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Abstract Major, trace and rare earth element (REE) concentrations of Late Triassic sediments (fine-

grained sandstones and mudstones) from Hongcan Well 1 in the NE part of the Songpan-Ganzi Basin,

western China, are used to reveal weathering, provenance and tectonic setting of inferred source areas.

The Chemical Index of Alteration (CIA) reflects a low to moderate degree of chemical weathering in

a cool and somewhat dry climate, and an A-CN-K plot suggests an older upper continental crust prove-

nance dominated by felsic to intermediate igneous rocks of average tonalite composition. Based on the

various geochemical tectonic setting discrimination diagrams, the Late Triassic sediments are inferred to

have been deposited in a back-arc basin situated between an active continental margin (the Kunlun-

Qinling Fold Belt) and a continental island arc (the Yidun Island Arc). The Triassic sediments in the study

area underwent a rapid erosion and burial in a proximal slope-basin environment by the petrographic data,
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Figure 1 Simplified geological map

and Meng & Zhang (2000), showing th
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while the published flow directions of Triassic turbidites in the Aba-Zoige region was not supported

Yidun volcanic arc source. Therefore, we suggest that the Kunlun-Qinling terrane is most likely to have

supplied source materials to the northeast part of the Songpan-Ganzi Basin during the Late Triassic.
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1. Introduction

The Songpan-Ganzi Basin of western China occupies a long
narrow triangular area between the North China Block to the
northeast, the Qiangtang Block to the southwest and the Yangtze
Block to the southeast (Fig. 1), and is filled by a great thickness of
Triassic flysch. The provenance of sediments and the tectonic
nature of the Songpan-Ganzi Basin have attracted international
attention for a long time (Gu, 1994; Nie et al., 1994; Bruguier
et al., 1997; Gu et al., 2002; Su et al., 2005; Chen et al., 2006;
Lan et al., 2006; Liu et al., 2006; She et al., 2006; Weislogel
et al., 2006; Enkelmann et al., 2007; Roger et al., 2008, 2010;
Weislogel, 2008), but the provenance and tectonic setting are
still the subject of active debate.

Five possible provenances have been suggested on the basis of
geochemical data: (1) the Dabie Orogenic Belt (Nie et al., 1994;
Enkelmann et al., 2007); (2) the Kunlun-Qinling fold belt (Gu,
1994; Du et al., 1998; She et al., 2006; Enkelmann et al., 2007);
(3) the North China Block (Weislogel et al., 2006; Enkelmann et al.,
2007); (4) the Yangtze Block (Bruguier et al., 1997; Su et al., 2005;
Chen et al., 2006; Lan et al., 2006; Weislogel et al., 2006); and (5)
the Yidun Island Arc (Gu, 1994; Bruguier et al., 1997). There is
a comparable variety of suggestions for the tectonic setting of
sediments deposition, e.g., a continental island arc (Du et al., 1998;
Su et al., 2005; Chen et al., 2006; Lan et al., 2006; Wang, 2007),
a passive continental margin (Du et al., 1998; Wang, 2007), an
active continental margin, and combinations of these. Several basin
of the Songpan-Ganzi Basin and di

e bounding Blocks and the major su

rring to Fig. 2 for enlargement; Hon

tal blocks and foldbelts after from
models have been proposed: (1) a back-arc basin (Klimetz, 1983;
Şeng€or, 1984; Huang and Chen, 1987; Watson et al., 1987; Gu,
1994); (2) a foredeep/remnant-ocean basin (Nie et al., 1993,
1994; Zhou and Graham, 1996; Weislogel et al., 2006); and (3) an
intracontinental rift basin (McElhinny et al., 1981; Chang, 2000;
Meng and Zhang, 2000; Chen and Yang, 2003).

The study area is an important depocenter zone within the
northeast of the Songpan-Ganzi flysch basin, marked by a rectangle
in Fig. 1. In 2004, Sinopec Southern Exploration and Development
Division drilled a 7000 mþ exploration well, the Hongcan Explo-
ration Well 1 (indicated by a red star in Figs. 1 and 2), in Zoige
County, Sichuan Province, to investigate oil and gas prospects. This
well provides fresh core samples that supplement surface samples
from previous oil and gas exploration studies. We present
geochemical data for the Late Triassic pelitic rocks from the Hon-
gcan Well 1 in an attempt to obtain new information about source
area weathering, provenance and tectonic setting.
2. Geological setting

2.1. Review of tectonic framework

2.1.1. Songpan-Ganzi flysch
The Songpan-Ganzi flysch basin is a triangular structure situated at
the junction of theNorthChinaBlock, SouthChina Block (including
the Yangtze Block), and the North Tibet Block (Qiangtang Block)
strict. Modified from the Sinopec South Exploration Company (2008)

ture zones, as well as the distribution of the Dabie ultrahigh pressure.

gcan Well 1 marked by red star. Inset: location of the Songpan-Ganzi

Weislogel, 2008.



Figure 2 Geological map of the study area with simplified lithologic log of Hongcan Well 1 on the right. Modified from Sichuan Bureau of

Geology and Mineral Resources (1984).
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(Fig. 1). It is bounded to the north by the East Kunlun Orogenic Belt,
to the northeast by the Qinling-Dabie or Central China Orogenic
Belt, to the southeast by the Yangtze Block separated by the Long-
menshan Thrust Belt, to the southwest by the Ganzi-Litang suture
and Yidun Volcanic Arc. The Basin is mainly filled with continental
slope-abyssal turbidites (Yang et al., 1996; Du et al., 1998; Yang and
Xiong, 2000) with sparse fossils indicating a MiddleeUpper
Triassic age (Deng and Li, 1987; BGMRQP, 1991).
2.1.2. East Kunlun-West Qinling Belt
The West Qinling links laterally with the East Kunlun Belt to the
west. The boundary between the East Kunlun-West Qinling Belt
and the Songpan-Ganzi terrane is delineated by the A’nyemaqen-
Mianlue suture. Plate convergence along the southern margin of
the East Kunlun apparently ceased in late Middle Triassic or early
Late Triassic time coeval with the main phase of Songpan-Ganzi
flysch deposition (BGMRQP, 1991).
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2.1.3. Qinling-Dabie Belt
The Qinling-Dabie Orogenic Belt has attracted international
interest because of the UHP metamorphic rocks. It formed by the
continent-continent collision between the South China Block and
the North China Block during the Triassic. The Songpan-Ganzi
Basin abuts the Qinling portion of the belt, while the Dabie
Orogen continuing the Qinling Belt to the east mainly comprises
a formation of Precambrian metamorphic rocks that includes
coesite- and diamond-bearing eclogites and numerous Mesozoic
granitoid plutons (Ma et al., 1998, 2000).

2.1.4. Yangtze Block
The Yangtze Block is separated from the Songpan-Ganzi basin
along its eastern margin by the Longmenshan Thrust Belt.
During the Late PalaeozoiceEarly Mesozoic, successive
carbonates with local interlayers of clastic rocks were deposited
above the Yangtze Craton, overlain by a thick foreland sedi-
mentary sequence of latest Triassic to Jurassic age (BGMRSP,
1991).

2.1.5. Yidun Volcanic Arc
The Yidun Volcanic Arc is separated from the southwest of the
Songpan-Ganzi basin by Ganzi-Litang suture and from the
Figure 3 Outcrop of folds and associated Formations. Refer to

Fig. 2 for locations. A: The hinge zone of anticline composed of

Zhagashan Formation (T2zg) in the core and Zagunao Formation

(T3z) in the two limbs. B: The syncline composed of Zhuwo

Formation (T3zh) in the core and Zagunao Formation (T3z) in the

two limbs.

Figure 4 Outcrop of the sedimentary structures. Refer to Fig. 2 for

locations. A is for convolute bedding developed in the Zagunao

Formation (T3z); B is for asymmetrical ripple and C is for flute cast

observed in the Zhuwo Formation (T3zh).
eastern Qiangtang Block along the Jinshajiang suture. The
Yidun Arc mainly consists of various mafic to felsic magmatic
rocks.

2.2. Stratigraphy

The Middle to Upper Triassic sedimentary sequence of the
study area is locally covered by Quaternary sediments (Fig. 2).
The Mesozoic basin sediments comprise the Xinduqiao (T3x),



Figure 5 Photos of fine-grained sandstones in the thin-section from Hongcan Well 1. A is for fine-grained lithic feldspar sandstone from the

depth of 526 m; B is from the depth of 1664 m; C is for fine-grained lithic feldspar sandstone from 2850 m; D is for fine-grained quartz feldspar

sandstone from 3285 m.

Figure 6 NASC- and PAAS-normalized major element diagrams for

fine-grained sandstones and mudstone, Hongcan Well 1. PAAS data

fromTaylor andMcLennan, 1985; NASCdata fromGromet et al., 1984.
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Zhuwo (T3zh), Zagunao (T3z) and Zhagashan (T2zg) formations of
which the Hongcan Well 1 (Fig. 2) penetrates the Zhuwo
(T3zh) > 250 m, Zagunao (T3z) 250 m to 3850 m and Zhagashan
(T2zg) > 3850 m (base not reached) formations SINOPEC
Exploration Southern Company, 2008).

Brief descriptions of these formations from bottom to top are
as follows:

Zhagashan Formation (T2zg), with a thickness more than
1250 m, outcrops in Hongyuan County and the northern part of
Zoige County. Zhagashan Formation strata commonly form the
core of the anticline (Fig. 3A). It mainly consists of sandstones
intercalated with occasional mudstones, and in the sandstones, the
horizontal bedding and cross-bedding are developed, as well as the
flute cast can be found. In Hongcan Well 1, this Formation can be
divided into three sections: a lower section (T2zg

1,
6015e7012.8 m) mainly consisting of sandstone accompanied by
minor mudstone, limestone and siltstone; a middle section (T2zg

2,
5065e6015 m) in which siltstone significantly increases, lime-
stone is relatively abundant, and a significant reduction in the
amounts of sandstone and mudstone; the upper section (T2zg

3,
3825e5065 m) is mainly composed of sandstone, siltstone,
mudstone and thinly bedded limestone.

Zagunao Formation (T3z) (2000 m) has a conformable contact
with the underlying Zhagashan Formation and outcrops in the
southern and central parts of Zoige County and occasionally in the
north. Zagunao Formation strata commonly form the limbs of the
folds with a banded shape (Fig. 3). It is composed of sandstone



Table 1 Major element compositions (wt.%) for core samples from Hongcan Well 1.

SN YS-1 YS-2 YS-3 YS-4 YS-5 YS-6 YS-7 YS-8 NASC PAAS

Depth(m) 469 593 1316.6 1434.3 2223.2 2273.5 2647.8 2654.5

Formation T3z T3z T3z T3z T3z T3z T3z T3z

Litho Fs Md Fs Md Md Fs Md Fs

SiO2 73.51 62.65 70.37 59.60 59.85 65.39 57.44 69.76 64.80 62.40

TiO2 0.63 0.76 0.60 0.80 0.83 0.77 0.77 0.59 0.70 0.99

Al2O3 12.12 15.13 12.48 18.70 19.17 16.18 18.57 13.51 16.90 18.80

Fe2O3 0.56 1.28 0.81 1.23 1.28 0.87 0.95 0.71

FeO 2.75 4.75 4.78 5.95 5.15 4.10 5.05 4.05

MnO 0.05 0.05 0.09 0.11 0.06 0.07 0.08 0.08 0.06 0.11

MgO 1.07 2.82 1.57 2.35 1.99 1.70 2.09 1.43 2.86 2.19

CaO 0.81 1.94 1.19 0.65 0.56 0.93 0.95 0.93 3.63 1.29

Na2O 2.40 1.74 2.18 1.32 1.25 2.22 1.21 2.44 1.14 1.19

K2O 2.39 3.11 1.76 4.06 4.65 3.16 5.63 2.66 3.97 3.68

P2O5 0.14 0.21 0.13 0.19 0.18 0.18 0.21 0.16 0.16

Fe2O3* + MgO 4.69 9.38 7.69 10.19 8.99 7.13 8.65 6.64

Al2O3/TiO2 19.24 19.91 20.80 23.38 23.10 21.01 24.12 22.90

CIA 61.2 62.4 62.9 71.9 71.4 66.0 66.6 62.2

Note: Major elements were analyzed using a 3080E1 X-ray Fluorescence (XRF) spectrometer at the Analytical Institute of the Bureau of

Geology and Mineral Resources, Hubei Province. NASCeNorth American Shale Composite (Gromet et al., 1984); PAASePost-Archean

Australian Shale (Taylor and McLennan, 1985); SNesample number; Lithoelithology; Fsefine-grained sandstone; Mdemudstone; depth is

for Hongcan Well 1.
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accompanied by mudstone, siltstone and minor slate, and the
horizontal bedding, cross-bedding and the convolute bedding
(Fig. 4A) develop in the sandstone, the flute cast can also be
found. Two sections can be distinguished in Hongcan Well 1: an
upper section (T3z

2, 248e1291 m) mainly consisting of fine-
grained sandstone and mudstone with minor siltstone and fine-
grained sandstone interbedded with mudstone (less than half the
thickness of the fine-grained sandstone); a lower section (T3z

1,
1291e3825 m) consisting of mainly fine-grained sandstone with
a small amount of mudstone and siltstone and including two thin
layers of limestone.

Zhuwo Formation (T3zh) (1700 m) is concordant with the
underlying Zagunao Formation, outcrops widely throughout the
study area, and Zhuwo Formation strata commonly form the
trough of syncline (Fig. 3B). It is characterized by thin-, medium-
to thick-bedded fine-grained sandstone regularly interbedded with
Figure 7 Lg (Fe2O3*/K2O) versus lg (SiO2/Al2O3) (after Herron,

1988) for the Late Triassic fine-grained sandstones and mudstones,

Hongcan Well 1.
mudstone. Sandstone increases and mudstone decreases from the
bottom upwards. Here the sandstone develops grading bedding, as
well as the asymmetrical ripple (Fig. 4B) and flute cast (Fig. 4C)
can be seen locally. In Hongcan Well 1 (0e248 m), the Zhuwo
Formation is mainly composed of sandstone, siltstone and
mudstone, and the sandstone is regularly interbedded with
mudstone with a small amount of siltstone. No limestone is
present.

Xinduqiao Formation (T3x) (2400 m) crops out in the southern
and central parts of the ZoigeMassif. It is mainly composed of dark-
grey mudstone, slate and siliceous phyllite accompanied by brown-
yellow thin-bedded fine-grained, feldspathic lithic sandstone. Slate
Figure 8 ACF-A’KF plots of Hongcan Well 1 fine-grained sand-

stones (filled circles) and mudstones (filled triangles) compared with

chemical compositions of five very low-grade rock types and ideal

mineral compositions (Lu and Sang, 2002). 1epelitic rocks (Al2O3

excess); 2efelsic rocks (K2O excess); 3ecalcareous rocks; 4ebasic

igneous rocks; 5emagnesian rocks. Mineral abbreviations from Lu

and Sang (2002).



Table 2 Trace element compositions (in ppm) for core samples from Hongcan Well 1.

SN YS-1 YS-2 YS-3 YS-4 YS-5 YS-6 YS-7 YS-8 NASC PAAS

Depth (m) 469 593 1316.6 1434.3 2223.2 2273.5 2647.8 2654.5

Formation T3z T3z T3z T3z T3z T3z T3z T3z

Litho Fs Md Fs Md Md Fs Md Fs

Sc 6.8 12 7.8 15 16.7 11.8 17.1 8.8 15 16

Ni 17.4 31.1 25.6 41.2 43.9 32.4 53.4 25.2 58 55

Ga 12.7 20.9 13.7 24.5 27.3 21.2 26.7 17.3

Nb 9.6 12.5 8.2 11.5 11.1 11.3 12.2 9.2 13 1.9

Ba 306 356 186 433 506 342 624 295 636 650

Ta 0.93 1.13 0.85 1.06 1.12 1.07 1.12 0.91 1.1

Co 10.8 14.1 13.7 18.5 17.8 15.7 28.6 9.3 26 23

Cu 10 18.3 279 36.4 32.5 51.7 58.1 19.1

Sr 133 143 131 94 98 120 97 114 142 200

V 71.8 92.3 71.6 142 149 104 139 68.5 130 96

Zn 63.1 95.3 86.1 124 134 97.2 127 130

Th 8.8 10.4 7 9.3 9.6 8.2 11.1 6.7

U 2.24 2.28 1.78 2 2.03 2.4 2.14 1.88

Cr 53.9 67.5 52 65.7 66.7 58.1 68 47.9 125 110

Rb 92.5 131 72.7 175 190 129 215 104 125 160

Zr 245 182 183 184 189 204 187 174 200 210

Hf 6.9 5 4.8 4.9 5.1 5.5 4.9 4.9 6.3 5

Cr/Zr 0.22 0.37 0.28 0.36 0.35 0.28 0.36 0.28 0.63 0.52

Th/Sc 1.29 0.87 0.9 0.62 0.57 0.69 0.65 0.76

Note: Trace elements were analyzed utilizing an inductively coupled plasma atomic emission spectrometer (ICP-AES) at the Analytical Institute of the

Bureau of Geology and Mineral Resources, Hubei Province. Other legends referred to Table 1.
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and siliceous phyllite occurs in the Longriba area in a contact
aureole of an intrusion, and dark-grey lenses of crystalline lime-
stone are developed in mudstone in the Zoige area. The formation is
in conformable contact with the underlying Zhuwo Formation.

Combined the field observation and thin-section analysis, the
Triassic sediments in the study area mainly consist of sandstone
and mudstone, and the sandstone (Fig. 5) is characterized by poor
roundness and sorting, grain supported, with low compositional
and textural maturity; also the sedimentary structures such as
grading bedding, convolute bedding and flute mould can be
observed, all of these reflect a turbidity current depositional origin
in a proximal slope-basin environment with rapid erosion and
burial (Tang, 2011; see Figs. 3e6). Moreover, samples from
Hongcan Well 1 have undergone high temperature diagenesis,
very low to low-grade metamorphism. Above 2800 m, the meta-
morphic grade is that of the high grade diagenetic zone. Below
2800 m the metamorphic grade is anchizone with only a few
samples attaining epizone conditions at the base (6000e7000 m)
(Tang et al., 2007).

3. Samples and analytical methods

Eight representative core samples of mudstone and fine-grained
sandstone from Hongcan Well 1 were analyzed for major
elements, trace elements and REE’s at the Analytical Institute of
the Bureau of Geology and Mineral Resources, Hubei Province.
Major elements were analyzed using a 3080E1 X-ray Fluores-
cence (XRF) spectrometer with an accuracy <1%. Trace and rare
earth element analyses were made using an inductively coupled
plasma atomic emission spectrometer (ICP-AES), with an
analytical precision <5%.
4. Results

4.1. Major elements

Major element compositions of the eight representative core
samples are listed in Table 1. Average compositions of North
American Shale Composite (NASC; Gromet et al., 1984) and
Post-Archean Australian Shale (PAAS; Taylor and McLennan,
1985) are also listed for comparison.

Fig. 6a, b show variations of major elements (grey fields)
normalized to NASC (a) and PAAS (b) and indicate that compo-
sitions are essentially comparable with those of NASC and PAAS,
except for CaO which is significantly lower than NASC, and Na2O
which is generally higher than NASC and PAAS. Fig. 6a, b also
differentiate the Hongcan Well 1 mudstones and fine-grained
sandstones with fine-grained sandstones having higher SiO2,
Na2O, and lower Al2O3, K2O than mudstones reflecting higher
modal quartz and acid plagioclase in the former, and a higher
proportion of clay minerals in the latter.

Fig. 7 shows a lg-lg plot of (SiO2/Al2O3) vs. (Fe2O3/K2O) after
Herron (1988), where mudstones plot within the shale field and
fine-grained sandstones cluster in the greywacke field.
A combined ACF and A’KF diagram (Fig. 8) shows mudstones (or
shale) and fine-grained sandstones (or greywacke) plot within the
field of Al-rich pelitic sediments.
4.2. Trace elements

Table 2 demonstrates the concentrations of trace elements from the
HongcanWell 1 sediments. Fig. 9a, b show ranges of composition of



Figure 9 NASC- and PAAS-normalized trace element composi-

tions of fine-grained sandstones and mudstones, Hongcan Well 1.

PAAS data from Taylor and McLennan, 1985; NASC data from

Gromet et al., 1984.
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trace elements (grey fields) normalized to NASC (a) and PAAS (b),
and indicate that abundances are lower than NASC and PAAS,
notably Cr/Zr ratios. Most trace elements are concentrated in
mudstone compared to fine-grained sandstones, except for Sr, Zr and
Hf.Values of Cr/Zrmay be used to indicate the relative contributions
of mafic and felsic source rocks to the sediments (Wronkiewicz and
Condie, 1989). Cr/Zr values in all studied samples are lower than 1
(0.22e0.37) (Table 2), indicating a felsic source.
Table 3 Rare earth element concentrations (in ppm) for core samples

SN YS-1 YS-2 YS-3 YS-4 YS-

Depth (m) 469 593 1316.6 1434.3 2223

Formation T3z T3z T3z T3z T3

Litho Fs Md Fs Md Md

La 34.01 43.12 26.71 35.85 37.3

Ce 57.86 80.81 49.99 73.49 75.8

Pr 7.99 9.69 6.8 9.14 9.3

Nd 28.54 36.77 24.8 34.66 34.3

Sm 5.18 6.55 4.9 6.99 6.4

Eu 1.16 1.33 1.06 1.52 1.3

Gd 4.45 5.75 4.59 6.48 5.4

Tb 0.7 0.88 0.78 1.08 0.9

Dy 4.12 5.02 4.39 6.18 5.4

Ho 0.85 1.02 0.87 1.26 1.1

Er 2.41 2.86 2.52 3.47 3.0

Tm 0.37 0.46 0.4 0.56 0.4

Yb 2.39 2.78 2.44 3.47 2.8

Lu 0.37 0.42 0.38 0.53 0.4

Y 21.12 25.47 23.97 30.47 26.5

dCe 0.77 0.86 0.82 0.89 0.8

dEu 0.73 0.65 0.68 0.69 0.6

(La/Yb)n 9.21 10.04 7.08 6.69 8.5

Note: REEs were analyzed by an inductively coupled plasma atomic emissi

Geology and Mineral Resources, Hubei Province. Other legends referred to
4.3. Rare earth elements

Rare earth element concentrations of core samples are listed in
Table 3 and Fig. 10 shows that they have similar chondrite-
normalized REE patterns to NASC and PAAS, characterized by
LREE enrichment and negative Eu anomalies, indicating that the
main sedimentary source were continental crustal rocks. REE
patterns display a significant HREE depletion, (La/Yb)n 6.69 to
10.04 average 7.93 (Table 3). LREE’s are more strongly frac-
tionated than HREE’s because LREE patterns are steep while
HREE patterns are flat. All the samples display clear negative Eu
anomalies [dEu Z 0.65e0.73 average 0.69, very close to that of
NASC (dEu Z 0.69) and PAAS (dEu Z 0.64) (Table 3)]. They
also have slightly negative Ce anomalies (dCe Z 0.77e0.89;
av.Z 0.84, less than NASC and PAAS), indicating that the degree
of oxidation of the rocks in the source area was lower than that of
NASC, possibly because the area escaped strong chemical
weathering in a cold climate.

5. Discussion

5.1. Geochemistry and weathering

The chemical index of alteration (CIA) is useful for estimating the
degree of chemical weathering in sedimentary rocks. It was
defined by Nesbitt and Young (1982) as CIA Z [Al2O3/
(Al2O3 þ CaO* þ Na2O þ K2O)] � 100, where CaO* represents
Ca in silicate minerals only (i.e., excluding calcite, dolomite and
apatite) (Fedo et al., 1995). An approximate correction for
carbonate content can be made by assuming reasonable Ca/Na
ratios in silicate materials (McLennan et al., 1993). After
from Hongcan Well 1.

5 YS-6 YS-7 YS-8 NASC PAAS

.2 2273.5 2647.8 2654.5

z T3z T3z T3z

Fs Md Fs

33.82 39.07 27.11 32 38

65.92 75.71 52.75 73 80

9 8.98 10.21 7 7.9 8.83

1 32.02 36.94 25.02 33 33.9

1 6.21 7.35 5.11 5.7 5.55

6 1.37 1.56 1.1 1.24 1.08

6 5.45 6.52 4.34 5.2 4.66

1 0.93 1.08 0.68 0.85 0.77

6 5.39 6.29 3.99 6.2 4.68

1.1 1.31 0.83 1.04 0.99

6 3.12 3.72 2.34 3.4 2.85

7 0.51 0.58 0.36 0.5 0.4

2 3.1 3.66 2.21 3.1 2.82

1 0.47 0.56 0.34 0.48 0.43

3 26.84 33.38 20.23 27

9 0.83 0.83 0.84 1.01 0.95

9 0.71 0.68 0.7 0.69 0.64

6 7.06 6.91 7.94 6.68 8.72

on spectrometer (ICP-AES) at the Analytical Institute of the Bureau of

Table 1.



Figure 11 A-CN-K ternary diagram of molecular proportions of

Al2O3-(CaO*þNa2O)-K2O for fine-grained sandstones and mudstones

fromHongcanWell 1 (Nesbitt &Young, 1984). The CIA scale shown at

the left side of the figure for comparison. Ideal compositions of minerals

labelled: Pl, plagioclase; Ks, K-feldspars; Il, illite; Mu, muscovite; Sm,

smectite; Ka, kaolinite; Gi, gibbsite; Ch, chlorite. Stars: average

compositions of gabbro (A1), tonalite (A2), granodiorite (A3), granite

(A4), A-type granite (A5) and charnockite (A6) from Fedo et al. (1997).

Solid arrow indicates the predicted weathering trend for tonalite; dotted

arrow shows the actual weathering trend for the samples.

Figure 10 Chondrite normalized REE patterns for fine-grained sandstone (Fs) and mudstone (Md), Hongcan Well 1, compared with PAAS and

NASC patterns (PAAS data from Taylor and McLennan, 1985; NASC data from Gromet et al., 1984).
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correcting for Ca in phosphate using P2O5 (i.e.
CaO* Z [CaO] � 10/3[P2O5]), provided that the remaining mole
fraction of CaO � Na2O, acceptable CaO* values are obtained
when CaO > Na2O and CaO* is assumed to be equivalent to
Na2O. CIA values between 50 and 60 indicate a low degree of
chemical weathering, between 60 and 80 moderate chemical
Figure 12 Fine-grained sandstones and mudstones from Hongcan

Well 1 plotted in terms of (A-K)-C-N ternary diagram where

(A-K) Z (Al2O3-K2O), C Z CaO* and N]Na2O. Scale at left

indicates plagioclase index of alteration from Fedo et al. (1995). An:

anorthite; By: bytownite; La: labradorite; Ad: andesine; Og: oligo-

clase; Ab: albite.
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weathering, with values >80 indicating extreme chemical
weathering (Fedo et al., 1995). The CIA is also a useful tool for
providing a semi-quantitative assessment of paleoclimate in the
source area because a large amount of aluminous clay minerals
generally forms by intensive chemical weathering under tropical
conditions and gives CIA values of 80e100. In contrast, under
glacial environments where abrasion is dominant over chemical
weathering, common CIA values range from 50 to 70 (Nesbitt and
Young, 1982). Calculated CIA values of the studied samples range
between 61.2 and 71.9 (average 65.6; Table 1 and Fig. 11) indi-
cating that the source area may have been subject to a moderate
degree of weathering in a cool climate without abundant rainfall.

Molar proportions of Al2O3 (A), CaO* þ Na2O (CN) and K2O
(K) in the Late Triassic Hongcan Well 1 samples are plotted in
A-CN-K compositional space (Fig. 11) after Nesbitt and Young
(1984, 1989) to estimate trends of chemical weathering, meta-
somatism and source rock compositions. Weathering trends might
be predicted to be parallel to the A-CN join during the initial
stages because Na and Ca are removed by chemical weathering
of plagioclase feldspars as shown by solid arrow in Fig. 11. As
Figure 13 Discrimination diagrams for provenance of Hongcan Well

a: Discriminant function diagram (Roser and Korsch, 1988); b: La/Th-Hf

McLennan et al. (1993); d: Co/Th-La/Sc diagram (after Gu et al., 2002).
weathering continues, K-feldspars should also have been weath-
ered releasing K and shifting the residual composition towards the
Al2O3 apex. However, the actual trend of the Hongcan well 1
samples (dotted line) is subparallel to the A-CN join towards the
compositions of illite and muscovite, different from the predicted
weathering trend (solid arrow). This divergent trend was possibly
caused by potassium metasomatism (c.f. Fedo et al., 1996, 1997)
or K2O enrichment during the sedimentary process, and the
mudstones were more profoundly affected than fine-grained
sandstones (Fig. 11). The effect of metasomatism can be cor-
rected for by projection of lines from the K-apex through the data
points to the ideal weathering line (solid arrow). Such a technique
should give an approximation of the original CIA values (Fedo
et al., 1995). Corrected CIA values range from 63 to 80 in
Fig. 8 (on the left scale of CIA marked by two parallel dotted
arrows), still displaying moderate chemical weathering. An addi-
tional advantage of the A-CN-K ternary plot is that it enables
estimation of source rock compositions by backward projection of
the weathered samples to a point on the feldspar line. The inter-
section point provides an approximate ratio of plagioclase to
1 Late Triassic fine-grained sandstones (Fs) and mudstones (Md).

diagram (Floyd and Leveridge, 1987); c: Th versus Sc diagram from



Figure 14 Major element tectonic setting discrimination diagrams

for fine-grained sandstones (Fs) and mudstones (Md), Hongcan

Well 1. a: Lg(K2O/Na2O) vs. SiO2 (Roser and Korsch, 1986);

b: Discriminant function diagram (Bhatia, 1983). IA, island arc;

ACM, active continental margin; PM, passive margin; CIA, conti-

nental island arc; OIA, oceanic island arc.

Figure 15 Trace element tectonic setting discrimination diagrams (Bha

(Md), Hongcan Well 1. a: La-Th-Sc; b: Th-Co-Zr/10; c: Th-Sc-Zr/10; d

Ceactive continental margin; Depassive margin.
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K-feldspar in the source rock. Fig. 11 shows that the weathering
trend suggests a tonalitic provenance.

Molar proportions of Al2O3 (minus Al associated with K),
CaO* and Na2O are plotted in the (A-K)-C-N diagram of Fedo
et al. (1997) in order to understand and monitor the evolution of
plagioclase weathering in the Late Triassic sediments (Fig. 12).
The vertical dimension on the (A-K)-C-N triangle corresponds to
the plagioclase index of alteration (PIA Z [(Al2O3eK2O)/
(Al2O3 þ CaO* þ Na2OeK2O)] � 100) of Fedo et al. (1995). PIA
values of around 50 for fresh rocks and values approaching 100
indicate significant production of secondary aluminous clay
minerals (Fedo et al., 1997). Fig. 12 shows that the samples are
weathering products of parent material enriched in plagioclase
feldspars in the range An10 to An50 (oligoclase [Og] to andesine
[Ad]) with PIA values between 63 and 82. Fine-grained sand-
stones have lower PIA values than mudstone, suggesting that
secondary aluminous clay minerals are concentrated in mudstone.

To summarize, we conclude that the Late Triassic pelitic
sediments in the study area could have been derived by weathering
of a tonalite-dominated source terrane that underwent low to
moderate chemical weathering in a cool and relatively dry climate.

5.2. Geochemistry and provenance

Roser and Korsch (1988) proposed a provenance discriminant
diagram based on major elements to distinguish mafic, interme-
diate, felsic igneous rocks from quartzose sedimentary rocks.
tia and Crook, 1986) for fine-grained sandstones (Fs) and mudstones

: Ti/Zr vs. La/Sc. Aeoceanic island arc; Becontinental island arc;



Figure 16 Normalizedmulti-element and element ratio diagrams for

fine-grained sandstones (filled circles) and mudstones (filled triangles),

Hongcan Well 1. OIAZ oceanic island arc; CIAZ continental island

arc; ACM Z active continental margin; PM Z passive margin.

Normalized values from Bhatia and Crook (1986).
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Most of the Hongcan Well 1 samples cluster near to a line between
felsic igneous and quartzose sedimentary fields (Fig. 13a).

Hayashi et al. (1997) pointed out that the ratio of Al2O3/TiO2

in shales should be similar to that of their parent rocks and
therefore the Al2O3/TiO2 ratio can be used as a significant indi-
cator of source rocks. Ratios exhibiting higher values (>21)
indicate that sediments were derived from felsic source rocks
(Hayashi et al., 1997). The average value of Al2O3/TiO2 in the
studied pelitic rocks is 21 (range of 19.2 to 24.1 in Table 1),
reflecting a felsic to intermediate source. A plot of La/Th against
Hf proposed by Floyd and Leveridge (1987) shows that almost all
the Hongcan Well 1 samples fall into the field of felsic sources
Table 4 Discriminating REEs and ratios for Triassic samples (after B

Tectonic settings La Ce

Oceanic island arc 8 � 1.7 19 � 3.7

Continental island arc 27 � 4.5 59 � 8.2

Active continental margin 37 78

Passive margin 39 85

Triassic samplesa 34.62 66.54

a Values are obtained from the average values of studied samples in Hong
(Fig. 13b). A Th versus Sc plot (Fig. 13c), after McLennan et al.
(1993), reveals a continental source to an intermediate component.
Similarly, in a Co/Th-La/Sc diagram (Fig. 13d) from Gu et al.
(2002), most samples plot near to or above a horizontal line at
Co/Th Z 1.29, indicating a felsic to intermediate igneous source.
Finally, the REE patterns in Fig. 10 are characterized by enrich-
ment of LREE, negative Eu anomalies and relatively flat HREE
patterns, suggesting a felsic protolith.

Therefore, the main source of the Hongcan well 1 sediments
was old upper continental crust dominated by felsic to interme-
diate igneous rocks of average composition of tonalite with no
mafic or mature polycyclic quartzose detritus.

5.3. Geochemistry and tectonic setting

Geochemical data can also be used to decipher the ancient tectonic
settings of sedimentary rocks (Maynard et al., 1982; Bhatia, 1983;
Roser and Korsch, 1985, 1986, 1988; Bhatia and Crook, 1986). In
Fig. 14a of Roser and Korsch (1986), the studied samples plot
exclusively in the active continental margin (ACM) field. Plotting
chemical analyses on the discrimination diagram of Bhatia (1983)
shows that the Triassic sediments might have been deposited in
either an active continental margin or a continental island arc
setting (Fig. 14b).

Bhatia and Crook (1986) suggested several discrimination
diagrams based on trace elements including REE’s. Almost all our
samples plot in the continental island arc fields of their ternary La-
Th-Sc diagram (Fig. 15a), Th-Co-Zr/10 diagram (Fig. 15b) and
Th-Sc-Zr/10 diagram (Fig. 15c) except for some samples in
Fig. 15a that plot nearby. Most of Hongcan Well 1 samples plot in
the active continental margin field of the bivariate Ti/Zr vs. La/Sc
diagram (Fig. 15d). When normalized to standard tectonic settings
(Fig. 16), the Hongcan Well 1 Late Triassic sediments reflect
deposition in a continental island arc setting. Table 4 shows that
our samples have REE values and ratios between those of conti-
nental island arc and active continental margin sediments.

Combining indications from all discrimination diagrams, we
conclude that Late Triassic deposition in the study area probably
took place in a transitional tectonic setting from an active conti-
nental margin to a continental island arc. If this is correct, the
Triassic sediments were probably deposited in a back-arc basin
situated between an active continental margin (the Kunlun-
Qinling Fold Belt) and a continental island arc (the Yidun
Volcanic Arc) (Fig. 17), although a Yidun Volcanic Arc source is
not supported by flow directions of Triassic turbidites in the Aba-
Zoige region (Du et al., 1998). Petrographical data reflected
a proximal slope-basin environment with rapid erosion and burial.
We therefore suggest that the Kunlun-Qinling terrane is most
likely to have supplied source materials to the northeast part of the
Songpan-Ganzi Basin during the Late Triassic.
hatia, 1983).
P

REE La/Yb (La/Yb)n Eu/Eu*

58 4.2 � 1.3 2.8 � 0.9 1.04 � 0.11

146 11 � 3.6 7.5 � 2.5 0.79 � 0.13

186 12.5 8.5 0.6

201 15.9 10.8 0.56

193.95 12.26 7.93 0.69

can Well 1. Eu/Eu* Z dEu, Eu* Z (Sm þ Gd)/2.



Figure 17 A sketch cross-section of back-arc basin between the Kunlun arc and the outboard Yidun arc modified from Weislogel (2008) and

Roger et al. (2010). QT Z Qiangtang Block; NC Z North China Block.
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6. Conclusions

Geochemical data of Late Triassic fine-grained sandstones and
mudstone from Hongcan Well 1 in the northeastern part of the
Songpan-Ganzi Basin indicates their source area weathering,
provenance and the tectonic setting in which they were deposited.
Combined ACF-A’KF diagrams indicate that all samples (mudstone
and fine-grained sandstones) are Al-rich pelitic rocks. Most of their
major elements are comparable with NASC and PAAS, except that
CaO is significantly lower than NASC and Na2O is generally higher
than NASC and PAAS. Mudstones show higher contents of Al2O3,
K2O and ferromagnesian trace elements (such as Co, Cr, Ni, Sc, etc),
and lower concentrations of SiO2, Na2O, Sr, Zr and Hf than asso-
ciated fine-grained sandstones. Uniform REE patterns resemble
upper continental crust, displaying LREE enrichment, flat HREE
profiles, and significant negative Eu-anomalies. Chemical Index of
Alteration (CIA) values indicate that the source area underwent
moderate chemical weathering in a cold climate, and an A-CN-K
ternary diagram suggests a dominant tonalitic source. Plagioclase
Index of Alteration (PIA) values reflect a moderate degree of
plagioclase weathering and an (A-K)-C-N triangle shows that the
plagioclase of the source rocks was predominantly oligoclase and
andesine. Various other provenance discrimination diagrams show
that the source areawas dominated by felsic to intermediate igneous
rocks of generally tonalitic composition. Major and trace element
compositions suggest two possible tectonic settings: an active
continental margin and a continental island arc. If this is correct, the
Triassic sediments were probably deposited in a back-arc basin
situated between an active continental margin (the Kunlun-Qinling
Fold Belt) and a continental island arc (the Yidun Volcanic Arc).
Combining published data and our petrogrphical data, we conclude
that the Kunlun-Qinling terrane is most likely to have supplied
source materials to the northeast part of the Songpan-Ganzi Basin
during the Late Triassic.
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