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Abstract

We introduce two kinds of multiple little-Jacobi polynomialg; with multi-index7 = (nq, no, ..., n,) and
degreeln| = ny + n2 + --- + n, by imposing orthogonality conditions with respectrtdiscrete littleg-Jacobi
measures on the exponential lattigg, k = 0, 1, 2, 3, ...}, where O< ¢ < 1. We show that these multiple little
g-Jacobi polynomials have usefgidifference properties, such as a Rodrigues formula (consisting of a product of

r difference operators). Some properties of the zeros of these polynomials and some asymptotic properties will be
given as well.

© 2004 Elsevier B.V. All rights reserved.

Keywords: gJacobi polynomials; Basis hypergeometric polynomials; Multiple orthogonal polynomials

1. Little g-Jacobi polynomials

Little g-Jacobi polynomials are orthogonal polynomials on the exponential l&ticek=0, 1, 2, .. .},
where O< g < 1. In order to express the orthogonality relations, we will usegtirgegral
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k=0
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(see, e.g ]2, Section 10.15, Section 1.1)Jwheref is a function or{0, 1] which is continuous at 0. The
orthogonality is given by

1
0
where
w(x;a,blqg) = @X: 9o (1.3)

———— X
(@5 1x: @)oo
We have used the notation

n—1 00
@q)y=[]A-ag". (@qe=]]A-agh.
k=0

k=0

In order that they-integral ofw is finite, we need to impose the restrictiang > — 1. The orthogonality
conditions (1.2) determine the polynomigis(x; «, f | g) up to a multiplicative factor. In this paper, we

will always use monic polynomials and these are uniquely determined by the orthogonality conditions.
Theg-binomial theorem

o0

(@; @)n n (az; q)oo
=R g, 1 1.4
nz:;) @D @D el-al = 4

(see, e.g|2, Section 10.25, Section 1.3]implies that

Iim1 wx;a, Blg)=1A— 0fx*, 0<x <1,
q—)

so thatw(x; o, f | ¢) is ag-analog of the beta density ¢, 1], and hence

lim p,(x; o flq) = P*P(x),
qg—1

WhereP,f“’ﬁ) are the monic Jacobi polynomials @ 1]. Little g-Jacobi polynomials appear in represen-
tations of quantum SU(29,10], and the special case of litteLegendre polynomials was used to prove
irrationality of ag-analog of the harmonic series and lofi2]. Their role in partitions was described in
[1]. A detailed list of formulas for the little-Jacobi polynomials can be found[i®, Section 3.12]but
note that in that reference the polynomjal(x; a, b | ¢) is not monic and that = g%, b = ¢#. Useful
formulas are théowering operation

n

1-—
Tapa(xi o B19) = 7= pna 2+ L+ 119, (1.5)

whereZ, is theg-difference operator

S)—f(gx) if x#0

Do f () = { >

£(0) if x=0 (1.6)
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and theraising operation
Dplw(xs o, Blg) pa(x: o, flg)]

1_qn+oc+/5
Z—Ww(x;a—1,ﬁ—1|Q)Pn+1(x;0<—1,/3—1|¢]), (1.7)

wherep = 1/q. Repeated application of the raising operator givesRberigues formula

(_1)71(1 . q)nqan-i—n(n—l)
(qoﬁ—ﬁ—l—n-i—l; D

wxs o, Blg)pa(x; o, flq) = Tywx;o+n, f+nlq). (1.8)

A combination of the raising and the lowering operation gives@nd-order g-difference equatidrhe
Rodrigues formula enables us to give an explicit expression as a basic hypergeometric sum:

X" (G ), g q " 1x
pn(x;io, Blg) = (@ g ¢ g"1,0 q:9 |

which by some elementary transformations can also be written as

(n4ow)n ¢, —n—o. —n n+otf+1
q (g 5 q) ,
pn(xso, flg) = (qn+a+ﬁ+l;q)”n2¢l<;]“+1q q;qx>
n+o+p+1.

_q"M g ), 2": @™ ilq sk qfxt
(qmtetitlig), = (@*t g (q: 9k

n

(1.9)

2. Multiple orthogonal polynomials

Multiple orthogonal polynomials (of type 1) are polynomials satisfying orthogonality conditions with
respect to- > 1 positive measurg8,4,11, Section 4;3L5]. Let uq, uo, ..., 1, ber positive measures on
the real line and let = (n1, no, ..., n,) € N” be a multi-index of lengthvi| =ny +n2 + --- +n,. The
corresponding type Il multiple orthogonal polynomjal is a polynomial of degreec |z| satisfying the
orthogonality relations

/pﬁ(x)xkduj(x)zo, k=0,1,....,n; =1, j=12,...,r

These orthogonality relations givé| homogeneous equations for tfi@ + 1 unknown coefficients of

pi. We say thafi is a normal index if the orthogonality relations determine the polynomjaip to a
multiplicative factor. Multiple orthogonal polynomials of type | (see, 8,11, Section 4.34,15)) will

not be considered in this paper. Multiple litdelacobi polynomials are multiple orthogonal polynomials,
where the measures, .. ., u, are supported on the exponential lattjgé, k=0, 1,2,...} and are all

of the form dy; (x) = w(x; o, ; | ¢) dyx, wherew(x; o, | ) d,x is the orthogonality measure for little
g-Jacobi polynomials. It turns out that in order to have formulas and identities similar to those of the
usual littleg-Jacobi polynomials one needs to keep one of the parameterg; fixed and change the
other parameters for themeasures. This gives two kinds of multiple littjeJacobi polynomials. Note

that these multiple little-Jacobi polynomials should not be confused with multivariable lgtiacobi
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polynomials, introduced ifiL3]. In [12] the multiple littleg-Jacobi polynomials of the first kind are used
to prove some irrationality results gy (1) and{, (2).

2.1. Multiple little g-Jacobi polynomials of the first kind

Multiple little g-Jacobi polynomials of the first king; (x; a, | ¢) are monic polynomials of degree
|n| satisfying the orthogonality relations

1
/Pﬁ(x;&,ﬁlq)ka(x;oc,,-,ﬁlq)qu=O, k=0,1,....n; =1, j=12,...,r, (2.1)
0

whereay, ..., a, f> — 1. Observe that all the measures are orthogonality measures foglitieobi
polynomials with the same paramefebut with different parameters;. All the multi-indices will be
normal when we impose the condition that— o; ¢ Z wheneveri # j, because then all the measures
are absolutely continuous with respecttox; 0, | ¢) d,x and the system of functions

11, xal-i-l’ o, xoq—l—nl—l’ x mz—i—l, o, xaz—l—nz—l, ) oc,—}—l’ N o +n,—1

X %2 x X x X

is a Chebyshev system @f, 1), so that the measurés, ..., u,) form a so-called AT-system, which
implies that all the multi-indices are nornfall, Theorem 4.3]
There are raising operationgor these multiple orthogonal polynomials.

Theorem 2.1. Suppose thaty, ..., %, f >0, witho; — o; ¢ Z whenevei # j, and putp = 1/g, then
Dplw(x; aj, B1q)pi(x; o, flg)]

qa_,'+ﬁ+|;i| -1 R R
= A gy wxioj — 1 f—11q)pite;(x;o—e€j, f—11q), (2.2)

N

for 1< j<r,whereé; = (1,0,0,...,0),...,¢,=(0,...,0,0, 1) are the standard unit vectars

Observe that these operations raise one of the indices in the multi-index and lower the pgtameter
one of the components af

Proof. First observe that

(1—q’x)pi(x; o Blq) — p* (L—x)pi(px; %, Blq)
1-p ’

=wx;o; —1,—1]q)

so that
1— qofj-f—[ﬂ-lﬁ\
(1—q)g i~

D plw(x; aj, Blg)pi(x:a, flg)] = — wxso; —1,—11q)Qpi+1(x), (2.3)

whereQ ;|1 is @ monic polynomial of degre@| + 1. We will show that this monic polynomia® ;11
satisfies the multiple orthogonality conditions (2.1)fz; (x; x—¢j, f— 1|¢) and hence, since all
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v — o ¢ Zwhenevet # j, the unicity of the multiple orthogonal polynomials implies tiig|, 1 (x) =
Pive; (x; o — €, f — 1| g). Integration by parts for the-integral is given by the rule
1 1
| r@7pemdr=—q [ sz, ferdgr it gp =0, (2.4)

If we apply this, then
1— qocj+[f+|ﬁ|
(L= q)g V=

1
=—q /0 w(x; af, Bl ) pi(x; 5, Bl q)Z4x* dyx,

1
/O Fwxs o — 1, B —11q) Q)ijr1(x) dgx

and since
g k-1 if f>1
gj k: 1— X I =
a*t {o ! if k=0,
we find that

1
/0 xFw(x: i —Lp-119)Qm+1(x)dyx =0, k=0,1,...,n;.

For the other componenis (i # j) of x we have

1— qocj—i-[f-l—lﬁl 1 .
(1_q)qaj+|ﬁ|—1/0 xw(xs o, f— 11 q) Qpij41(x) dgx
1— qocj+[f+|ﬁ|

1
k4o —oi+1 . -
- (l_q)qocj-i—fil—l/(; X " i w(x’ ®%j = 1’5_ 1|q)Q|n|+1(x) dqx

1
= —qfo w(x; %5, Blg)pii(x; 3, Bl @) Zgx" =% dyx,
and sincey; — «; ¢ Z we have

1— qk+a,~7a_,~

V7 xk-i—oti—otj-i—l — xk+oti—1j’

S
<

1-g¢q
hence

1
/0 Fw(x; o, p—=119)Qjj+1(x)dyx =0, k=0,1,...,n; — 1.
Hence all the orthogonality conditions fpf; .z, (x; a—éj, f—1|q) are indeed satisfied.]
As a consequence we findRodrigues formula

Theorem 2.2. The multiple little g-Jacobi polynomials of the first kind are given by

B+1,. r N 59 oo
P 5 Blg) = CGi, 5, f) Do TT (i gl oty (4% 4) (2.5)

@% oo ;3 (qPHITHLx; g)oe”
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where the product of the difference operators can be taken in any order and
i (1= Q)lﬁlqzﬁzl(“j_l)"f+zl<.i<k<r njng

C(n,a, p)= (-1 ; G
Hj=1(qocj+ﬁ+|n|+l; q)nj

Proof. If we apply the raising operator for; recursivelyn; times, then

T w(x; aj, B1q)pia(x; % Bl q)

_ (_1)nj (qozj+ﬁ+|l’I1|—nj+l; q)nj
(1 _ q)njq(mj+|rﬁ|—l)nj
X wx;oj = nj, B—n;1q)Piin;e;(x;a—njéi, f—njlq). (2.6)

Use this expression with = 0 andj =1, then

(gt gy,

(1—g)"qa—bm
X w(x; o1 —n1, f—n1lq) ez, (x; 0 —nie1, f—n1lq).

Zrw(x; a1, Blg) = (=™

Multiply both sides byw (x; a2, p — n1|¢g) and divide byw(x; a1 — n1, f — n1] q), then

py (@t gy

A~ q)"g@m
X w(x; a2, B —n1|q)pnyz, (x; 0 — niéy, f—n1lq).

XM G (x; o, Bl g) = (=1)

Apply (2.6) with j = 2, then

DX G (x; a1, Bl )

(g oat+f—ni+1. Dny(q oazt+f—nz+1. Dy

(1— q)n1+n2q(al—l)nl+(12—l+nl)n2

= (-1t

X w(x; 00 — N2, f—n1—n2|q) Pnyzrtnge, (X3 & — n1€1 — noea, f—n1 —n2|q).
Continuing this way we arrive at
(@;rxfxr)(xnr—l—dr—lg’;)rflxﬁr—l) - (xnl—“lggl)w(x; a1, flq)
DM@t g,
(11— q)|ﬁ|q25‘:1(“j_l)nj+21<j<kgrnjnk

w(x; o —np, f— 1] q) pi(x; o —n, p—|il]q).

Now replace each; by «; + n; andf by p + |n|, then the required expression follows. The order in
which we took the raising operators is irrelevantl

We can obtain an explicit expression of the multiple lifldacobi polynomials of the first kind using
this Rodrigues formula. Indeed, if we use tpeinomial theorem, then

o0

(qjC; Doo  _ Z (=P g)p g PHAFDR k.
(gPM1m+1x: q) oo (q: D

k=0
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Use this in (2.5), together with

1. 1.
xﬂ@sznH{ _ (QH s Pn (CI(H_”I s D 7n(k+“)7n("71)/2xk

A-q" ("L qn ’
then this gives

= - - r: ( ij+1; )n _ r . r n;
pi(x;a, flg)=C(n,a, p) I} (11q )Iﬁlq == ainj =31 ()
—q

(qﬂ+lx; q) —/J’—Ile’ oc1—|—n1+1’ o, oy 4n,+1 1
X (gx; q) = r+19y ;]oc1+l 7 qocr+1 a q; qﬁ+ X ). (27)
39 ) oo e

This explicit expression uses a nonterminating basic hypergeometric series, excetis/hearnnteger.
Another representation, using only finite sums, can be obtained by using the Rodrigues formula (1.8)
times. Forr = 2 this gives,

Theorem 2.3. The multiple little g-Jacobi polynomials of the first ki(fdr » = 2) are given by

pn,m(X; (“15 OCZ), ﬁ | CI)
grmtmttn®rantam (g —a-n, oy (g=e2=m; gy

(qa1+ﬁ+n+m+l; D (q12+[3+n+m+1; Dm
ap+p+m+n+1. a1+p+n+1.

5 2": i @ g™ 9i(q s (g s Dire(q

(g2t Or (@Y @ppe(gatPntls gy,

1.
L g

=0 k=0
qk+ka+ﬂ

. 2.8
* g @ ) 28)

Proof. Forr = 2 the Rodrigues formula (2.5) is

(_1)n+m (1 _ q)n+mq11n+a2m—n—m+nm+n2+m2

Pnm (x5 (21, 02), flq) = (qa1+[f+n+m+1; D (qa2+ﬁ+n+m+1; Dm
(qﬁ+1X; Q)oox—oclgnxocl—l—n—ocz@mxaz—wn (gx; 7)o
(4% @)oo b P (gFrmrmily; ¢) o
Observe that by the Rodrigues formula (1.8) for the ligléacobi polynomials
(gx; ) oo
(gPrntmtly; ¢) o
D" (@2 gy (93 @)a
T Q- (@ g

@mxocz—&-m
P

X2 p (x5 02, f+n|q),

and hence

D1 =) wn—n+nm+n? (, p+1 :
Pnm(x; (01, 02), Bl g) = — +i]r)+q +1 (@"7x; @)oo
(qocl p+n+m ;q)” (qx; q)oo

—oq

(gx; @)oo

x gt xatn 170 7700
P (g 1x; ¢) o

Pm(x; 02, f+nlq).
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Now use the explicit expression (1.9) to find

(—1)"(1 _ q)nqocln+oczm—n+nm+n2+m2(q—m—cxz; Q)m

pn,m(X; (OC]_, OCZ)? ﬁ | CI) - (qoc1+ﬂ+n+m+l; q)n(q“2+ﬁ+”+m+l; q)m

il S - i (@™ (g2 P+ ) g

(@X3 @)oo = (@2 @) (q: @i

(gx; q)
% @nxocﬁ—n—&-k 00 )
P (P 1x; @)oo

In this expression we recognize

(gx; q)
@nxxﬁ—n—kk 00
P (P 1x; @)oo

(=Ygt P gy e @X Do
(- g)gerthntaton (q/tx: q)

o0

hence

pn,m(X; (o1, 02), Bl q)
qx2m+nm+m2(q—m—o¢2. q)m

9

- (qa1+ﬁ+n+m+l; D (qoc2+ﬁ+n+m+1; Dim

y Zm: (™" @) (g7 PHmmTl gy (gt PHRntL ), g

k
X pn(x;o01+k, Blq).
(q%2+Y; )i (q; Qrg™™ !

k=0

If we use the explicit expression (1.9) for the litdeJacobi polynomials once more, then after some
simplifications we finally arrive at (2.8).0

2.2. Multiple little g-Jacobi polynomials of the second kind
Multiple little g-Jacobi polynomials of the second kipgl(x; «, B | ¢) are monic polynomials of degree

|n| satisfying the orthogonality relations

1
/pﬁ(x;oc,ﬁlq)ka(x;oc,ﬁjIq)dqxzo, k=0,1,....,n; =1, j=12,...,r, (2.9)
0

whereq, 1, ..., f, > — 1. Observe that all the measures are orthogonality measures fogliteobi
polynomials with the same parametebut with different parameterg;. All the multi-indices will be
normal when we impose the condition thfat— f; ¢ Z wheneveri # j, because then all the measures
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are absolutely continuous with respectéa; g) . w(x; o, 0] g) d,x and the system of functions

1 X xm-1 1 X
@ oo’ (@P x0T (PN @) (PN @)oo (PN @)oo
x"2—1 1 X xr—1
N O/ 2 7 PN (7 7 PN (7 L 7 WS (7 L 27 W8

is a Chebyshev systémon [0, 1], so that the vector of measur@s, . . ., u,) forms an AT-system, which
implies that all the multi-indices are nornfall, Theorem 4.3]
Again there are raising operations

Theorem 2.4. Suppose that, iy, ..., f, > 0,with ; — §; ¢ Z wheni # j, and putp =1/q, then

T plwx; o, B 1q)pi(x; o, Bl g)]
ooHBi+lil _ q

q -
T A= q)grti1 wsa—1 B —1@)pite;(xsa— 1 f—ejlq), (2.10)
for 1< j<r,wheree; =(1,0,0,...,0),...,é- = (0,...,0,0, 1) are the standard unit vectars

Observe that these operations raise one of the indices in the multi-index and lower the parameter
one of the components ¢f

Proof. Again we see that

T plw(x; a, B 1) pa(x; o Bl g)]
qx-i-ﬁj-i-lﬁ\ -1

T a- q)qa+|ﬁ|71w(X; x =1 B; = 11q) Qjiij+1(x), (2.11)

whereQ; 41 is @ monic polynomial of degrei@| + 1. We will show that this monic polynomia® ;41

satisfies the multiple orthogonality conditions (2.9)mfz, (x; « — 1, B — ¢ |¢) and hence, since all
Bi — Bj ¢ Zwhenever # j, the unicity of the multiple orthogonal polynomials implies tiggf+1(x) =

piive;(x: o — 1, f — ;| ). Integration by parts gives
1 g#thiHil
(1= g)g=*li=t

1
=—q /0 wx; o, B 1q) pi(x; o, Bl g)Zgx* dgx,

1
/0 e a—1, ;= 11g) Qpisa(x) dyx

so that

1
/0 ka(x;oc—l, B —119)Qpij+1(x)dyx =0, k=0,1,...,n;.

1The fact that this system is a Chebyshev system is not obvious but is left as an advanced problem for the reader.
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For the other componengs (i # j) of B we have

1-— qa+ﬂj+|ﬁ| 1 .
(1—q)q°‘+'"|—1/0 X w(x;a Bi 19) Qiij+1(x) dgx
1— g*thithl el L @ e
ZWA mw(x’a_l’ﬁj_1|Q)Q|ﬁ|+1(x)dqx
' Bj -
T : 36, B k 4% oo
- q/o wxs o, B lq)pi(x; o, flg)Zq (x (qlf,-+1x;q)oo) .

and sincef; — ; ¢ Z we have

B Bi+1,.
%( k(47X 4o ):xk—l @7 X Do (1,

(@5 +1x; @)oo (@P+1x; @)oo

where eacla is a polynomial of degree exactly 1 angl0) = 0. Therefore

1
/0 Kw e —1, 41901 (x)dgx =0, k=0,1,...,n; — 1.

Hence all the orthogonality conditions fpj; .z, (x; & — 1, B — ¢; | ) are indeed satisfied.[]
As a consequence we again finRadrigues formula
Theorem 2.5. The multiple little g-Jacobi polynomials of the second kind are given by
r

, C(it, o, p) g1 nj - ol
" _ . | : 212
pi(xs o, Blq) (@5 0o jll((q X e Zp @ ) (qx; @oox™™™, (2.12)

where the product of the difference operators can be taken in any order and

(1 — g)lilgCeHil=Dia|
B, TIi+L :
[Tj—1(@*Pit g,

Proof. The proof can be given in a similar way as in the case of multiple fiftlacobi polynomials of
the first kind by repeated application of the raising operators. Alternatively one can use inductiéoon
r=1the Rodrigues formulais the same as (1.8). Suppose that the Rodrigues formula (2.12) helds for
Observe that the multiple orthogonal polynomials with multi-index . . ., n,_1) for r — 1 measures
(1, - - -, 1) coincide with the multiple orthogonal polynomials with multi-index, no, ..., n,_1, 0)

for r measures$yy, ..., 1) for any measure,. Use the Rodrigues formula for— 1 for the polynomial

C(i, o, f) = (=
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Pitenz, (x; a4 n,, B+ nyé, | q) to find

w(x; o+ np, B + nr | q) Pii—n,e, (X5 00+ 1y, B+nélq)

1
(Pt lx; @)oo
r—1 1

Bi+1,. nj . ol
X (q" X7Q)oos@p . >(qxaCI)oox .
]1:[1< (" @)

Now apply the raising operation (2.10) fgt. to this expressiom, times to find the required
expression. [J

= C(’_i - nrgra o+ ny, E)

In a similar way, as for the first kind multiple littlg-Jacobi polynomials, we can find an explicit
formula with finite sums using the Rodrigues formula for lijldacobi polynomials times. Forr = 2
this gives the following:

Theorem 2.6. The multiple little g-Jacobi polynomials of the second k{fat » = 2) are explicitly
given by

a(n+m)+n’+m2+nm (q—m—a. n

q s D@ D@ D
(qcc-l—ﬁl-i—n—i—m—l—l; q)n(qoc+/32+n+m+1; C])m(qu_l; q)n(qa—i-l; Q)m

P (X5 o, (B1, B2) 1) =

5 2": i @75 @e(q™™; Qi (g TPt tmt L gy (gL )
e (@ @rge(@*TPtntl g),
qk+€xk+f

(2.13)

X % .
9" (q; Di(q; q)¢

Proof. The Rodrigues formula (2.12) fer= 2 becomes
(_1)n+m(1 _ q)n+mq(oc+n+m—1)(n+m)

pn,m(x; o, (ﬁla BZ) | Q) = (q@+ﬁ1+n+m+1; q)n(q“+ﬁ2+n+m+l; q)m

@ Doo T (@PrtHx; q) o T P (gPtmtlx; g) o '

The Rodrigues formula (1.8) for littlg-Jacobi polynomials gives

X X

m @X @ tntm
P(ghetmtly; ¢)

_ D@ ) e (43 D)

pm(x;o0+n, folq),

(1 — )" gqomtm®=msnm (qP2+1x; @)oo
hence
2
P, (B, ) 1) = G Q)" g (@ @)
nm ity % APLs P2 (qx+ﬁ1+n+m+1; D (gx: @)oo

(@x; @)oo
(qPr7H1x; @)oo

x@;x““’ pm(x;a+n, Brlq).
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Now use the explicit expression (1.9) for the litjelacobi polynomials to find

(_1)n(1 _ q)nqoc(n+m)+n2+m2+2nm—n (q—m—n—m; q)m

pn,m(X; o, (:81’ ﬁZ) | Q) - (qa+ﬁ1+n+m+l; q)n(q“+ﬁ2+n+m+l; q)m

5 (@"11x; @) o i (@™ @) (g™ HPatntm+l gy g
k=0

x*(gx; @)oo ("L O (q: i

(9x; @)oo
(P 1x; g

% g" xoc—i—n—i—k
p

Again we recognize a littlg-Jacobi polynomial

@nxx+n+k (qX; q)oo

P (qﬁl—l—n—l—lx; Doo
O ) WP (/3 275 s a4k B 0)
B (1 — q)”qcm+kn+n2—n (qﬁ1+1x; Q)oo Pn{X; »P119),

and if we use the explicit expression (1.9) for this littfedacobi polynomial, then we find (2.13) after
some simplifications. O

3. Zeros

The zeros of the multiple littlg-Jacobi polynomials (first and second kind) are all real, simple and in
the interval(O, 1). This is a consequence of the fact that. . ., 1, form an AT-systenjl1, first Corollary
on p. 141] For the usual orthogonal polynomials with positive orthogonality measweknow that an
interval[c, d] for which the orthogonality measure has no mass,i(c, d]) = 0, can have at most one
zero of each orthogonal polynomig). In particular this means that each orthogonal polynomjabn
the exponential latticég*, k =0, 1, 2, ...} can have at most one zero between two pajfitst andg*
of the lattice. A similar result holds for multiple orthogonal polynomials if we impose some conditions
on the measures.

Theorem 3.1. Suppose, ..., u, are positive measures de, b] with infinitely many points in their
support which form an AT-systeme., 4, is absolutely continuous with respectitpfor 2<k <r with

die (x)

dug(x) k().

and

na

1x, ., " wa(x), xwax), .., X2 wa(x), L we (X)), xwp(x), ., X e (x)

are a Chebyshev system [en b] for every multi-index. If [c, d] is an interval such that4 ([c, d]) =0,
then each multiple orthogonal polynomig} has at most one zero {a, d].
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Proof. Suppose thap; is a multiple orthogonal polynomial with two zeres andx; in [c, d]. We can

then write it asp; (x) = (x — x1)(x — x2)g}5;—2(x), whereg; _» is a polynomial of degreg:| — 2.
Consider a functiom (x) = 2721 Aj(x)w;(x), wherews = 1 and each ; is a polynomial of degree

mj —1<nj — 1, with |m| = |1i| — 1. Since we are dealing with a Chebyshev system, there is a unique
functionA satisfying the interpolation conditions

_J O if yisa zero ofg;—o,
A = {1 if y=x1.

FurthermoreA has|n| — 2 zeros ina, b] and these are the only sign changegarb]. Hence

b
f Pi (X)A(x) dug (x) =f[ o d](x — x1)(x — x2)qii|—2(x) A(x) dug (x) # O,

since the integrand does not change sigfico]\[c, d]. On the other hand,
b T b
/ pi(0)A(x) dug (x) = Z/ pi(x)Aj(x)du;(x) =0,
a ]:1 a

since every term in the sum vanishes because of the orthogonality conditions. This contradiction implies
that p; can’t have two zeros ifr, d]. O

In particular, this theorem tells us that the zeros of the multiple ligtlacobi polynomials are always
separated by the poinig and that between two poinig 1 andg* there can be at most one zero of a
multiple little g-Jacobi polynomial. Note that the point$ have one accumulation point at 0, hence as a
consequence the zeros of the multiple ligdacobi polynomials (first and second kind) accumulate at
the origin.

4. Asymptotic behavior

The asymptotic behavior of littlg-Jacobi polynomials was given [id] and an asymptotic expansion
was given if6]. In this section, we give the asymptotic behavior of the multiple kitlacobi polynomials
which extends the result of Ismail and Wilson.

Theorem 4.1. For the multiple little g-Jacobi polynomials of the first kind we have

lim X" p, W (1/x; (01, 22), B1q) = (X5 @) oo (4.1)

n,m— 00

The order in which the limits for n and m are taken is irrelevant
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Proof. If we use (2.8) and reverse the order of summation (i.e., change variablés= j andn — £ =i),
then

X" py (1) (01, 22), Bl q)
grmmt i tantogm (g —a=n. gy (g=rmm, gy

(qal-l—/)’—i-n—i-m—i—l; D (qa2+ﬁ+n+m+l; Dm
oo+ p+m—+n+1. o1+p+n+1. o1+n+1.

XX": i @ D@ Dm—j(q s Dm—j(q S Dmtn—i—j(q s D
par e @2 QO j @ Qi j (TP ),

qm+n—i—jxi+j

X—h .
q" "G PDm—j (G @i
Now observe that

G @)y = (=1 g~ (q: Q)m,
] (a:q);
(@7 ) = (1) g D 2gmme gt oy

_ G Dntm
G @

G D

therefore we find

X" ppm (/x5 (a1, 22), B1q)
@ Dn @ ) (@5 (@5 @),
@ ) (@2 @) o
y z”: 2’": @Y @ nom i @Y @i @Y D

= @ Dm @ D @I D (6 Dni (65 D

o i
X (—1yi+i g X
(9:9)i(q;q);

If we use Lebesgue’s dominated convergence theorem, then we,take> oo in each term of the sum.
The factorg™ tends to zero whenevgr> 0, hence the only contributions come frgna= 0, and we find

(2) (_X)i
(q: Q)i

n,m—00

o0
im X" p, o (1/x; (21, 22), Blg) = Z q
i=0

The right-hand side is thg-exponential function
Eq(_x) = (x7 Q)oo,

[5, (11.2) in Appendix 1], which gives the required resultd
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Theorem 4.2. For the multiple little g-Jacobi polynomials of the second kind we have

im X" py (125 2, (Brs B2) 1) = (%5 @)oo (4.2)

n,m— 00

The order in which the limits for n and m are taken is irrelevant

Proof. The proof is similar to the case of the first kind multiple littjelacobi polynomials, except that
now we use expression (2.13)0

As a consequence (using Hurwitz’ theorem) we see that every zely ofg) ., i.€., each number
g, k=0,1,2,...,is an accumulation point of zeros of the multiple litjedacobi polynomiap,, ,, of
the first and of the second kind.
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