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ABSTRACT

A primary motivation for reasoning under uncertainty is to derive decisions in
the face of inconclusive evidence. Shafer's theory of belief functions, which ex
plicitly represents the underconstrained nature of many reasoning problems, lacks
a formal procedure for making decisions. Clearly, when sufficient information is
not available, no theory can prescribe actions without making additional assump
tions. Faced with this situation, some assumption must be made if a clearly superior
choice is to emerge. This paper offers a probabilistic interpretation of a simple as
sumption that disambiguates decision problems represented with belief functions.
It is proved that it yields expected values identical to those obtained by a proba
bilistic analysis that makes the same assumption. A strict separation is maintained
between evidence that carries information about a situation and assumptions that
may be made for disambiguation of choices. In addition, it is shown how the
decision analysis methodology frequently employed in probabilistic reasoning can
be extended for use with belief functions. This generalization of decision analysis
allows the use of belieffunctions within the familiar framework of decision trees.

KEYWORDS: belief functions, decision analysis, decision making, deci-
sion tree, Dempster-Shafer theory, evidential reasoning, reasoning
under uncertainty

INTRODUCTION

Decision analysis provides a methodological approach for making decisions.
Uncertain states of nature are represented by probability distributions, and each
possible state is assigned a value or utility. The best decision is the one that
yields the greatest expected utility. By enumerating all available choices in a
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decision tree and assessing the probabilities and utilities of the states of nature
that may result, one can mechanically determine the optimal sequence of actions
that should be taken (Howard [I], Lapin [2], LaValle [3], Raiffa [4]).

In practice, these simple requirements are hard to satisfy (Horvitz et al. [5]).
Sometimes reliable estimates of the probabilities involved are hard to come
by. For example, few statistics are available for determining the probability of
a nuclear reactor core meltdown. Assessing the utility of many-faceted states
of nature is equally challenging. How should one give a unique value to the
anticipated quality of married life? These limitations have hindered the more
widespread application of decision analysis.

Shafer's theory of belief functions (Lowrance et al. [6], Ruspini [7], Shafer
[8], Smets [9]) allows one to express partial beliefs when it is impossible or
impractical to assess complete probability distributions confidently. Using belief
functions, one can bound the probabilities of events for which the assignment
of a precise probability would be misleading. The theory provides a facility to
express one's beliefs only to the degree to which there is supporting evidence,
thereby resulting in an appropriate description of an uncertain event. For ex
ample, there might be reason to assign a probability to a reactor malfunction
without saying what the chance is that it may lead to a core meltdown.

Despite its representational advantages, the theory of belief functions lacks
a formal basis upon which decisions can be made in the face of ambiguity
(Barnett [10]). Computing the expected utility of a random event that has been
represented with belief functions results in an expected utility interval (EUI).
To choose between two actions one must compare their respective EUls. If they
do not overlap, the choice is clear. But when the EUls overlap, the decision
maker is confronted with a dilemma: the available evidence does not support
either choice. Ideally, one should collect more information until the intervals no
longer overlap and the choice becomes clear. However, sometimes one is forced
to choose without benefit of additional information. What should be done?

In this situation there is no recourse except to make an assumption to elim
inate the ambiguity. Various authors have expressed preference for different
assumptions (such as renormalization, generalized insufficient reason (Dubois
and Prade [11], Smets and Kennes [12]), minimax (Wald [13]), and opti
mism/pessimism (Hurwicz [14]). More elaborate schemes have been suggested,
but they also amount to the introduction of unfounded assumptions (Loui et al.
[15], Pittarelli [16], Yager [17]). Here I advocate the interpolation of a point
valued utility within the EUI. I make no claim that it leads to superior decisions,
but I do claim that it is no less viable than the alternative assumptions. I show
that it gives the same expected utility (and hence leads to the same decisions)
as would be obtained by assuming that there is some probability that ambiguity
will be resolved in one's favor.

I further show how decision analysis can be generalized to accommodate a
belief function representation of uncertainty. This involves two modifications:
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allowing an interval as the utility of a state or set of states, and allowing a belief
function in place of a probability distribution. The result is a complete deci
sion analysis procedure compatible with either probabilistic or belief function
representations of uncertainty.

I should point out that decision theory (and its associated utility theory) is
not the only approach for making decisions under uncertainty. For example,
Lesh [18] has proposed a model based on an ignorance-preference coefficient
that is empirically derived. Shafer [19] has advocated a "constructive" decision
theory that seeks support for actions that achieve goals. Loui et al. [15] suggest
representing beliefs not by distribution but by a sequence of progressively more
decisive distributions. In this paper I am concerned with providing for the use
of belief functions within the general framework of decision analysis.

It is worth noting that none of the material described in this paper depends
on the use of Dempster's rule, which is commonly used in Shafer's theory
to combine independent bodies of evidence (Shafer [8]). The computation of
expected utility interval, and the procedure for using EUIs in decision analysis,
only require that a belief function representation of the problem be available.
Dempster's rule could be used to construct that belief function, but it is not
required for decision analysis.

In the sections that follow the theory is developed and its use is illustrated
with simple examples. In Section 2 we derive the expected utility interval that
results from the use of belief functions. We then see how making an assumption
about the probability of nature's cooperation leads to the same expected utility
as interpolation within the EUI. In Section 3, this result is used to generalize
decision analysis and is illustrated within a decision problem concerning whether
or not to drill for oil. I conclude with a discussion of the benefits and limitations
of this approach and compare its use with other approaches to decision making
under uncertainty.

2. EXPECTED VALUE

Decision analysis provides a methodological approach for making decisions.
The crux of the method is that one should choose the action that will maximize
the expected utility. In this section I review the computation of expected utility
using a probabilistic representation of a simple example and show how a belief
function gives rise to a range of expected utilities. I then show how a simple
assumption about the inclination of nature leads to a means for choosing a
single-point expected utility for belief functions.

2.1. Expected Value Using Probabilities

EXAMPLE-CARNIVAL WHEEL NO.1 A familiar game of chance is that of the
carnival wheel pictured in Figure 1. This wheel is divided into 10 equal sectors,
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Figure 1. Carnival wheel No.1.

\
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each of which is labeled with a dollar amount as shown. For a $6.00 fee, the
player gets to spin the wheel and receives the amount shown in the sector that
stops at the top. Should we be willing to play?

The analysis of this problem lends itself readily to a probabilistic represen
tation. From inspection of the wheel (assuming each sector really is equally
likely), we can construct the following probability distribution:

p($l) = 0.4

p($5) = 0.3

p($lO) = 0.2

p($20) = 0.1

The expected value E(x) is computed from the formula

E(x) = LXP(X)
XE8

(1)

where e is the set of possible outcomes. The expected value of the carnival
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wheel is $5.90 as shown here:

x p(x)

1 0.4
5 0.3

10 0.2
20 0.1

E(x) =

xp(x)

0.4
1.5
2.0
2.0
5.90
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Therefore, we should refuse to play, because the expected value of playing
the game is less than the $6.00 cost of playing. 1 Let us now modify the problem
slightly in order to motivate a belief function approach to the problem.

2.2. Expected Value Intervals

EXAMPLE-CARNIVAL WHEEL NO.2 Another carnival wheel is divided into
10 equal sectors, each having $1, $5, $10, or $20 printed on it. However, one
of the sectors is hidden from view (Fig. 2). How much are we willing to pay
to play this game?

This problem is ideally suited to an analysis using belief functions. In a belief
function representation, a unit of belief is distributed over the space of possible
outcomes (commonly called the frame of discernment). Unlike a probability
distribution, which distributes belief over elements of the outcome space, this
distribution (called a mass function) attributes belief to subsets of the outcome
space. Belief attributed to a subset signifies that there is reason to believe that
the outcome will be among the elements of that subset, without committing to
any preference among those elements. Formally, a mass distribution me is a
mapping from subsets of a frame of discernment e into the unit interval:

me: 2e
f---> [0, 1]

such that

and L me(Ai ) = 1
Ai<;;e

Any subset to which nonzero mass has been attributed is called afocal element.
One of the ramifications of this representation is that the belief in a hypothesis

1 We assume that the monetary value is directly proportional to utility because of the small dollar
amounts involved. We could instead have chosen to work with utilities to account for nonlinearities
in one's preferences for money.
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Figure 2. Carnival wheel No.2.

A (A ~ 8) is constrained to lie within an interval [Spt(A), PI(A)], where

Spt(A) = L me(A j ),

AiC;;;A

PI(A) = I - Spt(--.A) (2)

These bounds are commonly referred to as support and plausibility.
The frame of discernment 8 for wheel No.2 is {$1, $5, $10, $20}. The

mass function for wheel No.2 is

m({$1}) = 0.4

m({$5}) = 0.2

m( {$1O}) = 0.2

m({$20}) = 0.1

m({$1, $5, $10, $20}) = 0.1

and its associated belief intervals are

[Spt({$1}), PI( {$1})] = [0.4, 0.5]

[Spt({$5}), PI({$5})] = [0.2, 0.3]

[Spt({$1O}), Pl({$1O})] = [0.2, 0.3]

[Spt({$20}), PI({$20})] = [0.1, 0.2]
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Before we can compute the expected value of the wheel represented by this
belief function, we must somehow assess the value of the hidden sector. We
know that there is a 0.1 chance that the hidden sector will be selected, but
what value should we attribute to that sector? If the carnival hawker had been
allowed to assign a dollar value to that sector, he would surely have assigned
$1. On the other hand, if we (or a cooperative friend) had been allowed to do
so, it would have been $20. Any other assignment method would result in a
value between $1 and $20, inclusive. Therefore, if we truly do not know what
assignment method was used, the strongest statement that we can make is that
the value of the hidden sector is between $1 and $20. Using interval arithmetic
we can apply the expected value formula of Eq. (1) to obtain an expected value
interval (EVI):

E(x) = [E*(x), E*(x)]

where2

E*(x) = L inf(A;)me(A;)
A;<;e

E*(x) = L sup(A;)me(A;)
A;<;e

The expected value interval of wheel No. 2 is

E(x) = [0.4(1) + 0.2(5) + 0.2(10) + 0.1(20) + 0.1(1),

0.4(1) + 0.2(5) + 0.2(10) + 0.1(20) + 0.1(20)]

E(x) = [5.50, 7.40]

2.3. Expected Value Using Belief Functions

(3)

As many researchers have pointed out, an interval of expected values is not
very satisfactory when we have to make a decision. Sometimes it provides all the
information necessary to make a decision; for example, if the game costs $5 to
play, then clearly we should be willing to play regardless of who gets to assign
a value to the hidden sector. Sometimes we can defer making the decision until
we have collected more evidence; for example, if we could peek at the hidden
sector and then decide whether or not to play. But the need to make a decision
based on the currently available information is often inescapable; for example,

2We use inf(A;) or suP(A;) to denote the smallest or largest element in the set A; <; 8. 8 is
assumed to be a set of scalar values (Strat [20».
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should we spin wheel No.2 for a $6 fee? We will present our methodology
for decision making using belief functions after pausing to consider a Bayesian
analysis of the same situation.

If we are to use the probabilistic definition of expected value from Eq. (1),
we are forced to assess probabilities of all possible outcomes. To do this, we
must make additional assumptions before proceeding further. One possible as
sumption is that all four values of the hidden sector ($1, $5, $10, $20) are
equally likely, and we could evenly distribute among those four values the 0.1
chance that the hidden sector is chosen. This is an example of the generalized
insufficient reason principle advanced by Dubois and Prade [11] and by Smets
[12]. The resulting computation of expected value with this assumption is shown
below; the expected value is $6.30.

x p(x) xp(x)

1 0.425 0.425
5 0.225 1.125

10 0.225 2.250
20 0.125 2.500--

E(x) = 6.30

An alternative assumption is that the best estimate of the probability distribution
for the value of the hidden sector is the same as the known distribution of the
visible sectors. Using this assumption,the result is $6.00:

x p(x) xp(x)

1 4/9 4/9
5 2/9 10/9

10 2/9 20/9
20 1/9 20/9

E(x) = 6.00

Rather than making one of these assumptions, we may wish to parameterize by
an unknown probability p our belief that either we get to choose the value of
the hidden sector or the carnival hawker does. Let p be the probability that the
value assigned to the hidden sector is the one that we would have assigned if
given the opportunity, so 1 - p is the probability that the carnival hawker chose
the value of the hidden sector. That is,

p(hidden sector is labeled $20) = p

p(hidden sector is labeled $1) = 1 - p

The expected value of wheel No. 2 can then be recomputed using probabilities
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Figure 3. Carnival wheel No.3.

and Eq. (1) as illustrated here:

x p(x) xp(x)

1 0.4 + 0.1(1 - p) 0.5 - 0.1p
5 0.2 1.0

10 0.2 2.0
20 0.1 + O.lp 2.0 + 2p

E(x) = 5.50 + 1.90p
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To decide whether to play the game, we need only assess the probability p.

For the carnival wheel it would be wise to allow that the hawker has hidden the
value from our view; thus we might assume that p = O. So E(x) = 5.50, and
we should not be willing to pay more than $5.50 to spin the wheel.

EXAMPLE-CARNIVAL WHEEL NO.3 A third carnival wheel is divided into
10 equal sectors, each having $1, $5, $10, or $20 printed on it (Fig. 3). This
wheel has five sectors hidden from view. However, we do know that none of
these sectors is a $20, that the first hidden sector is either a $5 or a $10, and
that the second hidden sector is either a $1 or a $10. How much are we will to
pay to spin wheel No.3?

A probabilistic analysis of wheel No. 3 requires that we make additional
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assumptions. Estimating the conditional probability distribution for each hidden
sector would provide enough information to compute the expected value of the
wheel. Alternatively, estimating just the expected value of each hidden sector
would suffice as well. However, doing so can be both tedious and frustrating:
tedious because there may be many hidden sectors, and frustrating because we
are being asked to provide information that, in actuality, we do not have. (If we
knew the conditional probabilities or the expected values, we would have used
them in our original analysis.) What is the minimum information necessary to
establish a single expected value for wheel No.3?

The probability p that we used to analyze wheel No. 2 can be used here as
well.

DEFINITION Let p = the probability that ambiguity will be resolved as
favorably as possible; then 1 - p = the probability that ambiguity will
be resolved as unfavorably as possible.

Estimating p is sufficient to restrict the expected value of a belief function to a
single point. It is easy to see that the expected value derived from this analysis
as p varies from 0 to 1 is exactly the value obtained by linear interpolation of
the EVI that results from using belief functions. The following derivation shows
that this is true in general.

THEOREM 1 Given a mass function me defined over a scalar frame 8 of
utilities, and an estimate of p (the probability that all residual ambiguity
will turn out favorably), the expected utility given me is

E(x) = E*(x) + p[E*(x) - E*(x)] (4)

Proof Consider a mass function me defined over a frame of discernment
8. Now consider any focal element A ~ 8 such that me(A) > o. Since p
is the probability that a cooperative agent will control which x E A will be
selected, and 1 - p is the probability that an adversary will be in control, then
the probability that x will be chosen given that focal element A occurs is

if x = sup(A)

if x = inf(A)

otherwise

Considering all focal elements in me, we can construct a probability distribution
Pe(x) as follows:

Pe(x) = L Pe(xlA;)Pe(A;)
AI~e
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Pe(X) = L pme(A) + L (1 - p)me(A)
A: suP(A)=x A: inf(A)=x

Using Eq. (1) we have

E(x) = L XPe(X)
xEe
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= ~X C~)=pme(A)+kf>- (I- Plme(Al)

= L ( L sup(A)pme(A) +Aoo infiL(A)=X inf(A)(l - p)me<A»)
xEe A: suP(A)=X

The double summations can be collapsed to a single summation because every
A s:; 8 has a unique sup(A) E 8 and a unique inf(A) E 8.

E(x) = L sup(A)pme(A) + inf(A)(1 - p)me(A)
A<;;e

= L inf(A)me(A) + pL [sup(A) - inf(A)]me(A)
A<;;e A<;;e

= E*(x) + p[E*(x) - E*(x)]

The important point here is that the probabilistic analysis provides a mean
ingful way to choose a distinguished point within an EVI that results from the
use of belief functions. That distinguished point can then be used as the basis
for comparison of several choices when their respective EVls overlap.

2.4. Discussion

Because of its interval representation of belief, Shafer's theory poses difficul
ties for a decision maker who uses it. Lesh [18] has proposed a different method
for choosing a distinguished point to use in the ordering of overlapping choices.
Lesh makes use of an empirically derived "ignorance preference coefficient"
T that is used to compute the distinguished point called "expected evidential
belief (EEB)":

EEB(A) = Spt(A) ; PI(A) + T [PI(A) -2Spt(A)]2

A choice is made by choosing the action that maximizes the "expected evidential
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value (EEY)":

EEY = L Ai EEB(Ai)
Aj~e

Thomas M. Strat

There are some important differences between Lesh's approach and the present
approach for evidential decision making. The ignorance preference parameter
T can be seen as a means for interpolating a distinguished value within a belief
interval [Spt(A), PI(A)], while the cooperation probability P is used to inter
polate within an interval of expected utilities [E*(x), E*(x)]. Second, Lesh's
parameter T has been derived empirically rather than theoretically. In contrast,
the cooperation parameter P has been explained as a probability of a compre
hensible event-that the residual ambiguity will be favorably resolved. It leads
to a simple procedure involving linear interpolation between bounds of expected
utility and is derived from probability theory.

The use of a single parameter to choose a value between two extremes is
similar in spirit to the approach taken by Hurwicz with a probabilistic formu
lation [14]. Hurwicz suggested that rather than computing the expected utility
of a variable for which a probability distribution is known, one could interpo
late a decision index between two extremes by estimating a single parameter
related to the disposition of nature. When this parameter is zero, one obtains
the Wald minimax criterion- the assumption that nature will act as strongly as
possible against the decision maker [13]. In contrast to the Hurwicz approach
in which one ignores the probability distribution and computes a decision index
on the basis of the parameter only, in my approach the expected utility interval
is computed, and interpolation between extremes occurs only within the range
of residual ambiguity allowed by the focal elements of a belief function. Thus
my approach is identical to the use of expected utilities when a probability
distribution is available, it is identical to Hurwicz's approach when there are
known constraints on the distribution, and it combines elements of both when
the distribution is a belief function.

There may be circumstances in which a single parameter is insufficient to
capture the underlying structure of a decision problem. In these cases it would
be more appropriate to use a different probability to represent the attitude of
nature for each source of ambiguity. Let Pi be the probability that ambiguity
within each focal element Ai will be decided favorably, (VAi ) Ai ~ e. Then
we obtain

E(x) = L inf(Ai)me(Ai ) + L Pi[sup(Ai ) - inf(A;)]me(A;) (5)
~~e ~~e

in place of Eq. (4).
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3. DECISION ANALYSIS
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In the preceding section I have defined the concept of an expected utility
interval (EU!) for belief functions and have shown that it bounds the expected
utility that would be obtained with any probability distribution consistent with
that belief function. Furthermore, I have proposed a parameter (the probability
that residual ambiguity will be decided in our behalf) that can be used as
the basis for computing a unique expected utility, when the available evidence
warrants orJy bounds on that expected utility. In this section I will show how
the EUI can be used to ger:cralize probabilistic decision analysis.

Decision analysis wa~ first developed as a means by which one could organize
and systematize one's thinking when confronted with an important and difficult
choice (Howard [1], Raiffa [4]). Its formal basis has made it adaptable as a
computational procedure by which computer programs can choose actions when
provided with all relevant information. Simply stated, the analysis of a decision
problem under uncertainty entails the following steps:

1. List the viable options available for gathering information, for experimen
tation, and for action.

2. List the events that may possibly occur.
3. Arrange the information you may acquire and the choices you may make

in chronological order.
4. Decide the value to you of the consequences that result from the various

courses of action open to you.
5. Judge the chances that any particular uncertain event will occur.

3.1. Decision Analysis Using Probabilities

First we will illustrate the use of decision analysis on a problem that can
be represented with probabilities to acquaint the reader with the method and
terminology.

OIL DRILUNG EXAMPLE 1 A wildcatter must decide whether or not to drill
for oil. He is uncertain whether the hole will be dry, have a trickle of oil, or
be a gusher. Drilling a hole costs $70,000. The payoffs for hitting a gusher, a
trickle, or a dry hole are $270,000, $120,000, and $0, respectively. At a cost of
$10,000, the wildcatter could take seismic soundings that would help determine
the underlying geologic structure. The soundings will determine whether the
terrain has no structure, open structure, or closed structure. The experts have
provided us with the joint probabilities shown below. We are to determine the
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optimal strategy for experimentation and action (Lapin [2]).

Thomas M. Strat

State No struct. Open Closed Marginal

Dry 0.30 0.15 0.05 0.50
Trickle 0.09 0.12 0.09 0.30
Gusher 0.02 0.08 0.10 0.20

Marginal 0041 0.35 0.24 1.00

In decision analysis, a decision tree is constructed that captures the chrono
logical order of actions and events (Lapin [2], LaValle [3]). A square is used
to represent a decision to be made, and its branches are labeled with the alter
native choices. A circle is used to represent a chance node, and its branches
are labeled with the conditional probability of each event, given that the choices
and events along the path leading to the node have occurred.

To compute the best strategy, the tree is evaluated from its leaves toward its
root.

• The value of a leaf node is the utility of the state of nature it represents.
• The value of a chance node is the expected utility of the probability distri

bution represented by its branches as computed using Eq. (1).
• The value of a choice node is the maximum of the utilities of each of its

sons. The best choice for the node is denoted by the branch leading to the
son with the greatest utility. Ties are broken arbitrarily.

This procedure is repeated until the root node has been evaluated. The value
of the root node is the expected utility of the decision problem; the branches
corresponding to the maximal value at each choice node give the best strategy
to follow (Le., choices to make in each situation).

The evaluated decision tree for the oil drilling example is portrayed in Figure
4. It can be seen that the expected value is $22,500 and that the best strategy
is to take seismic soundings, to drill for oil if the soundings indicate open or
closed structure, and not to drill if the soundings indicate no structure.

3.2. Decision Analysis Using Belief Functions

To use the decision procedure just described, it must be possible to assess the
probabilities of all uncertain events. That is, the set of branches emanating from
each chance node in the decision tree must depict a probability distribution. In
many scenarios, however, estimating these probability distributions is difficult
or impossible, and the decision maker is forced to assign probabilities even
though he knows they are unreliable. Using belief functions, one need not
estimate any probabilities that are not readily available. The representation better
reflects the evidence at hand, but the decision analysis procedure cannot be used
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with the resulting interval representation of belief. In this section I describe a
generalization of decision analysis that accommodates belief functions.

Prob.

0.5
0.2
0.3

Test Result

Red
Yellow
Green

Capacity

Dry
Dry or Trickle
Trickle or Gusher

OIL DRILLING EXAMPLE 2 As in the first oil drilling example, a wildcatter
must decide whether or not to drill for oil. His costs and payoffs are the same as
before: drilling costs $70,000, and the payoffs for hitting a gusher, a trickle, or
a dry well are $270,000, $120,000, and $0, respectively. However, at this site,
no seismic soundings are available. Instead, at a cost of $10,000, the wildcatter
can make an electronic test that is related to the well capacity as shown below.
We are to determine the optimal strategy for experimentation and action.

Several issues arise that prevent us from constructing a well-formed decision
tree for this example. First, consider the branch of the tree in which the test is
conducted and the result is green (Fig. 5). If we drill for oil, then we know we
will find either a trickle or a gusher, but we cannot determine the probability
of either from the given information. We are tempted to label the branch with
the disjunction (Trickle VGusher) with probability 1.0. But what should be the
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No Test

(-3',000 35,000)
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(50,000 200,000)

Test

0,

"

(OR Dr Trickle)

[-60,000 '0,000)

-eo,ooo

(-60,000 40,000)

Green
0,3

[40,000 190,000]

OR Tnc e Gusher
1.0

('0,000 190,000)

Figure 5. Modified decision tree for oil drilling example 2.

payoff of that branch? All we can say is that the payoff will be either $40,000
(if a trickle) or $190,000 (if a gusher). Ordinary decision analysis requires
a unique value to be assigned, but we have no basis for computing one. So
the first modification we make to the construction of decision trees is to allow
disjunctions of events on branches emanating from chance nodes, and to allow
intervals as the payoffs for leaf nodes. We will discuss later how to evaluate
such a tree.

To see the second issue, consider the branch of the tree in which the test is
not conducted. If we drill for oil, there is a chance that we will hit a gusher, a
trickle, or a dry well, but what is the probability distribution? We know only
that

p(Dry IRed) = 1.0

p(Dry V TricklelYellow) = 1.0

p(Trickle V GusherlGreen) = 1.0

p(Red) = 0.5

p(Yellow) = 0.2

p(Green) = 0.3

There is not enough information to use Bayes' rule to compute the probability
distribution for the well capacity. Without adding a new assumption at this point,
the strongest statement that can be made is

0.5 :::; p(Dry) :::; 0.7

0.0 :::; p(Trickle) :::; 0.5
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0.0 ~ p(Gusher) ~ 0.3

Using belief functions, this can be represented as

m({Dry}) = 0.5

m({Dry, Trickle}) = 0.2

m({Trickle, Gusher}) = 0.3

which yields the required belief intervals

[Spt({Dry}), Pl({Dry})] = [0.5, 0.7]

[Spt({Trickle}), Pl({Trickle})] = [0.0, 0.5]

[Spt({Gusher}), Pl({Gusher})] = [0.0, 0.3]
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the second modification we make to decision trees is to allow the branches
emanating from a chance node to represent a mass function. The masses must
still sum to 1, but the events need not be disjoint.3 The completed decision tree
for oil drilling example 2 is shown in Figure 5.

The tools of Section 2 can be used to evaluate a decision tree modified in
this manner.

• The value of a leaf node is the utility of the state of nature it represents.
This may be a unique value or, in the case of a disjunction of states, an
interval of values.

• A chance node represents a belief function. Its value is the EUI computed
with Eq. (3):

E(x) = [E*(x), E*(x)]

• A decision node represents a choice of the several branches emanating
from it. The utility of each branch may be a point value or an interval.
The value of a decision node is the expected utility computed using Eq.
(4) and an estimate of p:

The action on the branch that yields the greatest E(x) is chosen. Ties are
broken arbitrarily.

In summary, a decision tree and decision analysis procedure for belief func
tions have been described. Two modifications were made to adapt ordinary
decision trees: intervals are allowed where utilities occur, and belief functions

3 Recall that a probability distribution is an assignment of belief over mutually exclusive elements
of a set, whereas a mass function is a distribution over possibly overlapping subsets.
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Rho ~ 0.0
IEI~O

No Test [-34,000 35,000J
-34,000

(OR Gusher Trickle) (50,000 20D,OGO)
0.3 50,000

-70,000

A,d

-10,000

'-- -10,000

o
1.

-80,000

-EO,OOO

(40,000 190,000)
40,000

[40,000 190,000]
40,000

[-80,000 40,000J
-80,0001.

1.0
OR Trickle Gu~her

(OR Dr TriclltJ

-10,000

(-60,000 <10,000)
-80,000

-10,000

0.3
Green

0.2
Y lIow

[5,000 50,000l
5,000

[5,000 sO,OOOJ
5,000

Figure 6. Decision tree for oil drilling example 2 assuming p = 0.0.

are allowed where probability distributions occur. A unique strategy can be
obtained by estimating the probability p.4

3.3. Generalized Decision Tree Examples

Figures 6-8 show the evaluated decision tree for several values of p; each
node is labeled with its expected value or expected value interval. In the cases
where the expected value is an interval, the evidential expected value E(x) is
also shown (using the assumed p). Preferred decisions are highlighted with a
black background.

If we opt not to test, then our choice is either to not drill (expected value
0) or to drill (EVI [-34,000, 35,000]). The better choice depends on what
value of p is assumed. As can be seen in the figures, if p = 0.0, then it is better
to not drill, but if p = 0.5 or p = 1.0, then drilling is the better choice.

If we choose to test and the result is yellow, then our choice is to not drill
(expected value -10,000) or to drill (EVI [-80,000, 40,000]). In this case it
is better to not drill if either p = 0.0 or p = 0.5 and to drill if p = 1.0.

4 When all utilities are point-valued and all belief functions are true probability distributions, no
assumption is required, and the strategy will be identical to that prescribed by ordinary decision
analysis.
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Rho = 0,5

No Test

[50,000 200,000]
125 1000

[.70,000 50,000]
-10,000

-70,000

1.0
R Tn kit Gu,h

[40,000 190,000]
115,000

[40,000 190,000]
115,000

-eo,ooo

[-eo,ooo 40,000)
-20,000

1.0

-10,000

-10,000

[-80,000 40,000]
-20,000

~~~\.J-10,OOO

•
[5,000 50,000]

27,500

[5,000 50,000]
27,500

Figure 7. Decision tree for oil drilling example 2 assuming p = 0.5.

If the test result is red, then one should not drill regardless of p ( - 10,000
is always better than - 80, (00), If the test result is green, then one should
always drill ( - 10,000 is never as good as the interval [40,000, 190,000]).

3.4. Comparing Two Choices

Instead of assuming a value for p first, and calculating the choices that result,
one may ask the reverse question. At what value of p would I change my
decision? This can be answered in general by examining a choice between two
states having EUIs.

THEOREM 2 Let the expected utility intervals of two choices be as fol
lows:

Choice]:

Choice2:

Assume without loss ofgenerality that choice] has the smaller interval,
th,at is, [Ei(x) - E 2.(x)] > [Ei(x) - Et.(x)]. Then choice 2 is preferred
over choice ] if and only if

(6)
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Rho = 1.0

(OR Gusher Trickle) [50,000 200,000J
0.3 200,000

No Test

-10,000

-80,000

-80,000

('0,000 190,000]
190,000

(·80,000 40,000)
40,000

1.0
OR Trickle Gusher

-\0,000

('0,000 190.000]
190,000

[-80,000 40,000]
40,000

-10,000

(-BD,ODO '0,000]
<10,000

0.2

Green

Yellow

(-9,000 50,000)
60,000

(-9,000 60,000J
60,000

Figure 8. Decision tree for oil drilling example 2 assuming p = 1.0.

Proof Using Theorem 1 and solving for P gives the point Pc at which one
is indifferent between choice 1 and choice 2:

E 1(x) = E h(X) +p[Ej(x) - E l*(X)]

E2(X) = E2*(X) + p[Ei(x) - E2*(X)]

(7)

The expected value of both choices at Pc is

E ( ) = E h (x)Ei (x) - Ej(x)E2*(x)
c x Eh(x) -E2*(x) +Ei(x) -Ej(x)

Now consider the choice at p = Pc +0, where 0 > 0:

E 1(x) = Ec(x) +o[Ej(x) - Eh(x)]

E 2(x) = Ec(x) +o[Ei(x) - E2*(x)]

(8)

(9)

Since [Ei(x) -E2*(x)] > [Ei<x) -E1*(x)] and 0> 0, it must be the case that
E2(X) > E 1(x). Therefore, choice 2 is preferred. A similar argument shows
that choice 1 is preferred when p < Pc.
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Letting
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gives

and b = Ei(x) - Ei(x)

Thus, choice 1 is preferable if

and choice 2 is preferable if

pc=o/(a+b)

p < 0/(0 +b)

p > 0/(0 +b)

(10)

If 0/(0 +b) > 1.0, then choice 1 is always preferred (no assumption of p is
necessary). If 0/(0 + b) < 0.0, then choice 2 is always preferred. It follows
that whenever one EUI is slightly "higher" than another, that is, when

and Ei(x) > Ei(x)

then the action that gives rise to it is always preferred.
Returning to oil drilling example 2, the decision of whether or not to drill

when the test result is yellow involves a choice between

No drill: E(x) = [ -10,000, -10,000]

Drill: E(x) = [-80,000, 40,000]

By Theorem 2, Pc = 0.583, and one should drill only if p > 0.583.
When p > 0.583, the decision as to whether or not to conduct the test involves

a choice between

No test: E(x) = [-34,000, 35,000]

and

Test: E(x) = [-9,000, 60,000]

Here, Test is the preferred choice because its EUI is higher.

4. DISCUSSION

The value of the result of an action is frequently measured in money (e.g.,
in dollars), but people often exhibit preferences that are not consistent with
maximization of expected monetary value. The theory of utility accounts for
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this behavior by associating for an individual decision maker a value (measured
in uti/es) with each state s, u = !(s), such that maximization of expected utility
yields choices consistent with that individual's behavior (Howard [1]). Utility
theory can satisfactorily account for a person's willingness to expose himself
to risk and should be used whenever one's preferences are not linearly related
to value. This attitude toward risk should not be confused with one's attitude
toward ambiguity, which is the quality that is modeled by p.

4.1. On Making Assumptions

It is interesting to compare the types of assumptions made in a probabilistic
analysis with the p assumption proposed here for belief functions. When using
probability, a maximum entropy assumption is often made. Sometimes this as~

sumption is justified, and it should properly be considered part of the evidence,
not an assumption. When this is the case, a maximum entropy belief function
can be used as well (Dubois and Prade [11]). At other times, the maximum
entropy assumption is not justified but is used simply because some assumption
must be made and maximum entropy has some desirable properties (Smets and
Kennes [12]). In these cases, the choice of elements in the sample space (the
set of possibilities) introduces distortion into the expected value that will result.
That is, adding a few more possibilities into the sample space will change the
expected value of the maximum entropy distribution over that sample space. For
example, if we chose to allow for the possibility of $2 being among the possibil
ities for the hidden sector of carnival wheel No.2, the sample space would be
{I, 2, 5, 10, 20} instead of {I, 5, 10, 20}, and the expected value of the max
imum entropy distribution of that wheel would be $6.16 instead of $6.30. On
the other hand, for any choice of p, the evidential expected value using either
of the two preceding sample spaces would be identically (5.50+ l.90p) dollars.
Of course, adding possibilities outside the interval [1, 20] would change the ev
idential expected value. For example, allowing for the possibility of $50 in the
hidden sector would change the maximum entropy expected value to $7.12 and
would change the evidential expected value to (5.50+4.90p) dollars. The point
is that both assumptions introduce bias into the decision criteria. This should
not be surprising because both are unjustified assumptions. There is no basis
on which to prefer one over the other; both assumptions are entirely plausible.

Having made this point, there are some consequently weak arguments for
recommending the use of the assumption of the probability of nature's coop
eration p. Because the EUI spans the range of all expected utilities that could
be obtained by adding an)' assumption to a probabilistic analysis, there always
exists some value of p, 0 ~ p ~ 1, that yields the same expected utility E(x)
as a probabilistic analysis. Therefore, the decisions that are prescribed depend
only on one's ability to estimate p, not on his election to use Eq. (3). Further-
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more, the use of a single parameter means that the decision maker is asked to
provide only one additional piece of information.

The parameter p has been explained as a probability, giving it a formal
grounding that earlier decision schemes for belief functions have lacked. Fur
thermore, I believe that it is the probability of a meaningful event. Selecting
p = 0 is appropriate when an adversary controls the situation (as in game play
ing, for example) or when a decision maker wishes only to minimize expected
loss, and is equivalent to the maximin criteria of Waldo An optimistic decision
maker would prefer to choose p = 1 to maximize his chance of realizing the
greatest possible expected payoff without worrying about what losses might be
possible. Intermediate values of p can be used to compromise between these
extremes.

4.2. On the Limitations of the Approach

Despite the appeal of a computationally efficient decision analysis procedure
for belief functions, there remain some issues that are not addressed. As in
classical decision analysis, it remains necessary to enumerate the potential states
of nature and to assign utilities (actually utility intervals, which should be easier
to assign in practice). This task can be overwhelming when complex scenarios
are considered. Furthermore, it should not be forgotten that the assignment
of a value to p (when it is necessary) remains an assumption unwarranted by
the evidence at hand, just as maximum entropy or any other assumption is
unwarranted when insufficient information is available.

It is inherent in the methodology described that the determination of what
is best or worst is considered after the decision-maker's choice is postulated.
That is, the reaction of nature is allowed to depend on the decision that is
to be taken. This is sometimes reasonable and sometimes not. For example,
conducting regional test marketing for a new product may affect the national
demand by virtue of publicity or increased competition. As a result, there may
be no single underlying probability distribution that can simultaneously give rise
to the expected utilities obtained for each choice. This should not be particularly
worrisome as long as this consideration suits the problem at hand. If not, the
EUIs computed with the method described here may be wider than prescribed
by the evidence. In that case, it is necessary to conduct a more complicated
case-based analysis that is analogous to the linear programming problems that
arise in game theory. See Jaffray [21] for further discussion of this approach.

4.3. On the Automation of Decision Analysis

A probabilistic analysis of a decision problem (e.g., the second oil drilling ex
ample) follows the paradigm: assess, assume, combine, decide. An assessment
of a probability distribution is made for each piece of evidence; assumptions
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are made about the distributions of missing pieces of evidence; the assumptions
and evidence are combined to obtain a distribution of payoffs, and a decision
is made on the basis of the expected utility of the payoff. In contrast, a be
lief function analysis follows the paradigm: assess, combine, assume, decide.
An assessment of a belief function is made for each piece of evidence; these
pieces of evidence are then combined to obtain a belief function over the pos
sible payoffs; then an assumption is made (about the benevolence of nature);
and a decision is made using that assumption and the EUI of the payoffs.

While the same decisions will be reached whether one makes assumptions first
and then combines evidence or combines evidence and then adds those assump
tions, the difference in paradigms has important implications for automating the
procedure. First, in some decision problems the EUI of the top choice will not
overlap the EUI of any other choice, that is, the decision follows from what
is truly known and in no way depends upon the accuracy of any assumption
that might be made. Using belief functions, the best decision in this case is
immediately determinable without additional assumptions. Because Bayes' rule
requires a prior distribution, this situation cannot be recognized without a more
complex sensitivity analysis when a purely probabilistic representation is used.
Second, when an assumption must be made because intervals do overlap, mak
ing it as late as possible allows one to maintain the assumption-free intermediate
calculations for use in other computations. This is not an issue when the evi
dence will be used once and discarded but affords considerable computational
savings when other decisions must be based on the original evidence plus new
evidence as it comes along. Third, consider what must be computed if one
chooses to use a different assumption (as needed for sensitivity analysis, for
example). In a probabilistic analysis the assumptions and all evidence must be
recombined before a decision can be made, because the assumptions are needed
to combine the evidence. Using belief functions, one need only combine the
new assumption with the already combined evidence before selecting the de
cision. This separation of evidence and assumption is similar in spirit to the
distinction between credal and pignistic beliefs described by Smets [22].

5. SUMMARY

I have proposed a decision analysis methodology for Shafer's theory of belief
functions. I started by defining the notion of expected utility interval (EUI) and
showed it to properly bound the expected utility of any probability distribution
that could be obtained by introducing additional assumptions. Because an EUI is
often insufficient for decision making, a point value must be chosen to compare
alternative choices. I then showed how a linear interpolation of a distinguished
value within the EUI is equivalent to making an assumption of the benevolence
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or maleficence of nature. Letting p be the probability that ambiguity will be
resolved favorably, I derived that distinguished point.

I have also shown how the theory can be used to generalize the decision trees
used in probabilistic decision analysis. These tools allow a decision maker to
defer unwarranted assumptions until the latest possible moment. In so doing he
can sometimes avoid making any assumptions at all. Otherwise, he is forced to
provide only enough additional information to allow a clear cho:.ce and has the
benefit of all available information to selectively decide when he would like to
make that assumption.

These techniques have been implemented and that software has been used to
generate the decision trees shown in the figures in this paper. In addition, a new
evidential operator for decision making has been added to the repertoire of the
evidential reasoning technology developed at SRI International (Lowrance et
al. [6]). Decision analysis has been incorporated into Gister,5 SRI's evidential
reasoning system, which uses the Dempster-Shafer theory of belief functions
as its underlying representation.

What I have described is by no means a full theory of decision making for
belief functions. Rather, I hope it may provide some insight that.will someday
lead to a better understanding of decision making with incomplete information.
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NOTATION

Pe(X)
me(A)
Spt(A)
PI(A)
E(x)

Probability distribution over sample space e, x E e
Mass function defined over frame of discernment e, A ~ e
Support: Spt(A) = LA.CAme(A;)
Plausibility: PI(A) = 1'~ Spt(oA)
Expected value of a random variable whose outcome is governed by a
probability distribution: E(x) = LXEexPe(x)

S Gister is a trademark of SRI International.
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E(x)

E*(x)
E*(x)
EVI
EUI
p
l-p

Pc

Thomas M. Strat

Evidential expected value- the expected value of a variable governed
by a belief function assuming that any residual ambiguity will be de
cided favorably with probability p: E(x) = (l - p)E*(x) +pE*(x)
Upper bound of expected value: E*(x) = I:A ce sup(Aj)me(Aj)

1-

Lower bound of expected value: E *(x) = I:A. ce inf(Aj)me(Aj)
Expected value interval: [E*(x), E*(x)] ,-
Expected utility interval: same as EVI, when e is a frame of utilities
The probability that any residual ambiguity will be decided favorably
The probability that any residual ambiguity will be decided unfavorably
The value of p at which one would be indifferent between two choices
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