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It is increasingly evident that redox-dependent modifications in cellular proteins and signaling pathways (or
redox signaling) play important roles inmany aspects of cardiac hypertrophy. Indeed, these redoxmodifications
may be intricately linked with the process of hypertrophy wherein there is not only a significant increase in
myocardial O2 consumption but also important alterations in metabolic processes and in the local generation
of O2-derived reactive species (ROS) that modulate and/or amplify cell signaling pathways. This article reviews
our current knowledge of redox signaling pathways and their roles in cardiac hypertrophy. This article is part
of a Special Issue entitled “Redox Signalling in the Cardiovascular System”.
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1. Introduction

Cardiac hypertrophy represents an increase in cardiac muscle mass
in response to a chronic increase in cardiac workload. It may be associ-
ated, at least initially, with an enhanced contractile function of the heart
but chronic increases in workload due to disease stress generally result
in a progressive decline in cardiac performance and ultimately the de-
velopment of chronic heart failure (CHF). Such pathological hypertro-
phy usually occurs in response to chronically increased afterload or
“pressure overload” (e.g. due to hypertension), increased preload or
“volume overload” (e.g. due to valvular regurgitation), or following
myocardial infarction (MI). In addition, pathological hypertrophy may
also arise in diabetes and with genetic abnormalities of myocardial
structure or function [1]. In contrast, reversible physiological hypertro-
phy with well compensated contractile function is seen in athletes or
healthy pregnancy [2].

The development of cardiac hypertrophy involves a complex remod-
eling of cardiomyocyte structure and function as well as remodeling of
the non-myocyte compartment (i.e. the vasculature and the extracellu-
lar matrix [ECM]). For instance, the maintenance of an appropriate
capillary density and blood supply to match the increase in muscle
mass is crucial for an adaptive hypertrophic response, whereas a mis-
match promotes decompensation [3]. Maladaptive cardiac hypertrophy
is accompanied by disproportionate interstitial fibrosis, energy deficit,
cardiomyocyte death, vascular dysfunction and chamber dilatation [4].
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It is increasingly evident that redox-dependentmodifications in cel-
lular proteins and signaling pathways (or redox signaling) play impor-
tant roles in many aspects of cardiac hypertrophy [5]. Indeed, these
redoxmodificationsmay be intricately linkedwith theprocess of hyper-
trophy wherein there is not only a significant increase in myocardial O2

consumption but also important alterations in metabolic processes and
in the local generation of O2-derived reactive species (ROS) that modu-
late and/or amplify cell signaling pathways. This article reviews our
current knowledge of redox signaling pathways and their roles in
cardiac hypertrophy.

2. General considerations with respect to redox signaling in
cardiac hypertrophy

At the cellular level, O2 specifically undergoes one electron reduction
to O2

−through the action of several oxidases, either as their primary
function or as a byproduct of some other reaction. These oxidases
include NAPDHoxidases (NOXs), xanthine oxidase (XO),monoamine ox-
idase (MAO), and uncoupled NO synthases (NOS) (Fig. 1 and below). O2

−

is also produced by mitochondrial complexes I and II under certain cir-
cumstances. The O2

− can become further dismutated to H2O2 via
superoxide dismutases (SOD).Moreover, O2 is usedbyNOS toproduce ni-
tric oxide (NO), a reactive nitrogen species (RNS) thatmay be the precur-
sor of other reactive species (e.g. ONOO−). The complex interplay and
specific effect of these reactive species is greatly influencedby the amount
MAO
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generated, half-life of the chemical species, subcellular location, site-
specific antioxidant pools, and the local chemical environment (e.g. pH,
the buffer pair CO2/HCO3

−). For instance, NO reacts extremely rapidly
with O2

−to generate ONOO− (or ONOOCO2
− in the presence of CO2/

HCO3) in a reaction that is favored over the dismutation of O2
−by SOD [6].

ROS may directly modulate the redox status of macromolecules and
signaling pathways or may exert indirect effects, e.g. by reacting with
NO and decreasing local NO bioavailability [7]. Among themost suscep-
tible molecular targets of “signaling” ROS in cardiac cells are protein
cysteine thiols and methionines. Cysteine oxidation leads to intra- or
intermolecular disulfide formation or other thiol modifications such
as nitrosylation (NO bound to protein thiol) and glutathiolation (a
disulfide bond of a protein thiol with glutathione). Other common post-
translational redox modifications include proline and arginine hydrox-
ylation, and the nitration of aromatic amino acids (e.g. tryptophan or
tyrosine). Such modifications can affect the conformation, stability and
function of proteins. Examples of signaling molecules that are redox
modified in cardiac hypertrophy are shown in Figs. 1 and 2, and include
protein kinases (e.g. calcium-calmodulin kinase II [CaMKII], protein ki-
nase A [PKA], and protein kinase G [PKG]), the ryanodine receptor Ca re-
lease channel (RyR2), sarcoplasmic reticulum Ca ATPase (SERCA2a),
GTPases (e.g. RAS), antioxidant proteins such as thioredoxin (TRX), and
histone deacetylases (HDAC). It is important to note that local antioxidant
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pools and specific antioxidant enzymes, notably peroxiredoxin and TRX,
may also be critically important in redox signaling. For example, transient
spatially confined inactivation of peroxiredoxin is thought to be a crucial
event in reversible growth factor-induced redox signaling [8]. Reduced
glutathione (GSH) is the major cellular redox buffer and themechanisms
involved in its regeneration (e.g. NADPH-dependent activity of glutathi-
one reductase) therefore also significantly influence redox signaling. An
appropriate balance between ROS generation and antioxidant pools is
important for normal cellular function and either an over-oxidized or an
over-reduced environment (“oxidative stress” and “reductive stress”,
respectively) may be detrimental [9].

2.1. Cellular sources of ROS

Most of the ROS sources depicted in Fig. 1 have been implicated
in some aspect of pressure-overload induced maladaptive cardiac
hypertrophy [10–13].

2.1.1. Mitochondria
ROS generation inmitochondria is related to a partial reduction of O2

to O2
−by complexes I and III of the electron transport chain (ETC.),

through electron “leakage” during mitochondrial respiration [14].
Other mitochondrial enzymes may also contribute to ROS generation
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as described later. The maintenance of the mitochondrial antioxidant
status has been recognized as an important determinant of mitochon-
drial ROS levels [15]. Elevation in ROS generation by mitochondria has
been detected in different cardiovascular settings whereby mitochon-
drial ROS generation can have beneficial or detrimental effects [16].
The deletion of mitochondrial antioxidants such as TRX reductase 2 is
embryonically lethal and related to impaired cardiac function [17].
Moreover, in isolated mitochondria, pharmacological inhibition of TRX
reductase 2 resulted in unremitted H2O2-emission from these organ-
elles, while the mitochondrial energetic status is reflected in the levels
of reduced TRX [18]. In another animalmodel, deletion ofmitochondrial
manganese SOD led to severe fatal dilated cardiomyopathy. On the
other hand, mice overexpressing mitochondrial-targeted catalase
were protected from cardiac disease and showed a prolonged life span
[19].

2.1.2. The endoplasmic reticulum (ER)
The ER lumen has a strongly oxidizing milieu where O2 drives

protein oxidation and folding. O2 is used in the oxidation of lysine and
proline by lysyl oxidase (LOX) and prolyl oxidase (PHD), respectively.
Similar reactionsmediated by other PHD isoforms occur in the cell cyto-
sol and regulate the stability of the transcriptional factor hypoxia-
inducible factor (HIF). Another important reaction in the ER is the intro-
duction of disulfide bonds into nascent proteins. This enzyme ER
oxidase 1 (Ero1) is first oxidized by molecular O2 to form oxidized
Ero1, generating H2O2 in this process. Subsequently, protein disulfide
isomerase (PDI)mediates the transfer of disulfides from Ero1 to nascent
proteins, as part of normal protein folding. Thus, H2O2 is produced
during normal cell metabolism in the ER. Higher levels of H2O2 may be
generated in the ER during cellular stresses, and other oxidases such
as NOXs may contribute to this. Recently, it was shown that Ero1
regulates excitation–contraction coupling in cardiomyocytes during
increased loading [20].

2.1.3. NADPH oxidases
NOX proteins were initially discovered through their critical role in

phagocytic cells [21]. 7 distinct NOX isoforms (NOX1–NOX5, and
DUOX1 and 2) have since been identified. NOX1, 2, 4, and 5 have been
identified in the cardiovascular system where they generate low levels
of ROS (within the nanomolar range) and have been implicated in the
regulation of many redox-sensitive signaling pathways, playing multi-
farious roles in cell differentiation, proliferation and migration [21,22].
The main cardiac isoforms are NOX2 and NOX4 both of which occur as
heterodimerswith a 22 kD subunit termedp22phox. NOX2 is a sarcolem-
mal enzyme that is activated by common hypertrophic stimuli such as
G-protein coupled receptor (GPCR) agonists (e.g., angiotensin II
(Ang-II) or endothelin-1), growth factors, cytokines and mechanical
forces in a process that involves the binding of 4 regulatory subunits
(p67phox, p47phox, p40phox and Rac1). In contrast, NOX4 is found in in-
tracellular membranes, notably the ER [23], and is constitutively active.
It has no requirement for regulatory subunits and is thought to be
regulated mainly by its abundance [22]. NOX2 and NOX4 are both
upregulated during the response to hypertrophic stimuli but appear to
have distinct effects in the heart (see Section on redox-sensitive signal-
ing pathways).

2.1.4. Uncoupled NO synthases (NOS)
Endothelial and neuronal NO synthases are expressed in cardiac

myocytes. Under pathological conditions such as inflammation, induc-
ible NOS is also expressed. NOS-derived NO is reported to have benefi-
cial antihypertrophic effects through cGMP-related signaling, and the
inhibition of cGMP hydrolysis with a phosphodiesterase 5 inhibitor is
beneficial in an animal model of pressure overload [24] (Fig. 2).
However, NOS enzymes can become uncoupled during oxidative
stress situations due to the oxidation and depletion of the cofactor
tetrahydrobiopterin (BH4) [25] or due to S-glutathionylation [26]. The
enzymes then switch from NO to O2
−generation and may act to further

amplify detrimental ROS-signaling induced by other ROS sources
(e.g. NOXs). NOS uncoupling may therefore represent an important
step in the initiation of maladaptive hypertrophy to common pro-
hypertrophic triggers (Fig. 2).

2.1.5. Monoamine oxidases (MAO)
MAO are located in themitochondria and act in the oxidative deam-

ination of catecholamines. This reaction generates H2O2 and the
enzymes have been reported to be important sources of ROS in mice
subjected to pressure overload [27] and to contribute to cardiac dys-
function in this setting [28]. The mitochondrial location of MAO also
raises the possibility of cross-talkwith othermitochondrial ROS sources.

2.1.6. Cytochrome P450 oxidase
Cytochrome P450 oxidase can function as an important source of

ROS under certain circumstances. Cytochrome P450 oxidase is reported
to be upregulated in heart disease and interestingly cytochrome P450
knockout mice were found to ameliorate heart dysfunction when
crossed with a mouse model of dilated cardiomyopathy [29].

2.1.7. Xanthine/xanthine oxidase
During hypoxia or ischemia, xanthine dehydrogenase (XD) is

converted to xanthine oxidase (XO) which can convert O2 to ROS [30].
XO appears to be an important source of ROS in ischemia but its role
in the development of cardiac hypertrophy remains elusive [31]. It
should be noted that in human hearts, the expression levels of XO
may be very low, limiting this enzyme's relevance with respect to
human pathology [32].

3. Redox regulation of cardiac hypertrophy

3.1. Redox-sensitive signaling pathways involved in cardiomyocyte
hypertrophy

During cardiac hypertrophy the normal pattern of cardiac gene
expression is reprogrammed, which can impact on different cellular
processes (e.g., Ca homeostasis, contractile function, metabolism,
oxygen sensing and cell viability). A number of transcriptional factors
(e.g. NFAT, GATA4, MEF2, SRF, NF-κB and PGC1α) are involved in driv-
ing this hypertrophic program, and these factors in turn are under the
control of a multitude of interacting signaling pathways (see Fig. 2)
[5,33,34]. An increasing body of data indicates that these hypertrophy-
related signaling pathways are subject to redox regulation as a conse-
quence of spatially and temporally confined ROS production from dis-
tinct ROS sources as outlined above [5,35]. In addition, ROS may also
directly influence transcription factor binding, e.g. through regulation
of histone deacetylases (HDACs). For example, it has been demonstrat-
ed that HDAC4 (which inhibits the expression of MEF2-dependent
genes) undergoes specific oxidation in response toα-adrenergic stimu-
lation to form an intra-disulfide bond at Cys 274/276, resulting in its nu-
clear export and dis-inhibition of gene transcription [36]. A similar
oxidation has also been recently reported in response to α-adrenergic
stimulation [37].

Overlapping signaling pathways that drivemaladaptive hypertrophy
are also redox sensitive. For example, G-protein-coupled receptor (GPCR)
agonists such as angiotensin II, endothelin-1 and α-adrenoceptor ago-
nists, cytokines (through gp130 protein) and biomechanical stress all
cause increased NOX-derived ROS production which modulates specific
signaling pathways during the development of cardiac hypertrophy.
NOX2 expression and activation are increased in response to chronic
pressure overload [10] and are involved in angiotensin II-induced cardiac
hypertrophy.Mice deficient inNOX2 [38] or Rac1 [39] have a significantly
blunted hypertrophic response to angiotensin II, and similar results are
reported in cellular models of hypertrophy [40,41]. NOX2-dependent en-
hancement of ERK signaling, ASK1/p38MAPK signaling, and NF-κB
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activation have been implicated in these effects [41–44]. With respect to
ERK signaling, a specific redox modification of Cys118 in RAS, upstream
of Raf-MEK-ERK activation, was shown to mediate cardiac hypertrophy
in response to α-adrenoceptor stimulation [45] and mechanical stress-
induced hypertrophy [46]. The hypertrophic response to pressure over-
load is more complex because NOX2 null mice develop a similar extent
of hypertrophy to wild-type controls although contractile function is
better [47] suggesting that other pathways are also involved.

NOX4 levels also rise in response to chronic pressure overload and
other stress stimuli but its effects appear to be distinct from those of
NOX2. Notably, NOX4 is capable of driving several distinct pro-
survival processes and an increase in autophagy [48]. During chronic
pressure overload, NOX4 was found to exert a protective role through
the enhancement of cardiomyocyte HIF-VEGF signaling, which through
paracrine angiogenic effects resulted in a higher myocardial capillary
density [49]. Interestingly, similar NOX4-dependent enhancement of
HIF signaling has been reported in the kidney [50]. NOX4 may also
enhance the expression of cytoprotective genes through the activation
of Nrf2 [51,52], and promote autophagy in the setting of starvation
[48], although the extent to which these pathways contribute to the re-
sponse to hypertrophic stimuli remains to be fully defined. These find-
ings exemplify the importance of ROS source-specific signaling with
respect to the resulting remodeling phenotype [53]. Such signaling is
likely to be highly dependent upon temporally and spatially confined
ROS production and the specificity derived from such compartmenta-
tion. On the other hand, the loss of such compartmentation (e.g. due
to very high level ROS production, mis-localization of ROS sources or
aberrant biochemical function) may also lead to the loss of specific pro-
tective signaling and be replaced by non-specific detrimental such as
mitochondrial dysfunction. Interestingly, detrimental effects of NOX4-
derived ROS in a model of severe pressure overload have been reported
[54] and it will be of interest to define the reasons why protective
mechanisms such as those discussed above are overwhelmed in some
situations.

Other signaling pathways that drive adaptive hypertrophy include
the insulin-like growth factor (IGF)/phosphatidylinositol 3 kinase
alpha (PI3Kα)/protein kinase B (AKT) pathway. AKT activation is an
important convergence point with cross-talk to other adaptive signals
such as HIF via the activation of mTOR. The redox regulation of
AKT and of HIF is well established [55] although the details of ROS
sources that influence these pathways remain to be fully worked out.
Another example of a redox-regulated signaling pathway with
anti-hypertrophic effects is the cGMP/PKG pathway [24]. Oxidative
activation of PKG has been discovered to be an important regulatory
mechanism [56] and elucidation of the relevance of this to cardiac
hypertrophy is awaited.

3.2. Redox-regulation of excitation–contraction coupling (ECC) and Ca
handling

A gradual worsening of contractile function is a cardinal feature of
the disease progression of maladaptive cardiac hypertrophy to heart
failure. Abnormalities of excitation–contraction coupling (ECC), includ-
ing cardiac myofilament dysfunction, play a key role in this contractile
dysfunction and growing evidence suggests an important role for
redox modifications of key signaling components of ECC in this process
(Fig. 1). Although this is not the primary focus of the current article, in
view of its importance we provide a brief overview of the main redox
abnormalities. The interested reader is referred to excellent recent
reviews for more detail [57].

Important effects of ROS on ECC include indirect effects through the
redoxmodification of protein kinase activity and direct effects on chan-
nels and ion transporters. PKA activation in response to β-adrenergic
stimulation is of key importance in regulating the phosphorylation
status of L-type Ca channels, the SR Ca release channels (ryanodine
receptors, RyR2), troponin I, and myosin binding protein C. PKA can be
redox activated through the formation of an inter-disulfide bond be-
tween its catalytic subunits [58], an event that also promotes the trans-
location and association of PKA with specific A-kinase anchoring
proteins (AKAPs), thereby targeting active PKA to specific subcellular
sites. An analogous mechanism has been identified for PKG activation
and subcellular targeting through the formation of an intra-disulfide
bond between Cys42 residues on PKG monomers, leading to its
dimerisation [56]. The functional consequences of oxidative PKA or
PKG activation in the setting of cardiac hypertrophy and failure remain
to be elucidated. Another kinase involved in ECC, CaMKII, can undergo
oxidation on methionine residues (Met-281/282) in its regulatory
domain, resulting in a preservation of CaMKII activity even after the re-
moval of Ca/calmodulin [59]. CaMKII oxidation has been associatedwith
the development of cell death and ventricular rupture after myocardial
infarction [60], atrial fibrillation [61] and diabetes-related bradycardia
after myocardial infarction [62], and either NOX2-derived ROS or
mitochondrial ROS were implicated in these effects. A specific role for
oxidized CaMKII in the development of cardiac hypertrophy and failure
remains to be investigated but seems likely in view of the data implicat-
ing CaMKII-related regulation of ECC in this setting. For example,
CaMKII-dependent misregulation of RyR2 phosphorylation was impli-
cated in altered calcium cycling in a mouse model of hypertrophy
[63]. Such kinase-mediated redox regulation is particularly interesting
because it may represent tractable potential therapeutic targets in
cardiac hypertrophy and failure.

RyR2 may be direct redox targets by virtue of their very large num-
ber of cysteine residues [64]. Superoxidation of the RyR2 receptor is as-
sociated with irreversible activation and increased Ca leakage [65] but
acute low-level exposure to ROS may have positive inotropic effects
due to an enhancement of SR Ca release [64]. In line with this, the reac-
tive nitrogen species nitroxyl (HNO) was shown to induce Ca release
from the SR via RyR2-oxidation [66], a process that might result in an
enhancement of myocyte contractility [67]. Similar observations have
beenmadewith respect to common cancer therapeutics such as thorac-
ic radiation or anthracycline chemotherapy that are both capable of in-
ducing high levels of ROS in isolated cardiac myocytes. In this setting,
elevated ROS may oxidatively activate CaMKII, which results in in-
creased CaMKII-dependent systolic SR Ca release, as well as persistent
diastolic SR Ca leakage, which ultimately leads to contractile dysfunc-
tion [68,69]. On the other hand, a physiological role of NOX2-derived
ROS in ECC through modulation of SR Ca release has also recently
been reported [70]. These authors showed that NOX2-derived ROS
release within T-tubules enhances length-dependent contractile activa-
tion of isolated cardiomyocytes by enhancing SR Ca release upon phys-
iological stretch. Hyperactivation of this mechanism in Duchenne
muscular dystrophy or after angiotensin II stimulation led to dysfunc-
tional Ca release and arrhythmia. A previous study suggested that
NOX2-dependent S-glutathionylation of RyR2 channels may be in-
volved in tachycardia-related increase in contractility in normal myo-
cardium [71]. ROS may also enhance SERCA2a function, e.g. through
phospholamban oligomerization and consecutive dissociation from
SERCA2a [72] whereas high dose ROS can disrupt SERCA2a function
[73]. Other Ca handling proteins whose function may be disrupted by
redox modifications include the sarcolemmal Na/Ca exchanger (NCX)
[74], voltage gated L-type Ca channels [75] and sarcolemmal Na
channels [76] (Fig. 1).

Redox modifications of the contractile machinery also contribute
to contractile dysfunction although the role of specific modifications
needs to be further investigated [77]. One example of a specific redox
modification is the formation of a disulfide bridge in the N2-B seg-
ment of the giant myofilament, titin, which is implicated in increased
muscle stiffness and diastolic dysfunction [78]. Also, HNOwas shown
to promote disulfide bond formation between critical cysteine
residues in cardiac myofilaments thereby increasing Ca sensitivity
of the myofilaments and mediating a redox-dependent positive
inotropic effect [79].
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3.3. Myocardial vascularization during hypertrophy

Myocardial vascularization is a critical factor during cardiac compen-
sation in response to chronic pressure overload [3]. In the heart, a
mismatch in the number of capillaries relative to the increase in cardio-
myocyte size during hypertrophy is related to pathological remodeling
resulting in an increase in the levels of hypertrophy, fibrosis, cardiac di-
latation, and contractile failure. The transcriptional factor HIF1 is central
to this process [80]. Although persistentHIF1 activation is reported to be
detrimental during cardiac hypertrophy [81], several studies show that
regulated HIF activation is cardioprotective (Fig. 2). As mentioned
earlier, NOX4-derived ROS enhance cardiomyocyte HIF activation in
response to chronic pressure overload to mediate protective effects at
least in part through enhanced capillarization [49]. In the vasculature,
NOX4-dependent pro-angiogenic effects have been shown to involve
eNOS activation [51,82], and it is therefore of interest to assess whether
a similar mechanism may apply in the heart. NO-dependent signaling
also appears crucial for a proportionate vessel to myocytes growth in
the hypertrophying heart [83].
3.4. Redox regulation of interstitial fibrosis

Excessive interstitial fibrosis is another central pathogenic feature of
maladaptive cardiac hypertrophy, and contributes to impaired diastolic
and systolic function [84] and re-entrant arrhythmia [85]. Several differ-
ent cell types are involved in the development of pathological cardiac
fibrosis. Fibroblasts play a key role in pathological fibrosis following
their transformation to myofibroblasts in response to stimuli such as
cytokines, transforming growth factor β (TGFβ) and angiotensin II.
Cardiomyocytes release pro-fibrotic factors such as TGFβ and connec-
tive tissue growth factor (CTGF) upon stimulation by hypertrophic
triggers [85,86]. Inflammatory cells are also involved through the
release of cytokines and may be attracted into the stressed heart in
response to diverse stimuli including damage-associatedmolecular pat-
terns (DAMPs). Activated endothelial cells promote inflammatory cell
influx and are also reported to contribute directly to pathological cardi-
ac fibrosis through the process of endothelial-to-mesenchymal transi-
tion (EndoMT), in which TGFβ plays a key role [87]. Increased ROS
production may drive or enhance the above processes. Redox signaling
has been implicated in fibroblast proliferation, endothelial and inflam-
matory cell activation, and in EndoMT. Consistent with an important
role for ROS signaling in fibrosis, many experimental studies have
shown that various antioxidant approaches can reduce fibrosis.

In vivo studies inmousemodels suggest an important role for NOX2-
derived ROS in driving fibrosis. As such, NOX2-deficient mice subjected
to chronic angiotensin II or aldosterone infusion were significantly
protected against interstitial cardiac fibrosis [88], interestingly even
when the extent of hypertrophy was unaltered. Similar results were
found in mice with cardiomyocyte-specific Rac1-deletion that were
subjected to angiotensin II infusion [39], NOX2-deficientmice subjected
to aortic banding [89] or myocardial infarction [90,91], or in apoptosis
signal-regulating kinase 1 (ASK-1)-deficient mice in a model of
aldosterone/salt-induced fibrosis [92]. NOX2-dependent production of
CTGF and the activation of NF-κB and matrix metalloproteinases
(MMPs) appear to be involved in these effects [88]. Recently, we have
also found an important pro-fibrotic role of endothelial cell NOX2 in a
model of chronic angiotensin II infusion, where NOX2 enhanced inflam-
matory cell infiltration and EndoMT (Murdoch et al., JACC in press) [93].
Other ROS sources are also implicated in pro-fibrotic effects. The
Rabinovitch lab recently provided evidence that angiotensin II-
dependentmitochondrial ROS formation in cardiomyocytes contributed
to fibrosis [12] while other studies found a role for ROS derived from
uncoupled NOS in the setting of TAC-induced hypertrophy [11]. Finally,
increased XO expression and activity were found in the infarcted heart
and associated with increased myocardial ROS formation while
inhibition of XO using allopurinol attenuated myocardial fibrosis
suggesting that XO-derived ROS may also participate [94].

3.5. Maladaptive hypertrophy after myocardial infarction

Maladaptive remodeling of the left ventricle (LV) following myocar-
dial infarction is one of the most common causes of heart failure in the
western world. It involves a substantial remodeling of the extracellular
matrix that results in dilatation of the LV as well asmajor changes in the
non-infarctedmyocardium, e.g. cardiomyocyte hypertrophy, contractile
dysfunction, fibrosis, cell death and arrhythmia. A growing body of evi-
dence suggests ROS to be centrally involved in these processes [95]. At a
cellular level, there are many similarities to the redox signaling events
discussed earlier in this article but also differences with respect to stim-
uli that evoke ROS production, the time-course of development of
remodeling, and regional heterogeneity, which remain to be fully
defined. Similar to other stresses such as chronic pressure overload,
myocardial infarction induces the compensatory activation of the
renin–angiotensin system but may also have pro-remodeling effects
via directmechanical forces, local inflammation and cytokine activation.
In human tissue samples from infarcted hearts, cardiac myocyte NOX2
expression was increased [96] suggesting that NOX2 is regulated in
post-MI remodeling. In fact, NOX2-deficient mice (either induced by a
deletion of p47phox [91] or gp91phox [90]) subjected to left coronary
ligation had better preserved contractile function, less LV remodeling
and reducedmortality associatedwith less cardiomyocyte hypertrophy,
apoptosis and interstitial fibrosis despite a similar initial infarct size to
wild-type controls. Antioxidants such as probucol have been reported
to be reducing post-MI remodeling in experimental models [97]. XO-
derived ROS has also been implicated because the XO inhibitor allopuri-
nol reduced ROS generation followingMI and attenuated LV remodeling
and dysfunction [94]. In infarcted rat hearts, uncoupled NOS and associ-
ated ROS generation augmented detrimental LV remodeling after MI
[98]. On the other hand, NOS-derived NO can limit detrimental LV re-
modeling after MI, possibly via the cGMP/PKG pathway and inhibition
of the mitochondrial permeability transition pore [99]. At a molecular
level, increased mitochondrial ROS formation after MI was associated
with RyR2 S-nitrosylation and depletion of calstabin2 from the RyR2
complex, resulting in diastolic SR Ca leakage and arrhythmias as well
as aggravated LV remodeling [100]. Interestingly, NOX2-mediated oxi-
dative CaMKII activation contributed to aldosterone-induced cardiac
rupture after MI [60], which was reversible by methionine sulfoxide re-
ductase A. Similarly, oxidized CaMKII was suggested to mediate
diabetes-attributable mortality after MI as a consequence of increased
mitochondrial ROS formation (which could be reduced using the mito-
chondrial targeted antioxidant MitoTEMPO) and severe bradycardia
[62].

4. Potential clinical implications

The data discussed in this article indicate that disrupted redox
signaling plays important roles in the initiation of stress-induced cardi-
ac hypertrophy as well as in its disease progression towards heart
failure. It appears to have an impact on all the key features of cardiac
remodeling including the cardiomyocyte hypertrophic response,
contractile dysfunction, arrhythmia, capillary density, fibrosis and ECM
remodeling. Importantly, redox signaling contributes both to protective
and detrimental pathways, likely depending upon the ROS source and
disease stage, and is often highly specific. As such, it is perhaps not
surprising that non-specific antioxidant approaches (e.g. vitamin C or
E supplementation) have generally proven unsuccessful in clinical trials
despite positive results from focused short-term experimental animal
studies [101]. A much more targeted approach is likely to be required,
e.g. targeting specific ROS sources (perhaps even in a tissue-specific or
cell compartment-specific manner) or specific downstream molecular
pathways. The inhibition of pathologically activated NOX2 may be a
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promising approach although it may be necessary to avoid concurrent
inhibition of NOX4. The theoretical problem of increased infection
susceptibility from inhibiting NOX2 in phagocytes may in practice not
be a major problem in light of data that phagocyte function is only im-
paired after near complete inhibition of NOX2 [102]. The “re-coupling”
of uncoupled NOS by oral supplementation of tetrahydrobiopterin
(BH4) was considered a promising approach [103] but in the clinical
setting appears disappointing since orally administered BH4 becomes
oxidized to BH2 which is not effective with respect to NOS re-coupling
[104]. An alternative approach might be to target mitochondrial ROS,
for example with specific antioxidant peptides (such as SS-31) that lo-
calize to this compartment [105] or withmitochondria-targeted antiox-
idants such as MitoQ, both of which appear promising in animal studies
[106]. An elevation of endogenous antioxidant capacity by non-vitamin
approaches might be another approach. For example, thioredoxin-1
gene therapy has been shown to reduce ventricular remodeling in the
infarcted myocardium of diabetic rats [107]. However, such approaches
may need to be carefully titrated because an excessively reduced cellu-
lar environment may be detrimental by generating reductive stress, as
in mutant protein aggregation cardiomyopathy [108]. Redox-regulated
signaling molecules that might be interesting therapeutic targets
include oxidatively activated CaMKII [109] and leaky RyR2 channels.

5. Conclusions

Advances in redox signaling research over the last two decades have
enhanced our understanding of how free radicals and ROS regulate
various pathophysiological processes involved in the development of
heart diseases. Many hubs in the signaling networks related to cardiac
hypertrophy are redox sensitive, and play a role in hermetic cell metab-
olism to regulate cell growth and survival. Disruption of these redox sig-
naling circuits can be detrimental and lead to cardiac dysfunction. This
improved understanding of the roles of redox signaling likely explains
why non-specific antioxidant therapies have failed with respect to
heart diseases [101], but also suggests the possibility thatmore targeted
approaches would be effective. We still need a more detailed under-
standing of cell compartment-specific and localized redox signaling, as
well as the interplay and cross-talk among different redox-regulated
pathways and different ROS sources. Better tools (such as real-time
ROS detection probes), newer approaches (such as systems biological
approaches), and more human data are likely to be extremely valuable
in this endeavor.
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