, as it has a rectangular 

wall with 4k rows and 16k2 columns as a subgraph, and it has cutwidth no larger 

than 4k + 1, as it can be laid out column by column in the manner described above. 

Let U, denote the copy of U(2k, 16k2n, 2k, 16k’) that is substituted for vertex x of 

G. Observe that there are vertices on the periphery in the short part of U, that have 

only two incident edges. These are called “connection points”. One such point is 

shown in Fig. 7. Each edge of G that is incident to vertex x connects to a distinct 

connection point of U, in G’. Thus, for every edge {x, y} of G, there is an edge in 

G’ connecting a unique connection point of U, to a unique connection point of U,,. 

It follows that G’ has maximum vertex degree 3, as the components U, substituted 

for each vertex x in G have maximum vertex degree 3 and the edges connecting 

distinct components are made to distinct vertices in these components that have 

degree 2 (when considered as part of the component alone). We claim that G has 

cutwidth k if and only if G’ has cutwidth k’= 5k+ 1. 

(+): Given a cutwidth k layout of G, we arrange the U-shaped components of 

G’ in the same order as the vertices of G. That is, all of the vertices of U, will lie 

to the left of all of the vertices of U,>, if and only if x lies to the left of y in the 

layout of G. Furthermore, the U-shaped components are laid out in the manner 

described above so that they have cutwidth 4k-t 1. Since the given layout of G has 

cutwidth k, there are never more than k edges crossing between consecutive vertices 

in the layout of G. Consequently, there will never be more than k edges of G’ 

passing over the tall portion of any U-shaped grid. Since the grid itself has cutwidth 

4k + 1, the total cutwidth of G’ with these additional edges is at most 5 k + 1. (Note 

that, since G has cutwidth k, there cannot be more than 2k edges incident to any 

vertex x of G. Consequently, there cannot be more than 2k edges incident to 

connection points of U,. So, there can be at most 2k such edges adding to the total 

cutwidth in the short section of the U-shaped wall. Since the short section has 

cutwidth 2k, the total cutwidth in this part of the layout is 4k < 5k+ 1.) 

(+): Given a cutwidth 5k-t 1 layout, say L’, of G’, we observe that it is not 

possible in the layout L’ for U-shaped walls to overlap substantially. That is, each 

U-shaped wall U(2k, 16k2n, 2k, 16k2) has cutwidth 4k+ 1 and substantial overlap- 

ping of two such walls would combine their cutwidth yielding cutwidth at least 

8k + 2 > 5 k + 1. Consequently, from the given layout L’ of G’, one obtains an induced 

layout, say L, of G. The vertices of G are arranged in L in the same order as the 

U-shaped walls appear in L’. This layout of G has cutwidth k since, for any vertex 
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x of G, there can be at most k edges incident to connection points of U, passing 

over either of the tall segments of U,. (Otherwise, the cutwidth of L’ would not be 

5k + 1.) Therefore, there are at most k edges cut by any line segment drawn between 

two consecutive vertices of L. 0 

Corollary 2.10. The Min Cut problem is NP-complete even when restricted to planar 

graphs with maximum vertex degree 3. 

Corollary 2.11. The Search Number problem is NP-complete even when restricted to 

planar graphs with maximum vertex degree 3. 

Proof. This follows immediately from Corollary 2.9 since the Search Number 

problem is identical to the Min Cut problem for graphs with maximum vertex degree 

3 [16]. 0 

Corollary 2.12. The vertex Separation problem is NP-complete even when restricted 

to planar graphs with maximum vertex degree 3. 

Proof. This follows immediately from Corollary 2.11 by a transformation described 

in [5], where it is shown that, for any graph G, the vertex separation of a transformed 

graph, denoted by 2e( G), is identical to the search number of G. (The graph 2e( G) 

is the homeomorphic image of G obtained by adding two degree-2 vertices into 

every edge of G.) If G is planar and has maximum vertex degree 3, then 2e(G) is 

planar and has maximum vertex degree 3. Thus, G has search number k if and only 

if 2e( G) has vertex separation k. So we have a polynomial-time reduction from the 

Search Number problem restricted to planar graphs with maximum vertex degree 

3 to the Vertex Separation problem restricted to planar graphs with maximum vertex 

degree 3. q 

Corollary 2.13. The Progressive Black/ White Pebble Demandproblem is NP-complete 

even when restricted to planar dags with maximum vertex degree 3. 

Proof. This follows immediately from Corolloary 2.12 by a reduction described by 

Lengauer from the Vertex Separation problem to the Progressive Black/White Pebble 

Demand problem [13]. Since Lengauer’s reduction preserves planarity and only 

adds vertices with two incoming edges, the result follows. 0 

Corollary 2.14. The Modified Min Cut problem is NP-complete even when restricted 

to planar graphs with maximum vertex degree 3. 

Proof. The reduction described in the proof of Lemma 2.9 can be used for a reduction 

from the Min Cut problem restricted to planar graphs to the Modified Min Cut 

problem restricted to planar graphs with maximum vertex degree 3. That is, G has 
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cutwidth k if and only if G’, as described in the proof of Lemma 2.9, has modified 

cutwidth 5k. 0 

Corollary 2.15. The Topological Bandwidth problem is NP-complete even when restric- 

ted to planar graphs with maximum vertex degree 3. 

Proof. This follows immediately from Corollary 2.14 using the result that the 

topological bandwidth of a graph G with maximum vertex degree 3 is exactly 1 

greater than the modified cutwidth of G [17]. 0 
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