Prime decompositions of knots in $T^{2} \times I$

Sergey V. Matveev ${ }^{\text {a,b,* }}$
${ }^{\text {a }}$ Chelyabinsk State University, 454001 Chelyabinsk, Russia
${ }^{\text {b }}$ Institute of Mathematics and Mechanics of Ural Branch of RAS, Ekaterinburg, Russia

A R T I C L E I N F O

MSC:

57M25
57M15

Keywords:

Knot
Prime decomposition
Thick torus

Abstract

The famous H. Schubert theorem (1949) states that any nontrivial knot in S^{3} admits a decomposition into connected sum of prime factors, which are unique up to order. We prove a similar result for knots in $T \times I$, where T is a two-dimensional torus. However, we only consider knots of geometric degree one, use a different type of connected summation, and take into account the order of prime factors.

(C) 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let T be a two-dimensional torus and $I=[0,1]$. By a thick torus we mean a 3-manifold homeomorphic to the product $T \times I$ equipped with a fixed orientation.

Definition 1. A knot in $T \times I$ is an oriented simple closed curve $K \subset \operatorname{Int}(T \times I)$. Two knots $K_{i} \subset T_{i} \times I, i=1$, 2, are equivalent if there is a homeomorphism of pairs $h:\left(T_{1} \times I, K_{1}\right) \rightarrow\left(T_{2} \times I, K_{2}\right)$ which takes $T_{1} \times\{0\}$ to $T_{2} \times\{0\}$ and preserves orientations of the thick tori and knots.

Definition 2. Let $K \subset T \times I$ be a knot. A proper annulus $A \subset T \times I$ is called vertical if it is isotopic to an annulus of the type $c \times I$, where c is a nontrivial simple closed curve in T. A vertical annulus $A \subset T \times I$ is admissible (with respect to K) if K intersects A transversally at one point. By a vertical multi-annulus in $T \times I$ we mean the disjoint union of $n \geqslant 1$ vertical annuli. \mathbb{A} is admissible if so are all A_{i}.

Definition 3. We shall say that a knot $K \subset T \times I$ is of degree one if $T \times I$ contains an admissible annulus.

Let $K_{i} \subset T_{i} \times I, 0 \leqslant i \leqslant n-1$, be a collection of $n \geqslant 2$ degree one knots in thick tori. Choose admissible annuli $A_{i} \subset T_{i} \times I$. For each i we cut $T_{i} \times I$ along A_{i} and get a thick annulus $M_{i} \approx A_{i} \times[0,1]$ with two copies $A_{i}^{\prime}=A_{i} \times\{0\}, A_{i}^{\prime \prime}=A_{i} \times\{1\}$ of A_{i} in ∂M_{i}. The annuli are joined by the oriented arc $l_{i}=K \cap M_{i}$. We assume that the initial and terminal points of l_{i} lie in A_{i}^{\prime} and $A_{i}^{\prime \prime}$ respectively. For each i choose a homeomorphism $h_{i}: A_{i}^{\prime \prime} \rightarrow A_{i+1}^{\prime}$ which reverses the induced orientations of the annuli, takes $A_{i}^{\prime \prime} \cap(T \times\{0\})$ to $A_{i}^{\prime} \cap(T \times\{0\})$, and takes the terminal point of l_{i} to the initial point of l_{i+1} (indices are taken modulo n).

[^0]

Fig. 1. Circular connected sum.
Definition 4. The knot $K=K_{0} \#_{c} K_{1} \#_{c} \ldots \#_{c} K_{n-1} \subset T \times I$ obtained by gluing together the pairs $\left(M_{i}, l_{i}\right)$ along h_{i} is called a circular connected sum of K_{i}. Admissible annuli in $T \times I$ obtained by identifying $A_{i}^{\prime \prime}$ with A_{i+1}^{\prime} are denoted $R_{i}, 0 \leqslant i \leqslant n-1$. See Fig. 1 for $n=2$.

The circular connected sum of degree one knots may depend on the choice of the annuli $A_{i} \subset T_{i} \times I$ used for the construction. However, if A_{i} are fixed, then K and the admissible multi-annulus $\mathbb{R}=R_{0} \cup R_{1} \cup \cdots \cup R_{n-1}$ are uniquely determined. In turn, K and \mathbb{R} determine K_{i} and A_{i}. Suppose we are considering a circular connected sum $K_{0} \#{ }_{c} K_{1}$ of two knots such that one of them is horizontal (i.e., isotopic to a simple closed curve in a middle torus $T_{i} \times\{*\}$). Then the sum $K_{0} \#_{c} K_{1}$ is equivalent to the second knot. Such a summation is called trivial.

Definition 5. A nonhorizontal degree one knot $K \subset T \times I$ is called prime if it cannot be represented as a nontrivial circular connected sum of two other knots.

Let K be a degree one knot in $T \times I$. Suppose there is a 3-ball $B \subset T \times I$ such that $l=K \cap B$ is a knotted arc in B. Replacing l by an unknotted arc $l_{1} \subset B$ with the same endpoints, we get a new degree one knot $K_{1} \subset T \times I$.

Definition 6. We shall say that K_{1} is obtained from K by cutting off a local knot and that K is obtained from K_{1} by inserting a local knot.

Note that the exact place for the insertion, i.e., a ball $B \subset T \times I$ such that $l_{1}=K_{1} \cap B$ is an unknotted arc, is not important. Indeed, B can be moved by an isotopy of pairs $h_{t}:\left(T \times I, K_{1}\right) \rightarrow\left(T \times I, K_{1}\right)$ to any other position along K_{1}. This fact is well known in the classical knot theory, where it is used for proving commutativity of the connected sum operation.

Definition 7. A nonhorizontal degree one knot K in $T \times I$ is called essential if it does not contain local knots. K is called almost horizontal if it can be obtained from a horizontal knot in $T \times I$ by inserting local knots.

One can easily see that inserting local knots is equivalent to taking circular connected sums with the corresponding almost horizontal knots. It follows that almost horizontal summands of a circular connected sum can be shifted to any position, for example, one may write them at the end of the sum.

Theorem 1. Any nonhorizontal degree one knot K can be represented as a circular connected sum

$$
K=K_{0} \#_{c} K_{1} \#_{c} \ldots \#_{c} K_{n-1} \#_{c} L_{0} \#_{c} L_{1} \#_{c} \ldots \#_{c} L_{m-1}
$$

where K_{i} are essential and L_{j} are almost horizontal prime knots. The summands K_{i} are uniquely determined up to cyclic permutation while the summands L_{j} are uniquely determined up to any permutation.

For knotted theta-curves in S^{3} and in arbitrary 3-manifolds similar prime decomposition theorems, which take into account the order of prime factors, can be found in [4,2].

2. Properties of admissible annuli

Definition 8. Let $K \subset T \times I$ be a degree one knot and let $\mathbb{R}=R_{0} \cup R_{1} \cup \cdots \cup R_{n-1} \subset T \times I, n \geqslant 2$, be an admissible multiannulus. Then a vertical multi-annulus $\mathbb{C} \subset T \times I$ is called tight (with respect to \mathbb{R}) if either $\mathbb{C} \cap \mathbb{R}=\emptyset$ or the following conditions hold:

1. $\mathbb{C} \cap \mathbb{R}$ consists of radial arcs of the annuli.
2. These arcs decompose \mathbb{C} into strips (embedded rectangles) such that the lateral sides of each strip lie in different annuli of \mathbb{R}.

Fig. 2. Removing trivial circles.

Fig. 3. Removing nontrivial circles.
Definition 9. Let $K \subset T \times I$ be a degree one knot and let $\mathbb{C} \subset T \times I$ be a vertical multi-annulus such that K intersects \mathbb{C} transversally. Then the weight $w(\mathbb{C})$ of \mathbb{C} is the number of points in $K \cap \mathbb{C}$.

Lemma 1. Let $K \subset T \times I$ be a degree one knot and let $\mathbb{R}=R_{0} \cup R_{1} \cup \cdots \cup R_{n-1}, n \geqslant 2$, be an admissible multi-annulus. Then for any vertical multi-annulus $\mathbb{C} \subset T \times I$ there is an isotopy $h_{t}: T \times I \rightarrow T \times I, 0 \leqslant t \leqslant 1$, such that $h_{0}(\mathbb{C})=\mathbb{C}$, the multi-annulus $\mathbb{C}^{\prime}=h_{1}(\mathbb{C})$ is tight, and $w(\mathbb{C}) \geqslant w\left(\mathbb{C}^{\prime}\right)$. Moreover, if K is essential and \mathbb{C} is admissible, h_{t} may be chosen so as to be invariant on K, i.e., $h_{t}(K)=K$ for all t.

Proof. We may assume that \mathbb{C} and \mathbb{R} are in general position. Then any connected component of $\mathbb{C} \cap \mathbb{R}$ is one of the following curves: a trivial circle, a trivial arc, a nontrivial circle, or a radial arc. Our goal is to remove all curves of the first three types and some curves of the last type.

Step 1. Suppose $\mathbb{C} \cap \mathbb{R}$ contains a trivial circle $U \subset R_{i}$. Using an innermost disc argument, we may assume that U bounds a disc $D \subset R_{i} \subset \mathbb{R}$ such that $D \cap \mathbb{C}=U$. Denote by D_{1} the disc bounded by U in $C_{j} \subset \mathbb{C}$. Then $D \cup D_{1}$ is a sphere bounding a ball $B \subset T \times I$. We use B for constructing an isotopy h_{t} which moves D_{1} to the other side of R_{i} and \mathbb{C} to a new multiannulus \mathbb{C}^{\prime}, thus annihilating U and maybe some other circles in $\mathbb{C} \cap \mathbb{R}$ (see Fig. 2). Since R_{i} is admissible, $K \cap D$ is either empty or consists of one point. In the latter case $K \cap D_{1} \neq \emptyset$. It follows that in both cases $w\left(\mathbb{C}^{\prime}\right) \leqslant w(\mathbb{C})$.

Suppose \mathbb{C} is admissible. Then either $l=K \cap B$ is empty or l is an arc. If K is essential, then l is unknotted. Therefore h_{t} may be chosen so as to be invariant on K. Further on we will assume that K contains no trivial circles.

Step 2. All trivial arcs in $\mathbb{C} \cap \mathbb{R}$ can be removed just in the same way as above, using an outermost arc argument and half-discs bounded by trivial arcs and arcs in $\partial(T \times I)$ instead of discs. Further we assume that $\mathbb{C} \cap \mathbb{R}$ contains no trivial arc.

Step 3. Suppose that \mathbb{C} intersects an annulus R_{i} of \mathbb{R} along nontrivial circles, which decompose it into smaller annuli. Then R_{i} contains two outermost annuli, each bounded by a circle in $\mathbb{C} \cap R_{i}$ and a circle in $\partial(T \times I)$. Since R_{i} is admissible, at least one of them (denote it \bar{R}) has no common points with K. The circle $U=\bar{R} \cap \mathbb{C}$ cuts off an annulus $\bar{C} \subset C_{j} \subset \mathbb{C}$ having a boundary circle in the same torus of $\partial(T \times I)$ as \bar{R}. Then $\bar{R} \cup \bar{C}$ together with an annulus in $\partial(T \times I)$ bound in $T \times I$ a solid torus V. We use V for constructing an isotopy $h_{t}: T \times I \rightarrow T \times I$ which moves \bar{C} to the other side of \bar{R} and \mathbb{C} to a new multi-annulus \mathbb{C}^{\prime}, thus annihilating U and maybe some other circles in $\mathbb{C} \cap \mathbb{R}$. Clearly $w\left(\mathbb{C}^{\prime}\right) \leqslant w(\mathbb{C})$. If \mathbb{C} is admissible, then $V \cap K=\emptyset$, since $\bar{R} \cap K=\emptyset$. Therefore we may construct h_{t} such that it keeps K fixed (see Fig. 3). In order to get a 3-dimensional illustration, rotate it around the axis shown at the bottom of the figure.

Step 4. Suppose that $\mathbb{C} \cap \mathbb{R}$ consists of radial arcs. They decompose \mathbb{C} and \mathbb{R} into strips. If \mathbb{C} is not tight, then there are strips $P \subset C_{j} \subset \mathbb{C}$ and $Q \subset R_{i} \subset \mathbb{R}$ such that they have common lateral sides and $P \cup Q$ cuts off a 3-ball B from $T \times I$. We use B for constructing an isotopy of $T \times I$ which moves P to the other side of R_{i} and C_{j} to a new annulus C_{j}^{\prime}, thus annihilating two or more radial arcs of $\mathbb{C} \cap \mathbb{R}$, see Fig. 4. Clearly $w\left(\mathbb{C}^{\prime}\right) \leqslant w(\mathbb{C})$. If K is essential and \mathbb{C} is admissible, we use the same argument as in Step 1 for constructing an isotopy which is invariant on K.

Fig. 4. Removing radial arcs.

Fig. 5. Two nonisotopic admissible annuli.

Let $K \subset T \times I$ be a degree one knot and let $R, R^{\prime} \subset T \times I$ be disjoint admissible annuli. They decompose $T \times I$ into two parts $M_{i} \approx R \times[0,1], i=1,2$. We shall say that R, R^{\prime} are parallel in $(T \times I, K)$ if for at least one i the arc $K \cap M_{i}$ is trivial in M_{i}, i.e., has the form $\{*\} \times[0,1]$.

Lemma 2. Let $K \subset T \times I$ be a degree one essential knot and let $\mathbb{R}=R_{0} \cup R_{1} \cup \cdots \cup R_{n-1}, n \geqslant 2$, be an admissible multi-annulus such that at least two annuli of \mathbb{R} are not parallel in $(T \times I, K)$. Then for any admissible multi-annulus $\mathbb{C} \subset T \times I$ there is an isotopy $h_{t}: T \times I \rightarrow T \times I, 0 \leqslant t \leqslant 1$, such that $h_{0}(\mathbb{C})=\mathbb{C}$, h_{t} is invariant on K, and the multi-annulus $\mathbb{C}^{\prime}=h_{1}(\mathbb{C})$ is disjoint with \mathbb{R}.

Proof. By Lemma 1 we may assume that \mathbb{C} is tight. We claim that $\mathbb{C} \cap \mathbb{R}=\emptyset$. On the contrary, assume that \mathbb{C} intersects \mathbb{R}. Then \mathbb{C} consists of strips such that each strip P joins two neighboring annuli $R_{i}, R_{i+1} \subset \mathbb{R}$ and lies in the thick annulus M_{i} between them. Note that P cuts M_{i} into a ball. If $K \cap P=\emptyset$, then the $\operatorname{arc} l_{i}=K \cap M_{i}$ is contained in this ball. Since K is essential, l_{i} is unknotted. Thus R_{i}, R_{i+1} are parallel and the pair $\left(M_{i}, l_{i}\right)$ is trivial, i.e., homeomorphic to $\left(R_{i} \times[0,1],\{*\} \times\right.$ $[0,1])$.

Recall that \mathbb{C} is admissible. It follows that K intersects only one strip. Therefore, only one thick annulus between neighboring annuli may be nontrivial, but then its complement in $T \times I$ consists of trivial regions and thus is also trivial. This contradicts our assumption that \mathbb{R} contains nonparallel annuli.

Remark 1. Suppose that an essential knot $K \subset T \times I$ is nonprime. Then any two admissible annuli in $T \times I$ are isotopic in $T \times I$. Indeed, since K is nonprime, $T \times I$ contains a pair of disjoint admissible annuli $R^{\prime}, R^{\prime \prime}$ which are not parallel in ($T \times I, K$). In fact we can take any pair of annuli decomposing K into a nontrivial circular connected sum. Let $C \subset T \times I$ be another admissible annulus. By Lemma 2 it is isotopic in ($T \times I, K$) to an annulus which is disjoint with R^{\prime} and thus is isotopic to R^{\prime}. Note that the assumption that K be nonprime is essential. See Fig. 5 for a knot having two nonisotopic admissible annuli R_{0}, R_{1}.

Lemma 3. Let $K \subset T \times I$ be an essential knot and let $\mathbb{R}=R_{0} \cup R_{1} \cup \cdots \cup R_{n-1}, n \geqslant 2$, be an admissible multi-annulus in $T \times I$ such that no two annuli of \mathbb{R} are parallel in $(T \times I, K)$. Suppose that an annulus $C \subset T \times I$ intersects K transversally and the base circles $C \cap(T \times\{0\})$ and $\mathbb{R} \cap(T \times\{0\})$ of C and \mathbb{R} are not homotopic in $T \times\{0\}$. Then $n \leqslant w(C)$.

Proof. By Lemma 1 we may transform C into a tight position without increasing its weight. Since the base circles of C and \mathbb{R} are not homotopic, $C \cap \mathbb{R}$ is a nonempty collection of radial arc, which decompose C and \mathbb{R} into strips. Note that K must intersect each strip of C in any region of $T \times I$ between two neighboring annuli. Otherwise the region would be trivial and the annuli parallel. Since any region contains at least one strip intersecting K, we may conclude that $n \leqslant w(\mathbb{C})$.

3. Proof of the main theorem

Let a nonhorizontal degree one knot K be given. First we cut off all local knots. By [3] and Theorem 7 of [1], any knot K in a 3-manifold without nonseparating 2 -spheres contains only finitely many local knots, which are uniquely determined by K. Therefore the set of almost horizontal summands L_{j} of K is finite and these summands are unique up to order. Further on we shall assume that K does not contain local knots, i.e., is essential.

Let us prove that a prime decomposition of K does exist. If K is prime, we are done. Suppose K is not prime. Then among all decompositions of K into circular connected sums we take a decomposition $K=K_{0} \#_{c} K_{1} \#_{c} \ldots \#_{c} K_{n-1}$ having the maximal number n of summands. Clearly $n \geqslant 2$.

We claim that all K_{i} are prime. Let $\mathbb{R}=R_{0} \cup R_{1} \cup \cdots \cup R_{n-1} \subset T \times I$ be the admissible multi-annulus corresponding to that decomposition. The annuli of \mathbb{R} split $T \times I$ into thick annuli $M_{i} \approx R_{i} \times[0,1]$. On the contrary, suppose that for some i the knot $K_{i} \subset T_{i} \times I$ is not prime. Then $T_{i} \times I$ contains a pair of disjoint admissible annuli $R^{\prime}, R^{\prime \prime}$ such that they are not parallel in ($T_{i} \times I, K_{i}$). Consider the admissible multi-annulus $R^{\prime} \cup R^{\prime \prime} \subset T_{i} \times I$ and the annulus $A_{i} \subset T_{i} \times I$ used for constructing the circular connected sum. According to Lemma 2 we may assume that $R^{\prime}, R^{\prime \prime}$ are disjoint with A_{i} and thus can be considered as annuli in the thick annulus M_{i} between R_{i} and R_{i+1}. Since $R^{\prime}, R^{\prime \prime}$ are not parallel in ($T_{i} \times I, K_{i}$), at least one of them is not parallel to R_{i} or R_{i+1}. This contradicts our assumption that n is maximal.

Let us prove that the summands of a prime decomposition of K into a circular connected sum are unique up to cyclic permutation. Let $K=K_{0} \#_{c} K_{1} \#_{c} \ldots \#_{c} K_{n-1}, K=K_{0}^{\prime} \#_{c} K_{1}^{\prime} \#_{c} \ldots \#_{c} K_{m-1}^{\prime}$ be two representations and let $\mathbb{R}=R_{0} \cup R_{1} \cup \ldots \cup R_{n-1}$, $\mathbb{R}^{\prime}=R_{0}^{\prime} \cup R_{1}^{\prime} \cup \cdots \cup R_{m-1}^{\prime}$ be the corresponding admissible multi-annuli in $T \times I$. By Lemma 2 we may assume that $\mathbb{R} \cap \mathbb{R}^{\prime}=\emptyset$. It follows that any annulus R_{j}^{\prime} lies in a thick annulus M_{i} between two neighboring annuli R_{i} and R_{i+1}. Since K_{i} is prime, R_{j}^{\prime} must be parallel to exactly one of them. Similarly, any annulus of \mathbb{R} is parallel to exactly one annulus of \mathbb{R}^{\prime}. We may conclude that $m=n$ and that after an appropriate isotopic deformation of \mathbb{R} we get $\mathbb{R}=\mathbb{R}^{\prime}$. Therefore both decompositions have the same set of prime summands. Their orderings are determined by K, so may differ only by a cyclic permutation.

Acknowledgements

The author was partially supported by the joint RFBR-CNRS project 10-01-91056. He thanks the organizers of International Conference on Topology and Applications (Nafpaktos, Greece 2010), where the idea of the paper had been appeared. The final version of the paper was written during his stay in Max-Planck Institute Bonn. The author thanks MPIM for the support, creative atmosphere, and good conditions for research. The author thanks Ph. Korablev for valuable remarks.

References

[1] C. Hog-Angeloni, S. Matveev, Roots in 3-manifold topology, Geom. Topol. Monogr. 14 (2008) 295-319.
[2] S. Matveev, V. Turaev, A semigroup of theta-curves in 3-manifolds, Moscow Math. J. 11 (2011) 805-814.
[3] K. Miyazaki, Conjugation and prime decomposition of knots in closed, oriented 3-manifolds, Trans. Amer. Math. Soc. 313 (1989) 785-804.
[4] T. Motohashi, A prime decomposition theorem for handcuff graphs in S^{3}, Topology Appl. 154 (2007) 3135-3139.

[^0]: * Correspondence to: Chelyabinsk State University, 454001 Chelyabinsk, Russia.

 E-mail address: matveev@csu.ru.

