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The famous H. Schubert theorem (1949) states that any nontrivial knot in S3 admits a
decomposition into connected sum of prime factors, which are unique up to order. We
prove a similar result for knots in T × I , where T is a two-dimensional torus. However, we
only consider knots of geometric degree one, use a different type of connected summation,
and take into account the order of prime factors.
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1. Introduction

Let T be a two-dimensional torus and I = [0,1]. By a thick torus we mean a 3-manifold homeomorphic to the product
T × I equipped with a fixed orientation.

Definition 1. A knot in T × I is an oriented simple closed curve K ⊂ Int(T × I). Two knots Ki ⊂ Ti × I , i = 1,2, are equivalent if
there is a homeomorphism of pairs h : (T1 × I, K1) → (T2 × I, K2) which takes T1 ×{0} to T2 ×{0} and preserves orientations
of the thick tori and knots.

Definition 2. Let K ⊂ T × I be a knot. A proper annulus A ⊂ T × I is called vertical if it is isotopic to an annulus of the
type c × I , where c is a nontrivial simple closed curve in T . A vertical annulus A ⊂ T × I is admissible (with respect to K ) if
K intersects A transversally at one point. By a vertical multi-annulus in T × I we mean the disjoint union of n � 1 vertical
annuli. A is admissible if so are all Ai .

Definition 3. We shall say that a knot K ⊂ T × I is of degree one if T × I contains an admissible annulus.

Let Ki ⊂ Ti × I , 0 � i � n −1, be a collection of n � 2 degree one knots in thick tori. Choose admissible annuli Ai ⊂ Ti × I .
For each i we cut Ti × I along Ai and get a thick annulus Mi ≈ Ai ×[0,1] with two copies A′

i = Ai ×{0}, A′′
i = Ai ×{1} of Ai

in ∂Mi . The annuli are joined by the oriented arc li = K ∩ Mi . We assume that the initial and terminal points of li lie in A′
i

and A′′
i respectively. For each i choose a homeomorphism hi : A′′

i → A′
i+1 which reverses the induced orientations of the

annuli, takes A′′
i ∩ (T × {0}) to A′

i ∩ (T × {0}), and takes the terminal point of li to the initial point of li+1 (indices are taken
modulo n).
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Fig. 1. Circular connected sum.

Definition 4. The knot K = K0#c K1#c . . . #c Kn−1 ⊂ T × I obtained by gluing together the pairs (Mi, li) along hi is called a
circular connected sum of Ki . Admissible annuli in T × I obtained by identifying A′′

i with A′
i+1 are denoted Ri , 0 � i � n − 1.

See Fig. 1 for n = 2.

The circular connected sum of degree one knots may depend on the choice of the annuli Ai ⊂ Ti × I used for the
construction. However, if Ai are fixed, then K and the admissible multi-annulus R = R0 ∪ R1 ∪ · · · ∪ Rn−1 are uniquely
determined. In turn, K and R determine Ki and Ai . Suppose we are considering a circular connected sum K0#c K1 of two
knots such that one of them is horizontal (i.e., isotopic to a simple closed curve in a middle torus Ti × {∗}). Then the sum
K0#c K1 is equivalent to the second knot. Such a summation is called trivial.

Definition 5. A nonhorizontal degree one knot K ⊂ T × I is called prime if it cannot be represented as a nontrivial circular
connected sum of two other knots.

Let K be a degree one knot in T × I . Suppose there is a 3-ball B ⊂ T × I such that l = K ∩ B is a knotted arc in B .
Replacing l by an unknotted arc l1 ⊂ B with the same endpoints, we get a new degree one knot K1 ⊂ T × I .

Definition 6. We shall say that K1 is obtained from K by cutting off a local knot and that K is obtained from K1 by inserting
a local knot.

Note that the exact place for the insertion, i.e., a ball B ⊂ T × I such that l1 = K1 ∩ B is an unknotted arc, is not important.
Indeed, B can be moved by an isotopy of pairs ht : (T × I, K1) → (T × I, K1) to any other position along K1. This fact is well
known in the classical knot theory, where it is used for proving commutativity of the connected sum operation.

Definition 7. A nonhorizontal degree one knot K in T × I is called essential if it does not contain local knots. K is called
almost horizontal if it can be obtained from a horizontal knot in T × I by inserting local knots.

One can easily see that inserting local knots is equivalent to taking circular connected sums with the corresponding
almost horizontal knots. It follows that almost horizontal summands of a circular connected sum can be shifted to any
position, for example, one may write them at the end of the sum.

Theorem 1. Any nonhorizontal degree one knot K can be represented as a circular connected sum

K = K0#c K1#c . . . #c Kn−1#c L0#c L1#c . . . #c Lm−1,

where Ki are essential and L j are almost horizontal prime knots. The summands Ki are uniquely determined up to cyclic permutation
while the summands L j are uniquely determined up to any permutation.

For knotted theta-curves in S3 and in arbitrary 3-manifolds similar prime decomposition theorems, which take into
account the order of prime factors, can be found in [4,2].

2. Properties of admissible annuli

Definition 8. Let K ⊂ T × I be a degree one knot and let R = R0 ∪ R1 ∪ · · · ∪ Rn−1 ⊂ T × I , n � 2, be an admissible multi-
annulus. Then a vertical multi-annulus C ⊂ T × I is called tight (with respect to R) if either C ∩ R = ∅ or the following
conditions hold:

1. C ∩ R consists of radial arcs of the annuli.
2. These arcs decompose C into strips (embedded rectangles) such that the lateral sides of each strip lie in different annuli

of R.
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Fig. 2. Removing trivial circles.

Fig. 3. Removing nontrivial circles.

Definition 9. Let K ⊂ T × I be a degree one knot and let C ⊂ T × I be a vertical multi-annulus such that K intersects C

transversally. Then the weight w(C) of C is the number of points in K ∩ C.

Lemma 1. Let K ⊂ T × I be a degree one knot and let R = R0 ∪ R1 ∪ · · · ∪ Rn−1 , n � 2, be an admissible multi-annulus. Then for
any vertical multi-annulus C ⊂ T × I there is an isotopy ht : T × I → T × I , 0 � t � 1, such that h0(C) = C, the multi-annulus
C

′ = h1(C) is tight, and w(C) � w(C′). Moreover, if K is essential and C is admissible, ht may be chosen so as to be invariant on K ,
i.e., ht(K ) = K for all t.

Proof. We may assume that C and R are in general position. Then any connected component of C ∩ R is one of the
following curves: a trivial circle, a trivial arc, a nontrivial circle, or a radial arc. Our goal is to remove all curves of the first
three types and some curves of the last type.

Step 1. Suppose C∩R contains a trivial circle U ⊂ Ri . Using an innermost disc argument, we may assume that U bounds
a disc D ⊂ Ri ⊂ R such that D ∩ C = U . Denote by D1 the disc bounded by U in C j ⊂ C. Then D ∪ D1 is a sphere bounding
a ball B ⊂ T × I . We use B for constructing an isotopy ht which moves D1 to the other side of Ri and C to a new multi-
annulus C

′ , thus annihilating U and maybe some other circles in C ∩ R (see Fig. 2). Since Ri is admissible, K ∩ D is either
empty or consists of one point. In the latter case K ∩ D1 
= ∅. It follows that in both cases w(C′) � w(C).

Suppose C is admissible. Then either l = K ∩ B is empty or l is an arc. If K is essential, then l is unknotted. Therefore ht
may be chosen so as to be invariant on K . Further on we will assume that K contains no trivial circles.

Step 2. All trivial arcs in C ∩ R can be removed just in the same way as above, using an outermost arc argument and
half-discs bounded by trivial arcs and arcs in ∂(T × I) instead of discs. Further we assume that C∩R contains no trivial arc.

Step 3. Suppose that C intersects an annulus Ri of R along nontrivial circles, which decompose it into smaller annuli.
Then Ri contains two outermost annuli, each bounded by a circle in C ∩ Ri and a circle in ∂(T × I). Since Ri is admissible,
at least one of them (denote it R̄) has no common points with K . The circle U = R̄ ∩ C cuts off an annulus C̄ ⊂ C j ⊂ C

having a boundary circle in the same torus of ∂(T × I) as R̄ . Then R̄ ∪ C̄ together with an annulus in ∂(T × I) bound in
T × I a solid torus V . We use V for constructing an isotopy ht : T × I → T × I which moves C̄ to the other side of R̄ and
C to a new multi-annulus C

′ , thus annihilating U and maybe some other circles in C ∩ R. Clearly w(C′) � w(C). If C is
admissible, then V ∩ K = ∅, since R̄ ∩ K = ∅. Therefore we may construct ht such that it keeps K fixed (see Fig. 3). In order
to get a 3-dimensional illustration, rotate it around the axis shown at the bottom of the figure.

Step 4. Suppose that C ∩ R consists of radial arcs. They decompose C and R into strips. If C is not tight, then there are
strips P ⊂ C j ⊂ C and Q ⊂ Ri ⊂ R such that they have common lateral sides and P ∪ Q cuts off a 3-ball B from T × I .
We use B for constructing an isotopy of T × I which moves P to the other side of Ri and C j to a new annulus C ′

j , thus
annihilating two or more radial arcs of C ∩ R, see Fig. 4. Clearly w(C′) � w(C). If K is essential and C is admissible, we
use the same argument as in Step 1 for constructing an isotopy which is invariant on K . �
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Fig. 4. Removing radial arcs.

Fig. 5. Two nonisotopic admissible annuli.

Let K ⊂ T × I be a degree one knot and let R, R ′ ⊂ T × I be disjoint admissible annuli. They decompose T × I into two
parts Mi ≈ R × [0,1], i = 1,2. We shall say that R, R ′ are parallel in (T × I, K ) if for at least one i the arc K ∩ Mi is trivial
in Mi , i.e., has the form {∗} × [0,1].

Lemma 2. Let K ⊂ T × I be a degree one essential knot and let R = R0 ∪ R1 ∪ · · · ∪ Rn−1 , n � 2, be an admissible multi-annulus
such that at least two annuli of R are not parallel in (T × I, K ). Then for any admissible multi-annulus C ⊂ T × I there is an isotopy
ht : T × I → T × I,0 � t � 1, such that h0(C) = C, ht is invariant on K , and the multi-annulus C

′ = h1(C) is disjoint with R.

Proof. By Lemma 1 we may assume that C is tight. We claim that C ∩ R = ∅. On the contrary, assume that C intersects R.
Then C consists of strips such that each strip P joins two neighboring annuli Ri, Ri+1 ⊂ R and lies in the thick annulus Mi
between them. Note that P cuts Mi into a ball. If K ∩ P = ∅, then the arc li = K ∩ Mi is contained in this ball. Since K is
essential, li is unknotted. Thus Ri, Ri+1 are parallel and the pair (Mi, li) is trivial, i.e., homeomorphic to (Ri × [0,1], {∗} ×
[0,1]).

Recall that C is admissible. It follows that K intersects only one strip. Therefore, only one thick annulus between neigh-
boring annuli may be nontrivial, but then its complement in T × I consists of trivial regions and thus is also trivial. This
contradicts our assumption that R contains nonparallel annuli. �
Remark 1. Suppose that an essential knot K ⊂ T × I is nonprime. Then any two admissible annuli in T × I are isotopic
in T × I . Indeed, since K is nonprime, T × I contains a pair of disjoint admissible annuli R ′, R ′′ which are not parallel in
(T × I, K ). In fact we can take any pair of annuli decomposing K into a nontrivial circular connected sum. Let C ⊂ T × I
be another admissible annulus. By Lemma 2 it is isotopic in (T × I, K ) to an annulus which is disjoint with R ′ and thus
is isotopic to R ′ . Note that the assumption that K be nonprime is essential. See Fig. 5 for a knot having two nonisotopic
admissible annuli R0, R1.

Lemma 3. Let K ⊂ T × I be an essential knot and let R = R0 ∪ R1 ∪ · · · ∪ Rn−1 , n � 2, be an admissible multi-annulus in T × I such
that no two annuli of R are parallel in (T × I, K ). Suppose that an annulus C ⊂ T × I intersects K transversally and the base circles
C ∩ (T × {0}) and R ∩ (T × {0}) of C and R are not homotopic in T × {0}. Then n � w(C).

Proof. By Lemma 1 we may transform C into a tight position without increasing its weight. Since the base circles of C and
R are not homotopic, C ∩ R is a nonempty collection of radial arc, which decompose C and R into strips. Note that K must
intersect each strip of C in any region of T × I between two neighboring annuli. Otherwise the region would be trivial and
the annuli parallel. Since any region contains at least one strip intersecting K , we may conclude that n � w(C). �
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3. Proof of the main theorem

Let a nonhorizontal degree one knot K be given. First we cut off all local knots. By [3] and Theorem 7 of [1], any knot K
in a 3-manifold without nonseparating 2-spheres contains only finitely many local knots, which are uniquely determined
by K . Therefore the set of almost horizontal summands L j of K is finite and these summands are unique up to order.
Further on we shall assume that K does not contain local knots, i.e., is essential.

Let us prove that a prime decomposition of K does exist. If K is prime, we are done. Suppose K is not prime. Then
among all decompositions of K into circular connected sums we take a decomposition K = K0#c K1#c . . . #c Kn−1 having the
maximal number n of summands. Clearly n � 2.

We claim that all Ki are prime. Let R = R0 ∪ R1 ∪ · · · ∪ Rn−1 ⊂ T × I be the admissible multi-annulus corresponding
to that decomposition. The annuli of R split T × I into thick annuli Mi ≈ Ri × [0,1]. On the contrary, suppose that for
some i the knot Ki ⊂ Ti × I is not prime. Then Ti × I contains a pair of disjoint admissible annuli R ′, R ′′ such that they
are not parallel in (Ti × I, Ki). Consider the admissible multi-annulus R ′ ∪ R ′′ ⊂ Ti × I and the annulus Ai ⊂ Ti × I used for
constructing the circular connected sum. According to Lemma 2 we may assume that R ′, R ′′ are disjoint with Ai and thus
can be considered as annuli in the thick annulus Mi between Ri and Ri+1. Since R ′, R ′′ are not parallel in (Ti × I, Ki), at
least one of them is not parallel to Ri or Ri+1. This contradicts our assumption that n is maximal.

Let us prove that the summands of a prime decomposition of K into a circular connected sum are unique up to cyclic per-
mutation. Let K = K0#c K1#c . . . #c Kn−1, K = K ′

0#c K ′
1#c . . . #c K ′

m−1 be two representations and let R = R0 ∪ R1 ∪ · · · ∪ Rn−1,
R

′ = R ′
0 ∪ R ′

1 ∪· · ·∪ R ′
m−1 be the corresponding admissible multi-annuli in T × I . By Lemma 2 we may assume that R∩R

′ = ∅.
It follows that any annulus R ′

j lies in a thick annulus Mi between two neighboring annuli Ri and Ri+1. Since Ki is prime,
R ′

j must be parallel to exactly one of them. Similarly, any annulus of R is parallel to exactly one annulus of R
′ . We may

conclude that m = n and that after an appropriate isotopic deformation of R we get R = R
′ . Therefore both decompositions

have the same set of prime summands. Their orderings are determined by K , so may differ only by a cyclic permutation.
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