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By using some simple discrete inequalities oscillation criteria are provided for
the second order difference equations

AZy" + an+1f(yn*l) = Ov ne Nv

where the operator A is defined by Ay, = ya.c1 — ¥, {a,} is a real sequence. The
function f is such that uf(x) > 0 for u # 0 and f(u) — flv) = glu, v)(u — v) for u,
v # 0 for some nonnegative function g. © 1994 Academic Press, Inc.

1. INTRODUCTION

Consider the difference equation

Az)’n + an+lf(yn+l) = 09 ne N, (l)

* Research was done during the summer of 1992 while the author was at the University of
Saskatchewan as a visiting Professor of Mathematics.
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SECOND ORDER NONLINEAR OSCILLATION 201

where N = {0, 1, 2, -- -}, A is the forward difference operator defined by
Ay, = ¥Yn+1 — ¥a. {a,} is a real sequence, and f: R — R is such that

ufu)y > 0 foru # 0 and flw) — flvy = g(u, v¥(u —v) (2)

for u, v # 0 and for some nonnegative function g. We let Nj; = {ng, no +
1, ..., a}, where ny € N, a > ng and when « = %, Nj, is denoted by N,,, .

By a solution of (1) we always mean a nontrivial sequence {y,} which
satisfies (1) for all n € N. A solution {y,} of (1) is said to be oscillatory if
for every ny € N there exists n = ng such that y,y,.,; < 0; otherwise it is
called nonoscillatory. We say that (1) is oscillatory if all nontrivial solu-
tions are oscillatory.

In recent years there has been considerable interest in the study of
oscillation and asymptotic behavior of solutions of difference equations;
see for example [1, 4, 5, 7-10] and the references cited therein. In most of
the results mentioned above it is assumed that {a,} is a nonnegative se-
quence. Our aim is to obtain sufficient conditions for all solutions of (1) to
be oscillatory without any sign condition on {a,}. This is done by using the
theory of discrete inequalities.

2. SoME Basic LEMMAS

In this section we present two lemmas which are interesting in their
own right and which will be used in the proofs of our main results given in
Section 3.

LEMMA 1. Let K(n, s, y) be defined on N,, X N,, X R* such that for
fixed n and s, K is a nondecreasing function of y. Let {p,} be a given
sequence and let {y,} and {z,} be defined on N, satisfving for alln € N,,

n—1t

Vo= pat 2, Kn, s, y,) (3)

s=ng
and
n—1
= pat+ O, K(n, s, z,).
s=np

respectively. Then z, < y, for alln € N,,.

Proof. Suppose there exists an integer £ € N, such that z¢.| > ye+
and z, = y, for s = €. But then
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¢
il — Y = 2 K€+ 1,5, 2)— K¢+ 1,5, y)] <0,

s=nmy

which is a contradiction.

Remark. The importance of the above lemma is that once the discrete
inequality (3) is known then a lower bound of z, can be found by replacing
the inequality by an equation and solving the latter.

LEMMA 2. Suppose the function f satisfies condition (2). Let {y,} be a
positive (negative) solution of (1) for n € N3, such that

—Ayy gy, yee)@y)?
fo) ;‘, ot ;‘, fofny " @

for all n € N, and for some positive constant m; then
Ay, = —mfly, Ay, = —mf(y,))  foralln € N7 .

Proof. Let {y,} be a solution of (1) satisfying the hypotheses of the
lemma. Since
A’y,
f( Yn+ I)

+ A = 05

on summing from np to n — 1, and using (4) along with the formula

n—1

n—1
E ZA’HAU.\* = Z."vﬂ'l?:ﬂg - z U_,AZ.‘.

$=ng §=np

for summation by parts and the inequality (4) we have

NN { O VI TS) -V .
Tow =M 2 foofn  "E N )

Since the sum in (5) is nonnegative, in view of (2), we get
yaldy, <0 for n € Nj,.

If {y,} is positive, then (5) becomes

o n sy Vst —A s
an = mfiyy) + 3 LRI DR,
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where w, = —Ay,. Define

_ fUn)g(yy, yis)(=4y,)
K s, 2 Sy

forn € N and z € R*. We note that K(n, s, z) is nondecreasing in z for
each fixed n and s. So we can use Lemma 1 with p, = mf{v,) to obtain
w, = v,, where v, satisfies

n—1
_ , JOn)g(ys, Yo )(—Ay,)
v = mfln) + 2 e

v, (6)
provided that v, € R* for all s € N3, . First dividing (6) by f(y,) and then
applying operator A one can easily verify that Ay, = 0. Thus
ve = vy = mfly,) forné€ Nj .
The proof for the case when {y,} is negative follows from a similar argu-
ment by taking w, = Ay, and p, = ~mf(y,).
3. MAIN RESULT

We begin with the following theorem which is the discrete analogue of a
theorem of Waltman [11].

THEOREM 1. In addition to condition (2), assume that

n—1
lim > a,. = =; (A)

Y 5=0

then (1) is oscillatory.

Proof. Suppose the contrary and let {y,} be a nonoscillatory solution
of (1), which we may (and do) assume to be positive on N, . In view of
(A), (4) is satisfied on N, for some sufficiently large n,. Thus, from
Lemma 2

Ay, < —mf(y,) foralln € N,,,

which, after summing yields

Yn = Yn, — mf(y,.,)(ﬂ - ny).
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Hence y,— —x as n— =, This contradicts the fact that y, > 0foralln €
N,,. The proof for the case when {y,} is negative is similar and hence is
omitted.

The next result is concerned with the situation when the solutions of (1)
are bounded away from zero.

THEOREM 2. In addition to condition (2), suppose that

> a,.1 converges (7)

and
glu,v)y =2 A >0 Jorallu,v #0. (8)

If {y,} is a solution of (1) such that lim inf,_. |y,| > 0, then

i 2(ys, yor NAY,)

2 fyafny T ©)
Ay, -
Fyn) 0 as n s (10)
and
Ayn _ ~ o 8(Ys, Yse)AYSY
fyn) g‘na”' +2 SOy (1)

Jor all sufficiently large n.

Proof. Let{y,} be a nonoscillatory solution of (1) such that lim inf,_,.
|ya| > 0. Then there exists m,;, m, > 0, and n; > ng such that | y,| = m, and
| flyn)| = my for n € N, . Suppose that (9) does not hold; then it follows
from (7) that (4) is satisfied on N, for some sufficiently large n,. For the
case when {y,} is positive on N, , it follows from Lemma 2 that

Ay, = —mf(y,).
After summing we have
Yo = Yo, — mfly,Nn — ) > -2 asn— =,

which contradicts the fact that y, > 0 on N, . The proof for the case when
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{yn} is negative on N, is similar and is omitted. This completes the proof
for (9). Next, summing the equation (1) once, we have for n € N,

Ayn _ S - 8(Ys, Yo )Ay)
o =P 20 2 T e (1

where 8 is a constant such that

Ayn . (= = g(yss ys+l)(Ay.s)2
—l —_ e Lo ST
f(yno) !'l_"lz x:En“ Gt :;0 f(ys)f(y\+l)

To prove that (10) and (11) hold it suffices to show that 8 = 0. First
suppose that y, > O foralln € N, . If B8 < 0, then (7) and (9) imply that
there exists n; > ng such that

n—1

Z A+

s=n

= g(y.ﬁ )’.¢+|)(A)’s)2 . E
Z Fof |- 4

_B
= ) and

for all n € N, . Now (12) implies that (4) holds on N,,. But then, by the
argument given above, Lemma 2 and its proof lead to a contradiction of
the fact that y, > 0. If 8 > 0 then, since, lim,-. Ay,/f(y,) = B, we have
Aya/fly,) = B/2 for all n € N, with n; = ny. We use (2) and (8) to get

g(yn’ yn+l)A)’n - )‘B
Syns1) 2+ B

Thus

. g()’.n ys+|)(Ay.\‘)2 T < E AB %
s=2n| f(ys)f(yﬁ-l) - !rl"n;‘l s=n, 2 (2 + AB> ’

which contradicts (9). This completes the proof that 8 = 0 for the case
when y, > 0. The proof for the case when y, < 0 is similar.

THEOREM 3. Suppose that (2), (7), and (8) hold. Further, assume that

.. -1 -
liminf A(n) > ~ where A(n) = Z gy . (13)
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If

LA
2 I + NA(n) (14)

e}

where A.(n) = max{A(n), 0}, then (1) is oscillatory.

Proof. Suppose that (1) has a nonoscillatory solution {y,} such that
|yl > 0for n € N, . Since (8) implies that f(u) is strictly increasing for u #
0, we have |f(y,)] > 0 for n € N,,. And hence by Theorem 2 we have

Ay,
fya)

= A(n) (15)

and the inequality (9). Use (2) and (8) in (15) to get

8(¥ns Yns)Ayn _ _ NA(n)
SO 1 AA)

(16)

Now, from (15) and (16), we obtain

S gy yen)Ay) S Al
Z ooy o0 E 1 + NA(n)’

which contradicts (9). This completes the proof of the theorem.

Remark. 1If 2:.‘:,“, a,.| converges absolutely then A(n) — 0as n— x
and condition (13) is automatically satisfied. We can replace (14) by Zf,“
A’%(n) = ». The authors have not been able to improve condition (14). It
would be better if one could impose a condition on A(n) which is indepen-

dent of A.

Before formulating the next theorem we point out that if A(n) con-
verges then ho(n) = 2;_,, a,+ is well defined for all n € N,, and we
assume that hg(n) is positive for all sufficiently large values of n. We define

_ = [h()(S)Jr]2
huln) = ,;, 1+ Ahy(s)

and

[h()(s)+ + )\hm(s)+]2
1 + Aho(s) + Ahn(s))

hm+ i(n) = Z

s=n

form =1, 2, --- and hy(n). = max{hy(n), 0}.
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In our next theorem we need the following condition

There exists a positive integer M such that A, exists form = 1, 2, ...,
M ~— 1 and hy does not exist. (B)

THEOREM 4. Suppose that (2), (7), (8), (13), and (B) hold. Then (1) is
oscillatory.

Proof. From the proof of Theorem 2 it follows that if {y,} is a nonos-
cillatory solution of (1) with |y,| > 0 for n € N, then

Ay, _ o (Y5 Yo+ N(AY,)?
Ty = Pl + 2 s ey a7
and
i g()’.u y.r+|)(Ays)2 < %, (18)

s=n f(yc)f(ys+|)
From (17) we get Ay./f(y,) = ho(n), which implies that

gy, Yo Ay _ AlAo(n). P 19)
Sy 1+ Mholn)

If M = 1, then (18) and (19) imply that

Lhols)+)? -
huln) = Z T+ M) =
which contradicts the non-existence of hy(n) = hi(n). If M = 2, then from
(17) and (19) we have

Ay,
Syn)

= o) + A 3 T8I — ) + MG,

from which it follows that

g(ys, ¥+ 1Ay, > ho(n) + Aho(n) + AA(n)), 2
fOoflyse) 0 1 + Aho(n) + Nhy(n))’

Then, in view of (18), a summation of the last inequality leads to the
contradiction of the non-existence of Ay = h;. A similar argument pro-
vides a contradiction for any integer M > 2.

409/186/1-15
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ExampLE 1. Consider the equation

N (n + D2Q2n* + 4n+1)

2
Ay'l n(n_+_2) )’n+l

=0, n=1,2,.... (E)

The hypotheses of Theorem 1 are satisfied and hence (E,) is oscillatory.
One such solution is y, = (—=1)"/n.

ExampLE 2. Consider the difference equation

, 1
A, ~ 33 yiei=0, n=0,1,... (E2)

It is easy to verify that all conditions of Theorem 2 are satisfied for (E,).
Hence every nonoscillatory solution of (E,) satisfies (9)-(11). One such
solution is y, = 2" with lim inf,... |y, > 0.
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