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On the Subsets Product in Finite Groups 

Y AHYA OULD HAMIDOUNE 

Let B be a proper subset of a finite group G such that either B = B - 1 or G is abelian. We 
prove that there exists a subgroup H generated by an element of B with the following property. 
For every subset A of G such that An H * 0, either He A U AB or IA U ABI ;;;.IAI + IBI. 
This result generalizes the Cauchy-Davenport Theorem and two theorems of Chowla and 
Shepherdson. 

1. INTRODUCfION 

The following result was proved independently by Cauchy [4] and Davenport [6]. 

THEOREM LA (The Cauchy-Davenport Theorem). Let p be a prime number, and 
let A and B be two proper subsets of Zp. Then IA + BI ~ min(IAI + IBI-1, p). 

Using the Davenport transfer argument, Chowla and Shepherdson proved the 
following two results. 

THEOREM 1.B (Chowla [5]). Let A and B be two proper subsets of Zn such that B 
contains 0 and all the elements of B\{O} are units of Zn. Then either A + B = Zn or 
IA + BI ~ IAI + IBI- 1. 

THEOREM 1.C (Shepherdson [15]). Let A and B be two proper subsets of a finite 
abelian group G such that B cA. Then either IA U (A + B)I ~ IAI + IBI or there is b E B 
such that A U (A + B) contains the subgroup generated by b. 

As a consequence of Theorem 1.C, Shepherdson obtained the following: 

THEOREM 1.D (Shepherdson [15]). Let G be a finite abelian group and let S be a 
subset of G. Let k E ~ be such that k lSI ~ IGI. Then there is a sequence of natural 
numbers (ns; s E S) such that ~ nss = 0 and 1:s;; ~ ns :S;; k . 

The last result is only stated by Shepherdson for 7Ln and Z:, but his method works 
for all finite abelian groups. 

In [9] we proved the following: 

THEOREM I.E ([9]). Let G be a finite group and let S be a non-empty subset of G. 
Then there is a non-void sequence of elements of S with product equal to 1 and length at 
most flGI/ISIl. 

We did not realize in [9] that our result was a generalization of Shepherdson's 
Theorem 1.D to the non-abelian case. Indeed, we have only just become aware of 
Shepherdson's result. 

In [9] we obtained a more general lower bound for the length of a cycle in a graph 
with a transitive group of automorphisms. 
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Recently, Theorem 1.D was rediscovered by Alon [1]. His approach uses a result of 
Scherk [14]. Alon used Theorem 1.D to prove the following: 

THEOREM 1.F (Alon [1 D. For every E > 0 and k> 1, there is some natural number 
no such that for every n > no, and every subset A c Zn satisfying 

there is a subset of A with zero sum and cardinality at most k. 

In a note added in proof, Alon pointed out that Theorem 1.F is also valid for any 
abelian group of odd order [1]. 

Our main result is the following. 
Let S be a subset of a finite group G such that S = S-1 or G is abelian. We show that 

there exists a subgroup H generated by an element of S with the following property. 
For every subset A of G such that AnH*0, either HcAUAS or IAUASI;;;o 
IAI+ISI· 

This result generalizes the Cauchy-Davenport Theorem LA, Chowla's Theorem 1.B 
and Shepherdson's Theorem 1.C. As a consequence we obtain the following 
generalization of Alon's Theorem 1.F. 

For every E > 0 and k> 1, there is some natural number no such that, for every 
n > no, and every subset A c Zn satisfying 

there is a non-zero element of A all of the multiples of which can be expressed as a sum 
of a subset of A of cardinality at most k. 

Our proofs are based on some properties of the atoms in Cayley graphs established 
in [7-11]. We recall some definitions and results in Section 2. We also give some proofs 
for the convenience of the reader. 

2. PRELIMINARIES 

The smallest integer ;;;Or will be denoted by r r 1. The cardinality of a set V will be 
denoted by IVI. The diagonal of V x V will be denoted by .1(V). By a graph we mean 
a graph of an anti-reflexive relation. Such a graph may be defined as an ordered pair 
(V, E), where V is a set and E is a subset of V x V\.1(V). Let X be a graph. The 
vertex-set of X will be denoted by V(X). Similarly, the edge-set of X will be denoted 
by E(X). Let A be a subset of V(X) and let E[A] = {(x,Y)EE(X) Ix,YEA}. The 
subgraph X[A] of X induced by A is the graph (A, E[AD. The graph X is said to be 
complete if E(X) = V(X) x V(X)\.1(V(X». 

Let X be a graph and let A be a subset of V(X). The set of vertices incident from A 
will be denoted by r1(A), or simple r+(A). More precisely, r1(A) = {y E V(X): 3x E 

A such that (x, y) E E(X)}. We denote r1(A)\A by N1(A). Letting x E V(X), we 
write r+(x)=r+({x}) and d1(x) = 1F1(x) I· We recall that d1(x) is called the 
outdegree of x. If all the vertices have the same outdegree, the graph is said to be 
outregular. Let X be an outregular graph. The outdegree of any vertex of X will be 
called the outdegree of X and will be denoted by d+(X). 

Let X = (V, E) be a graph. The inverse graph of X is the graph X-I = (V, E- 1
), 

where E-1 = {(x, y) I(y, x) E E}. Let A be a subset of V(X) and let x be a vertex. We 
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put r1-1(A) = riCA). Similarly, we define Ni(A) and di(x). We call di(x) the 
indegree of x with respect to X. The graph X is said to be inregular if X-I is outregular. 

A sequence of distinct vertices [Xl> xz, ... , xd such that (Xi' Xi+1) is an edge, 
1 ~ i ~ k -1, is said to be a path from Xl to Xk with length k -1. Of course, we admit 
the case k = 1, where the path consists of a single vertex. 

Let X = (V, E) be a graph containing two vertices X and y. A set of paths from X to y 
is said to be openly disjoint if the intersection of any pair of these paths is equal to 
{x, y}. The maximum number of openly disjoint paths connecting X to y will be 
denoted by -rex, y). We put -reX) = mine -rex, y): x t= y and x, y E V(X». 

Now assume that (x, y) is not an edge. A set of the form N+(A), where x E A and 
y ft (A U N+(A» is said to separate y from x. The minimum cardinality of a set 
separating y from x will be denoted by K(X, y). It is obvious that -rex, y) ~ K(X, y). 

THEOREM 2.A (Menger). Let x and y be two vertices of a graph X such that (x, y) is 
not an edge of X. Then K(X, y) = -rex, y). 

This result is well known and several proofs exist. A short proof may be found in 
[12]. 

THEOREM 2.B (Menger). Let X be a graph. Let A and B be two subsets of VeX) 
such that IAI = IBI = -reX). Then there are -reX) disjoint paths from A to B. 

PROOF. In order to deduce Theorem 2.B from Theorem 2.A, we add two vertices u 
and v and add the edge-set {(u, x) I x EA} U {(y, v) lYE B}. Now K(U, v);;::. -reX). By 
Theorem 2.A, there are -reX) openly disjoint paths from u to v. 0 

A graph X is said to be strongly connected if for all x, y E VeX) there is a path 
connecting x to y. Note that a graph with one vertex is strongly connected. Let X be a 
graph. A subset C of VeX) such that X[CJ is strongly connected and which is maximal 
with respect to this property is called a component of X. Note that X is strongly 
connected if X-I is strongly connected. A proper subset A of VeX) is said to be a 
source if Ni(A) = 0. A sink of X may be defined as a source of X-I. 

The following lemma is well known and easy. 

LEMMA 2.e. If not strongly connected, a finite graph contains at least two 
components, of which one is a source and another is a sink. 

In the last part we shall use a Ramsey argument due to Alon. We summarize this 
method below. 

Let G be a finite group containing a subset S and an element x. A non-void sequence 
of elements of S with product equal to x will be called a factorization of x with respect 
to S. 

Let G be a finite abelian group. Take r( G) to be the maximal cardinality of a subset 
A of G such that x + y t=2z, for any x, y, z EA with x t=y. 

THEOREM 2.D (a corollary of Roth's theorem [13]). For any E > 0 there exists some 
natural number no with the following property. If n > no then r(Zn) ~ En. 

THEOREM 2.E (Brown and Buhler [3]). For any E > 0 there exists no with the 
following property. For every abelian group of odd order at least no, r( G) ~ En. 
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THEOREM 2.F (Alon 1]). Let A be a subset of an Abelian group G satisfying 
IAI ~n/k + (1 + 3(k - 2»r(G) + 1. Then there is a subset B of A\{O} of order at most 
n/k such that the sum of any factorization of length no more than k with respect to B 
may also be expressed as the sum of a non-void subset of A of cardinality at most k. 

PROOF. The proof is just an adaptation of Alon's proof for proposition 2.5 of [1]. 0 

3. ATOMS 

Let us give some definitions. 
Let X be a non-complete strongly connected graph and let F be a subset of V(X). 

We say that F is a positive pre fragment of X if F"* 0 and F U N+(F) "* V(X). If so, we 
put F = V(X)\(F U N+(F». A positive prefragment of X-l is said to be a negative 
prefragment of X. A separating set of X is a set of the form N+(F), where F is a 
positive prefragment of X. 

REMARK. Every non-complete strongly connected graph has a positive prefrag
ment. Any non-void subset of a positive prefragment is also a positive prefragment of 
X. 

Let X be a strongly connected graph. The connectivity K(X) of X is defined as 
follows: 

K(X) = min{IN+(F)IIF is a positive prefragment of X or IFI = 1}. 

It follows that the connectiyity of a non-complete graph is the minimal cardinality of a 
separating set. 

LEMMA 3.1. Let X be a strongly connected graph. Then K(X) = K(X- l). If X is 
non-complete then K(X) = T(X) = min(K(x, y): (x, y) rt E(X». 

LEMMA 3.2 [7]. Let X be a non-complete strongly connected graph and let A be a 
non-void subset of V(X). Then IN+(A)I ~ min(K(X), IV(X) - AI). 

We say that F is a positive fragment of X if F is a positive prefragment of X and if 
IN1(F)1 = K(X). A positive fragment of X-l is said to be a negative fragment of X. 

Let a+(X) be the minimal cardinality of a positive fragment of X. Let a(X) = 
min(a+(X), a+(X- l». 

A positive (respectively, negative) fragment of X with cardinality a(X) is said to be a 
positive (respectively, negative) atom of X. Note that the atoms of a graph might all be 
positive or all be negative. 

LEMMA 3.3([7], Section 2). Let X be a non-complete strongly connected graph and 
let F be a positive fragment of X. Then F is a negative fragment of x. 

Therefore (F, N+(F), F) is a partition of V(X) into a positive fragment, a minimum 
separating set and a negative fragment. It follows that the cardinality of an atom is less 
than IV(X)I/2. 
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LEMMA 3.4 ([7], Seotion 2). Let X be a non-complete strongly connected graph and 
let A be a positive atom of X. Then X[A] is strongly connected. 

The definitions immediately imply the following: 

LEMMA 3.5 [7]. Let X be a non-complete strongly connected graph. Then K(X) ~ 
min(d+(x); x E V(X». Moreover, the equality holds if X has a positive atom of 
cardinality 1. 

The following result is the basic property of atoms: 

PROPosmON 3.6 ([7], Proposition 1). Let X be a non-complete strongly connected 
graph. Let A be a positive atom of X and let F be a positive fragment of X having a 
non-void intersection with A. Then A is contained in F. 

In particular, two distinct positive atoms are disjoint. 

We shall use the following easy lemma: 

LEMMA 3.7. Let X be a strongly connected graph and let A be a subset of VeX). 
Then K(X[V\A]) ~ K(X) -IAI . 

More details about these questions may be found in [7-9). 

4. CAYLEY GRAPHS 

A graph X is said to be vertex-transitive if its group of automorphisms acts 
transitively on its vertex-set. It is an easy exercise to show that a (finite) vertex
transitive graph X is outregular and inregular. Moreover, d+(X) = d-(X). An 
important class of vertex-transitive graphs is the class of Cayley graphs defined below. 

Let G be a group and let S be a subset of G\ {1}. The Cayley graph of G with respect 
to S is the graph Cay(G, S) = (G, E), where E = {(x, y) I x-1y E S} . The subgroup 
generated by S will be denoted by (S) . Letting a E G, the left translation x- ax will be 
denoted by Ya. 

REMARK. Let X = Cay(G, S). If F is a subset of G, then N;(F) = (FS)\F. 

REMARK. Let G be a finite group and let S be a subset of G\ {1}. A factorization of 
an element x E G\{1} with respect to S determines a unique path with the same length 
from 1 to x and vice versa. 

LEMMA 4.1. Let G be group and let S be a subset of G\ {1}. For every element. of G, 
Ya is an automorphism ofCay(G, S). 0 

REMARK. If Cay(G, S) has a positive atom, then there is a unique positive atom of 
Cay(G, S) containing 1. Indeed, let B be any positive atom of Cay(G, S) and let 
a E B- 1

• By Lemma 4.1, aB is a positive atom. The uniqueness follows by Proposition 
3.6. 

LEMMA 4.2. Let G be a finite group and let S be a subset of G\{l}. Then any 
connected component of Cay( G, S) induces a graph isomorphic to Cay( (S), S». In 
particular, Cay(G, S) is strongly connected iff S is a generating set. 
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PROPOsmON 4.3 ([9], Theorem 3.1). Let G be a finite group and let S be a subset of 
G\{1}. Let A be a positive atom of Cay(G, S) containing 1. Then A is a subgroup 
generated by S n A. The other positive atoms are exactly the left cosets modulo A. 

PROOF. Let x EA. By Lemma 4.1, xA is a positive atom. But xA n A '* 0. By 
Proposition 3.6, xA = A. Therefore A is closed under product. Hence A is a subgroup 
(observe that A is finite). 

Let x EA. By Lemma 3.4, there is a path [xo, Xl, ... ,Xk-l> Xk] contained in X[A] 
such that Xo = 1 and Xk = X. Let Si = XjIXi+l, for 0.:;; i .:;; k - 1. By the definition of 
Cay(G, S), we have Si E S, for 0.:;; i.:;; k -1. Since A is a subgroup, we have Si E A, for 
o .:;; i .:;; k - 1. It follows that x = llii E (S n A ). 

By Lemma 4.1 any left coset modulo A is a positive atom. Now any positive atom 
intersects one of the left cosets, and coincides with it by Proposition 3.6. 0 

We need the following results. 

PROPosmON 4.4 ([11], Corollaire 2.2). Let G be a finite abelian group and let S be a 
subset of G\{O}. Let A be a positive atom ofCay(G, S); Then A is also a negative atom 
of X. 

PROOF. We may assume that 0 E A, by Lemma 4.1. 
By Proposition 4.3, A is a subgroup. It is easily verified that the mapping x- -x is 

an a isomorphism from Cay(G, S) onto Cay(G, -S). It follows that -A =A is a 
positive atom of Cay(G, -S) = (Cay(G, S»-l. Hence A is a negative atom of 
Cay(G, S). 0 

COROLLARY 4.5 ([11], Corollaire 2.3). Let A be an atom of an abelian Cayley graph. 
Then N+(A) is a union of cosets modulo A. In particular, IAI divides K(X). 

REMARK. Let X be an abelian Cayley graph. By the above results, there is a unique 
atom containing 0 which is both positive and negative. 

5. WELL CONNECTED SUBSETS 

Let X = (V, E) be a graph and let A be a subset of V. We say that A is well 
connected if T(X, y) = d+(x) for all x, YEA such that x '* y. 

LEMMA 5.1. Let G be a finite group, let S b.,e a subset of G\ {1} and let A be a well 
connected subset of Cay(G, S) containing 1. Then for every x E A there is a non-void 
factorization of x with length at most nGI/ISIl . 

PROOF. Let x EA. Take n = IGI and s = lSI. 

Case 1: x '* 1. Since A is well connected there are s openly disjoint paths (Ili) from 
1 to x. We clearly have 2 + E(lllil- 2) .:;; n. It follows that there is some i such that 
Illil.:;; (n + 2s - 1)/s. It follows that Illil.:;; r n/s 1 + 1. This path corresponds to a 
factorization of x with respect to S with length.:;; rn/s 1 (cf. Remark 2, Section 4). 

Case 2: x = 1. The factorization exists by Theorem I.E. 0 

Let X = (V, E) be a graph and let A and B be subsets of V such that IAI = IBI = k. A 
set of k disjoint paths from A to B containing only vertices of A U B U C is called a 
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k-linking from A onto B over C. 

PRoPosmON 5.2. Let X = (V, E) be a graph and let A be a positive fragment of X. 
Let B be a subset of N+(A) and let C be a subset of B U (V\(A U N+(A»). If Band C 
are of the same cardinality, then there is a linking from B onto Cover V\(A U N+(A». 

PROOF. Let X' = X\(N+(A)\B). By Lemma 3.7, K(X') ~ K(X) -IN+(A)\BI = IBI. 
By Menger's Theorem 2.B, there are IBI disjoint paths from B to C in X'. Since 
N1.(A) is a subset of B these paths cannot intersect A. Observe that a path which 
intersects A must use an element of N1·(A) c B distinct from its origin. This 
contradicts the assumption that the paths are simple and disjoint. Also, the vertices of 
these paths are contained in (V\(N+(A» U B. Hence this linking from B to C is over 
V\(AUN+(A». 0 

COROLLARY 5.3. Let X = (V, E) be a graph and let A be a negative fragment of X. 
Let B be a subset of N-(A) and let C be a subset of B U (V\(A U N-(A))) be such that 
ICI = IBI· Then there is a linking from C onto B over V\(A U N-(A» such that 
IBI =ICI· 

PROOF. The proof follows by applying Proposition 5.2 to X-I. o 

THEOREM 5.4. Let G be a finite group and let S be a non void subset of G\{l} such 
that S = S-I. Then there exists s E S such that the subgroup generated by s is well 
connected in Cay(G, S). 

THEOREM 5.5. Let G be a finite abelian group and let S be a non-void subset of 
G\{l}. Then there exists s E S such that the subgroup generated by s is well connected in 
Cay(G, S). 

We give a common proof for these two theorems below. 

PROOF OF THEOREMS 5.4 AND 5.5. Suppose the theorem false and take a counter
example with minimal order. We prove the following points. 

1. (S) = G. Since Cay(G, S) is a counter-example, Cay«S), S) is also a counter
example. By the minimality of IGI, we have G = (S). It follows that X = Cay(G, S) is 
strongly connected. We see easily that X is a non-complete graph, since otherwise G is 
well connected. Let A be an atom of X containing 1. 

11. K(X) < lSI and S n A -=1= 0. We have K(X) < lSI, since otherwise G is well 
connected by Menger's Theorem 2.A. By Lemma 3.5, we have IAI > 1. By Proposition 
4.3, A is a subgroup generated by S n A. In particular, S n A -=1= 0. 

111. The atom A is both positive and negative. This is obvious if S = S-I, since 
N+(A) = N-(A). It follows from Proposition 4.4, when G is abelian. Let Y = 
Cay(A,SnA). If S=S-1 (respectively, G is abelian), we have snA=s-lnA-1= 
(SnA)-1 (respectively, A is abelian). By the minimality of IGI, there is some 
s E S n A such that H = (s) is well connected in Y. By our hypothesis, there are two 
elements x and y of H such that 'l"x(x, y) < lSI. 

Put B = N+(x)\A, C = N-(y)\A, T = N+(A), K= T\N+(x) and Ko= K nN-(y). 
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IV. We have BeT and C c N-(A). These relations follows obviously from the 
definitions. 

V. IC! = IBI = IS\AI and IKI < IS nAI < IAI· We clearly have lSI = IN+(x)1 = 
IN+(x) nAI + IN+(x)\A1 = IS nAI + IBI. Similarly, lSI = IN-(x)1 = IN-(x) nAI + 
IN-(x)\A1 = IS nAI + Ic!· It follows that 

IKI = IT - N+(x)1 = IT - BI = ITI-IBI < ISI-IBI = IS\BI· 

Therefore, we have IKI < IS\BI = IS nAI < IAI. 

VI. -ry(x, y) = IS n AI. This follows since (s) is well connected in Y. 

VII. There is a subset Uo c G\(A U N-(A) U K) and a linking from Uo onto Ko over 
K. The set F = G\(A U N-(A» is a fragment. By V, We have IKI = IKol + IK\Kol < 
IAI ~ IFI. We see easily that Ko c N+(A) n N-(A) and hence Ko n F = 0. It follows 
that IKol ~ IK -PI ~ IF - KI. Let U be a subset of F\K such that lUI = IKol. 

By Corollary 5.3 and III, there is a linking from U onto Ko over G\(A U N-(A». 
The origins of this linking belong to G\K, while the ends belong to Ko. We define Uo 
to be the set of last elements of this linking not belonging to K. It is clear that Uo 
satisfy the required property. 

VIII. There is a linking from B onto Cover G\A. We clearly have IUol = IKol. Let 
W = (C\K) U Uo. Since Uo n N-(A) = 0 and C c N-(A), we have C n Uo = 0. Using 
V, we have 

IWI = IUol + IC\KI = IKol + IC\Kol = IC! = IBI· 

Also, W n (A U T) = (Uo n (T\K» U «C\K) n T) c T\K = B. 

By Proposition 5.2, there is a linking from B onto Wover G\(A UK). We form a 
linking from B onto C by composing this linking with the linking from Uo onto Ko 
found in VII. 

By VI, there are IS nAI openly disjoint paths from x to y contained in A. Using VII, 
we form IBI openly disjoint paths from x to y by composing x, the linking from B to C 
and y. It is clear that the resulting IBI + IS n AI paths are openly disjoint. 

It follows using V that -r(x, y) ;;.IBI + IS nAI = IS\BI + IBI = lSI. 
This relation contradicts the last part of III. 
This contradiction proves the theorem. 0 

6. THE SUBSETS PRODUcr 

THEOREM 6.1. Let B be a subset of a finite group G such that B = B-1
• There exists 

an element b of B with the following property. For every subset A of G such that 
An (b) "* 0, either IA U (AB)I ;;.IAI + IBI or (b) c AU (AB). 

PROOF. The result is obvious if 1 E B. Suppose the contrary. 
Take X = Cay(G, B). By Theorem 5.4, there exists be B such that (b) is well 

connected. Take H = (b) and suppose H\(A U (AB» "* 0. Let x E A n H and let 
Y E H\(A U (AB» = H\(A U N+(A». It follows that N+(A) separates y from x. 
Therefore 

(1) 

By Theorem 5.4, we have r(x, y) = IBI. Using (1), we have IN+(A)I ;;.IBI. Therefore 
IA U (AB)I = IA U N+(A)I = IAI + IN+(A)I ;;.IAI + IBI. 0 
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THEOREM 6.2. Let B be a subset of a finite abelian group G. There exists an element 
b of B with the following property. For every subset A of G such that A n (b) * O, 
either IA U (A + B)I ~ IAI + IBI or (b) cA U (A + B). 

PROOF. The proof is the same as for Theorem 6.1, except that it uses Theorem 5.5 
instead of Theorem 5.4. 0 

COROLLARY 6.3 (Chowla's Theorem 1.B). Let A and B be two subsets of ?In such 
that B contains 0 and all the elements of B\{O} are units of ?In. Then either A + B =?In 
or IA + BI ~ IAI + IBI-1. 

PROOF. Take B' = B\{O}. Assume that IA + BI < IAI + IBI-1. Therefore IA U 
(A + B')I < IAI + IB'I. By Theorem 6.2, there is an element b of B' such that (b) is 
contained in A U (A + B') = A + B. Since b is a unit, we have A + B = ?In. 0 

REMARK. We included the above proof only to show that Theorem 6.2 is a 
generalization of Theorem 1.B and hence for the Cauchy-Davenport Theorem. 

A quick proof for the Cauchy-Davenport Theorem based on the atoms uses only the 
relation K(Cay(?lp, B'» = IB'I (cf. Corollaire 2 of [7]). We note that Chowla's 
Theorem can be obtained easily from Proposition 4.3. 

COROLLARY 6.4 (Shepherdson's Theorem 1.C). Let G be a finite abelian group and 
let A, B be two proper subsets of G such that B cA. Then either IA U (A + B)I ~ 
IAI + IBI or there is b E B such that (b) cA U (A + B). 

PROOF. The result is obvious if 0 E B. Suppose the contrary. 
By Theorem 6.2, there exists bE B with the following property. For all subsets C of 

G with Cn(b)*0, either ICU(C+B)I~ICI+IBI or (b)cCU(C+B). But 
bE B cA. Hence either (b) cA U (A + B) or IA U (A + B)I ~ IAI + IBI. 0 

COROLLARY 6.5. Let A, B be two non-empty subsets of a finite abelian group G such 
that B is a subset of A. Then either IA U (A - B)I ~ IAI + IBI or there is b E B such that 
(b)cAU(A-B). 

The proof is similar to the proof of Corollary 6.4. 
Corollary 6.5 is the dual of Shepherdson Theorem 1.C. We note also that the 

method used by Shepherdson works for Corollary 6.5. 
We show below that Theorem 1.C is valid in the non-abelian case in which B = B- 1

• 

COROLLARY 6.6. Let A, B be two proper subsets of be a finite group G such that 
B cA and B = B- 1

• Then either IA U (AB)I ~ IAI + IBI or there is bE B such that (b) 
is a subset of A U (AB). 

The proof is similar to the proof of Corollary 6.4. 

THEOREM 6.7. For every E > 0 and k> 1, there is some natural number no such that 
for every n > no, and every subset A c ?In satisfying 

IAI >G+ E)n, 
there is a non-zero element of A all of the multiples of which can be expressed as a sum 
of a subset of A of cardinality at . most k . 
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PROOF. Let no be such that (1 + V3(k - 2»r(Zn) < en - 1, for all n > no. This is 
possible by Theorem 2.0. Assume that 

IAI > G+ e)n. 

By Alon's Theorem 2.F, there is B cA \0 such that IBI ~ rn/k 1 with the following 
property: 

For all j with 1 ~ j ~ k and all Xl' .. . , Xj E B, there exists a subset C of A with 

ICI ~k and L Y =Xl + . . . +Xj. (1) 
YEC 

Consider the Cayley graph X = Cay«B), B). By Theorem 5.5 there is b E B\O such 
that H = (b) is well connected in X. Let x E H. By Lemma 5.1, x has a factorization 
with respect to B with length no more than [I(B)I/IBI1 ~ rn/IBI1 ~k. By (1), there 
exists a subset C of A with ICI ~ k and !;YEC Y = x. 0 

THEOREM 6.8. For every e > 0 and k> 1, there is some natural number no such that 
for every abelian group G with odd order at least no, and for every subset A of G 
satisfying 

IAI>G+e) IGI, 

there Is a non-zero element of A all of the multiples of which can be expressed as a sum 
of a subset of A of cardinality at most k. 

The proof is the same as for Proposition 6.7 except that it uses Theorem 2.E instead 
of Theorem 2.0. 

Theorem 6.7 implies the following result, proved by Alon [2J. 

THEOREM 6.9. For every e >0 and k> 1, there is some natural number no such that 
for every prime number p > no, and every subset A c Zp satisfying 

there is a non-zero element of A all of the multiples of which can be expressed as a sum 
of a subset of A of cardinality at most k. 
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