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Abstract 

Let HI ,H2 be two Hilbert spaces over the complex field C and let T: HI --+ Hz be a 
bounded linear operator with the generalized inverse T+. Let T = T + 6T be a bounded 
linear operator with llT+11116Tll < 1. Suppose that dim ker 7 = dim ker T < 03 or 
R(T) rl R(T)’ = 0. Then T has the generalized inverse 

T+=[I-(I+T+6T)-+T+T) 

- (I - T+T)(Z + T+6T)*-‘]-‘(I + 6ZT+)-‘T+ 

x [(I + GTT+)7z-+(z + aIT+)-’ + (I + sT7-+)*+‘7T+(z + UT+)* -I]_’ 

with 

llT+ll 
ll’+ll ’ 1 - llT+l1116Tll . 

This result gives an analogue of Theorem 3.9 of M.Z. Nashed (“Generalized Inverses 
and Applications”, Academic Press, New York, 1976) in Hilbert spaces. 0 1998 
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1. Introduction 

Let (X,, 11 . [I),), (&,I[ . 112) be two Banach spaces over the complex field C 
and let B(& ,X2) denote the Banach space of all bounded linear operators 
T : X, + & with the norm 

IITII = S~P{IIW I IIXIII = 1,x E Xl). 
For T E B(Xl,X2), Ker T (resp. R(T)) denotes the null space (resp. range) of 

T. Let T E B&X,,&) with R(T) closed. If there exist two idempotents 
P: Xl + Ker T, Q:& + R(T) and T+ E B&,X,) such that 

T+TT+ = T+, TT+T=T, T+T=I-P, TT+=Q, (1.1) 

then we say that T has uniquely the generalized inverse T+ = Tg e (with respect 
to P, Q). If Xi,& are Hilbert spaces, we require (T+T)* = T+T, (?“I’+)* = ZT+ 
(see also [l]). 

In [ 11, Nashed showed that for T E B&Y, ,X2) with the generalized inverse T+ 
and T = T + 6T E B(Xl,&) with IIT+llll6Tll < 1, if 

(I + 6ZT+)-‘T maps Ker T into R(T), 

then T+ exists and T+ = (I + T+GT)-’ T+ with 

(1.4 

IIT+II 
‘IT+11 ’ 1 - IIT+~~~~6Tll ’ (1.3) 

Here we need to mention that by Chen and Xue’s work (cf. [2]) the condition 
(1.2) can be replaced by the following condition: 

dim Ker T = dim Ker T < co or R(T) II Ker T+ = 0. 

The Nashed’s result Eq. (1.3), however, has not been found by now in Hil- 
bert spaces because T+ = (I + T+GT)-‘T+ is not the generalized inverse of 7 in 
Hilbert spaces. 

Recently there are some research works pertaining to the estimation of IIT+II 
such as [3,4] although these are not the best. So in this paper we will establish 
the result similar to [Na], Theorem 3.7 in Hilbert spaces. Using this result, we 
have improved a very important result of [3]. 

2. The main result 

Throughout this section, we assume that H, HI, Hz are all Hilbert spaces. Let 
S E B(H, H) be an idempotent. We denote by O(S) the orthogonal projection 
of H onto R(S). Then it is easy to verify that 

O(S)S = S, SO(S) = O(S), 
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(I - O(S))(Z - S) = I - O(S). (2.1) 
Moreover, we have the following deeper result spirited up by [5], Proposi- 

tion 4.6.2. 

Lemma 1. Let S, O(S) be us above. Then 
1. I - S - S is invertible in B(H, H); 
2. S(I-s-s*)-’ = (I-s-s’)-ls’,s*(z-s-s*)-’ = (I-s-sys; 
3. O(S) = -S(Z - s -s*)_‘. 

Proof. (1) Since a = Z + (S - S*)(S -S*)* is strictly positive and 
S* = S, (S,)* = s*, we have 

a=z+SS*+S*S-S-S’=(z-S-S*)2 

is invertible. So is the Z - S - s*. 
(2) The assertion comes from the identities: 

S(Z - s - s*) = -ss* = (I - s - s*)s*; (2.2) 

s’(Z - s - S) = -S’S = (I - s - s*p 
and (1). 

(2.3) 

(3) Let r = -S(Z - S - s*)-‘. W e will prove that r is an orthogonal projec- 
tion of H onto R(S) so that O(S) = r. 

By (2) and Eq. (2.3), we have 

r* = -(Z - 5 - s*)-‘r = -S(Z - S - 9)-l = r 

and 

r2 = S(Z - S - s’)-‘S(Z - S - s*)-l 

= (I - s - s’)-‘s”s(z - s - sI)_’ 

= -(Z - 5 - s’)-‘S* = -S(Z - 5 - St)-’ = r. 

Now from r = -S(Z - S - s*)-‘, we have R(r) c R(S). On the other hand, by 
(2) and Eq. (2.2), we get that 

rs = -S(Z -s - s*)_‘S = -XF(Z -s -St)-’ = s. 

This means that R(S) c R(r). Therefore R(r) = R(S). 0 

The next lemma concerns about the construction of the generalized inverses 
of the operators in Hilbert spaces. 

Lemma 2. Let T E B(Hl ,Hz) with R(T) closed. Assume that there are an 
idempotent P : HI -+ Ker T and an A E B(H2, HI) such that AT = Z -P. Then 
T+ = [Z - O(P)]AO(TA). 
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Proof. Put Q = TA. Then @ = TATA = T(Z - P)A = TA = Q. Now from 
Q = TA and QT=T(Z-P)=T, we get that R(T) = R(Q). Put 
B = [Z - O(P)]AO(Q). Then 

TB = T[Z - O(P)]AO(Q) = TAO(Q) = QO(Q) = O(Q), 
BT = [Z - O(P)]AO(Q)T = [Z - O(P)]AT 

= [Z - O(P)](Z - P) = I - O(P). 

The above indicates that T+ = B is the generalized inverse of T in 
B(ff2,fb). 0 

Now we present our main result as follows. 

Theorem 1. Let T E B(H’, Hz) with the generalized inverse Tf and let r = T 
+6T E B(H’, Hz) with I] Tf I] ]/ST]] < 1. Suppose that dim Ker T = dim Ker T 
< cc or T is a Type Z 

4 
erturbation of T (i.e., R(T) n R(T)’ = 0). Then T has the 

generalized inverse T admitting the form 

T+ = [Z - (I + T+6T)-‘(I - T+T) 

- (I - T+T)(Z + T+GT)*-‘]-‘(I + T+GT)-‘T+ 

x [(I + cUT+)TT+(z + UT+))’ 

+ (I + 6ZT+)*-‘IT+(z + 6ZT+)* -I]-‘, (2.4) 
with 

Proof. Noting that Ker Tf = R(Z - TF) = R(T)’ in Hz, we obtain that by [2], 
Propositions 3.1, 3.2, and Corollary 3.1, S = (I + Tt6T)-’ (I - Tt T) is an 
idempotent with R(S) = Ker(T) and 7 has the generalized inverse 
A = (I + T+GT)-‘Tt E B(H2,H’) in the sense of Eq. (1.1). 

Since Tfr i T+T + Tq6T; it follows that 

AT = (I + T+6T)-‘T+‘-T = Z - S. 

Therefore by Lemma 1 and Lemma 2, ?; has 
form 

the generalized inverse T+ of the 

T+ = [Z - O(s)](Z + T+GT)-‘T+O(Q), 

where 

Q = TA = (T + 6T)(Z + T+GT)-‘T+ 

(25) 

= (T + 6T)T+(Z + 6ZT+)-’ = (I + 677-+)ZT+(Z + aTI”+)-‘. 
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Since we have by Lemma 1, 

I - O(S) = z + S(Z - s - r>-’ = (I - s*)(z - s - s*)-’ 
= (I-s-r)-‘(Z-S) 
= [Z - (I + T+dT)-‘(z - T+T) - (I - T+T) 

x (I + T+6T)*-‘]-‘(z + T+dT)-‘T+T 

and 

O(Q) = - (I + 61T+)U+(z + 67Tf)_‘[Z - (Z + 61T+)zT+(z + 61T+)-’ 

- (I + 61T+)*-‘7T+(z + 6P+)*]-‘, 

it follows from the simple computation that T+ has the form (2.4). 
Finally, by Eq. (2.5) we have 

IIT+II G IV- W)IIIlV+ ~+W’~+IIIl~~Q,ll 

IIT+ II 
’ 1 - IIT+IIIIGTJI ’ ’ 

In order to estimate IIT+ - T+II when dim Ker T = dim Ker T < CCI or T is a 
Type I perturbation of T, we need following lemma which comes from the com- 
bination of [6] Theorem 1.6.34 and [3], Lemma 2.1. 

Lemma 3. Let Sl,& be to idempotents in B(H,H). Then [IO(&) - O(&)ll 
6 IIS - S2ll. 

The following theorem shows what the ]]T’ - T+II is. 

Theorem 2. Let T, T satisfy the conditions of Theorem 1. Then Ti exits and 

IIT+ - T+II < 3llT+llll~Tll 
llT+ll ’ 1 - IIT+ II IPTll . 

Proof. According to Theorem 1, we have 

T+ - T+ = [Z - O(S)][(Z + T+GT)-‘T+ - T+]O(Q) 

+ [Z - O(S) - T+T] 

x T+O(Q) + T+[O(Q) - =+I, (2.6) 

where S, Q are given in the proof of Theorem 1. Thus applying Lemma 3 to 
Eq. (2.6), we obtain that 



G. Chen, Y. Xue I Linear Algebra and its Applications 285 (1998) 14 

((T+ - T+II < [[(Z + T+GT)-‘T+ - T+Ij 

+ IIZ- T+T- W)IIItT+II + IIT+IIllW, - n+II 
< Il(Z + T+hT)-’ - III [IT+11 + II [Z - (I + T+GT)-‘1 

(I-T+WlT+II + IIT+llIl(~+~~+)~+ 

+ IIT+Illl(Z- TT+)dTT+(Z+ T+dT)-‘11 

and consequently, 

IIT+ - T+II < 3llT+llll~Tll 
IIT+II ’ 1 - IIT+llll~Tll ’ IJ 

Remark. Comparing this paper with [3], we have seen that on the same 
assumptions, Theorem 1 improves the result of [3], Theorems 3.2 and Theorem 2 
gives a much better improvement of the result of [3], Theorem 4.1. 
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