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Multiple little q-Jacobi polynomials�
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Abstract

We introduce two kinds of multiple littleq-Jacobi polynomialsp�n with multi-index �n = (n1, n2, . . . , nr ) and
degree|�n| = n1 + n2 + · · · + nr by imposing orthogonality conditions with respect tor discrete littleq-Jacobi
measures on the exponential lattice{qk, k = 0,1,2,3, . . .}, where 0<q <1. We show that these multiple little
q-Jacobi polynomials have usefulq-difference properties, such as a Rodrigues formula (consisting of a product of
r difference operators). Some properties of the zeros of these polynomials and some asymptotic properties will be
given as well.
© 2004 Elsevier B.V. All rights reserved.

Keywords: q-Jacobi polynomials; Basis hypergeometric polynomials; Multiple orthogonal polynomials

1. Little q-Jacobi polynomials

Little q-Jacobi polynomials are orthogonal polynomials on the exponential lattice{qk, k=0,1,2, . . .},
where 0<q <1. In order to express the orthogonality relations, we will use theq-integral

∫ 1

0
f (x)dqx = (1− q)

∞∑
k=0

qkf (qk) (1.1)

� This work was supported by INTAS Research Network 03-51-6631 and FWO projects G.0184.02 and G.0455.04.∗ Corresponding author.
E-mail addresses:kelly.postelmans@wis.kuleuven.ac.be(K. Postelmans),walter.vanassche@wis.kuleuven.ac.be

(W. Van Assche).

0377-0427/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2004.03.031

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81983821?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/cam
mailto:kelly.postelmans@wis.kuleuven.ac.be
mailto:walter.vanassche@wis.kuleuven.ac.be


362 K. Postelmans, W. Van Assche / Journal of Computational and Applied Mathematics 178 (2005) 361–375

(see, e.g.,[2, Section 10.1; 5, Section 1.11]) wheref is a function on[0,1] which is continuous at 0. The
orthogonality is given by∫ 1

0
pn(x; �, � | q)xkw(x; �, � | q)dqx = 0, k = 0,1, . . . , n− 1, (1.2)

where

w(x; a, b | q)= (qx; q)∞
(q�+1x; q)∞

x�. (1.3)

We have used the notation

(a; q)n =
n−1∏
k=0

(1− aqk), (a; q)∞ =
∞∏
k=0

(1− aqk).

In order that theq-integral ofw is finite, we need to impose the restrictions�, �>− 1. The orthogonality
conditions (1.2) determine the polynomialspn(x; �, � | q) up to a multiplicative factor. In this paper, we
will always use monic polynomials and these are uniquely determined by the orthogonality conditions.
Theq-binomial theorem

∞∑
n=0

(a; q)n
(q; q)n z

n = (az; q)∞
(z; q)∞ , |z|, |q|<1 (1.4)

(see, e.g.,[2, Section 10.2; 5, Section 1.3]) implies that

lim
q→1

w(x; �, � | q)= (1− x)�x�, 0<x <1,

so thatw(x; �, � | q) is aq-analog of the beta density on[0,1], and hence
lim
q→1

pn(x; �, � | q)= P (�,�)n (x),

whereP (�,�)n are the monic Jacobi polynomials on[0,1]. Little q-Jacobi polynomials appear in represen-
tations of quantum SU(2)[9,10], and the special case of littleq-Legendre polynomials was used to prove
irrationality of aq-analog of the harmonic series and log 2[14]. Their role in partitions was described in
[1]. A detailed list of formulas for the littleq-Jacobi polynomials can be found in[8, Section 3.12], but
note that in that reference the polynomialpn(x; a, b | q) is not monic and thata = q�, b = q�. Useful
formulas are thelowering operation

Dqpn(x; �, � | q)= 1− qn

1− q
pn−1(x; � + 1, � + 1 | q), (1.5)

whereDq is theq-difference operator

Dqf (x)=
{ f (x)−f (qx)

(1−q)x if x �= 0,
f ′(0) if x = 0

(1.6)
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and theraising operation

Dp[w(x; �, � | q)pn(x; �, � | q)]
= − 1− qn+�+�

(1− q)qn+�−1 w(x; � − 1, � − 1 | q)pn+1(x; � − 1, � − 1 | q), (1.7)

wherep = 1/q. Repeated application of the raising operator gives theRodrigues formula

w(x; �, � | q)pn(x; �, � | q)= (−1)n(1− q)nq�n+n(n−1)

(q�+�+n+1; q)n
Dnpw(x; � + n, � + n | q). (1.8)

A combination of the raising and the lowering operation gives asecond-order q-difference equation. The
Rodrigues formula enables us to give an explicit expression as a basic hypergeometric sum:

pn(x; �, � | q)= xnqn(n+�)(q−n−�; q)n
(qn+�+�+1; q)n 3�2

(
q−n, q−n−�,1/x

q�+1,0

∣∣∣∣ q; q
)
,

which by some elementary transformations can also be written as

pn(x; �, � | q)= q(n+�)n(q−n−�; q)n
(qn+�+�+1; q)n 2�1

(
q−n, qn+�+�+1
q�+1

∣∣∣∣ q; qx
)

= q(n+�)n(q−n−�; q)n
(qn+�+�+1; q)n

n∑
k=0

(q−n; q)k(qn+�+�+1; q)k
(q�+1; q)k

qkxk

(q; q)k . (1.9)

2. Multiple orthogonal polynomials

Multiple orthogonal polynomials (of type II) are polynomials satisfying orthogonality conditions with
respect tor�1 positive measures[3,4,11, Section 4.3; 15]. Let �1, �2, . . . , �r ber positive measures on
the real line and let�n= (n1, n2, . . . , nr) ∈ Nr be a multi-index of length|�n| = n1 + n2 + · · · + nr . The
corresponding type II multiple orthogonal polynomialp�n is a polynomial of degree� |�n| satisfying the
orthogonality relations∫

p�n(x)xk d�j (x)= 0, k = 0,1, . . . , nj − 1, j = 1,2, . . . , r.

These orthogonality relations give|�n| homogeneous equations for the|�n| + 1 unknown coefficients of
p�n. We say that�n is a normal index if the orthogonality relations determine the polynomialp�n up to a
multiplicative factor. Multiple orthogonal polynomials of type I (see, e.g.,[3,11, Section 4.3; 4,15]) will
not be considered in this paper. Multiple littleq-Jacobi polynomials aremultiple orthogonal polynomials,
where the measures�1, . . . , �r are supported on the exponential lattice{qk, k = 0,1,2, . . .} and are all
of the form d�i(x)=w(x; �i , �i | q)dqx, wherew(x; �, � | q)dqx is the orthogonality measure for little
q-Jacobi polynomials. It turns out that in order to have formulas and identities similar to those of the
usual littleq-Jacobi polynomials one needs to keep one of the parameters�i or �i fixed and change the
other parameters for ther measures. This gives two kinds of multiple littleq-Jacobi polynomials. Note
that these multiple littleq-Jacobi polynomials should not be confused with multivariable littleq-Jacobi
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polynomials, introduced in[13]. In [12] the multiple littleq-Jacobi polynomials of the first kind are used
to prove some irrationality results for�q(1) and�q(2).

2.1. Multiple little q-Jacobi polynomials of the first kind

Multiple little q-Jacobi polynomials of the first kindp�n(x; ��, � | q) are monic polynomials of degree
|�n| satisfying the orthogonality relations∫ 1

0
p�n(x; ��, � | q)xkw(x; �j , � | q)dqx = 0, k = 0,1, . . . , nj − 1, j = 1,2, . . . , r, (2.1)

where�1, . . . , �r , �> − 1. Observe that all the measures are orthogonality measures for littleq-Jacobi
polynomials with the same parameter� but with different parameters�j . All the multi-indices will be
normal when we impose the condition that�i − �j /∈ Z wheneveri �= j , because then all the measures
are absolutely continuous with respect tow(x;0, � | q)dqx and the system of functions

x�1, x�1+1, . . . , x�1+n1−1, x�2, x�2+1, . . . , x�2+n2−1, . . . , x�r , x�r+1, . . . , x�r+nr−1

is a Chebyshev system on(0,1), so that the measures(�1, . . . , �r ) form a so-called AT-system, which
implies that all the multi-indices are normal[11, Theorem 4.3].
There arer raising operationsfor these multiple orthogonal polynomials.

Theorem 2.1. Suppose that�1, . . . , �r , �>0,with �i − �j /∈ Z wheneveri �= j , and putp = 1/q, then

Dp[w(x; �j , � | q)p�n(x; ��, � | q)]
= q�j+�+|�n| − 1

(1− q)q�j+|�n|−1 w(x; �j − 1, � − 1 | q)p�n+�ej (x; �� − �ej , � − 1 | q), (2.2)

for 1�j�r, where�e1 = (1,0,0, . . . ,0), . . . , �er = (0, . . . ,0,0,1) are the standard unit vectors.

Observe that these operations raise one of the indices in the multi-index and lower the parameter� and
one of the components of��.
Proof. First observe that

Dp[w(x; �j , � | q)p�n(x; ��, � | q)]
= w(x; �j − 1, � − 1 | q) (1− q�x)p�n(x; ��, � | q)− p�j (1− x)p�n(px; ��, � | q)

1− p
,

so that

Dp[w(x; �j , � | q)p�n(x; ��, � | q)] = − 1− q�j+�+|�n|

(1− q)q�j+|�n|−1 w(x; �j − 1, � − 1 | q)Q|�n|+1(x), (2.3)

whereQ|�n|+1 is a monic polynomial of degree|�n| + 1. We will show that this monic polynomialQ|�n|+1
satisfies the multiple orthogonality conditions (2.1) ofp�n+�ej (x; �� − �ej , � − 1 | q) and hence, since all
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�i − �j /∈ Z wheneveri �= j , the unicity of the multiple orthogonal polynomials implies thatQ|�n|+1(x)=
p�n+�ej (x; �� − �ej , � − 1 | q). Integration by parts for theq-integral is given by the rule∫ 1

0
f (x)Dpg(x)dqx = −q

∫ 1

0
g(x)Dqf (x)dqx if g(p)= 0. (2.4)

If we apply this, then

1− q�j+�+|�n|

(1− q)q�j+|�n|−1

∫ 1

0
xkw(x; �j − 1, � − 1 | q)Q|�n|+1(x)dqx

= −q
∫ 1

0
w(x; �j , � | q)p�n(x; ��, � | q)Dqxk dqx,

and since

Dqx
k =

{
1−qk
1−q x

k−1 if k�1,
0 if k = 0,

we find that∫ 1

0
xkw(x; �j − 1, � − 1 | q)Q|�n|+1(x)dqx = 0, k = 0,1, . . . , nj .

For the other components�i (i �= j) of �� we have
1− q�j+�+|�n|

(1− q)q�j+|�n|−1

∫ 1

0
xkw(x; �i , � − 1 | q)Q|�n|+1(x)dqx

= 1− q�j+�+|�n|

(1− q)q�j+|�n|−1

∫ 1

0
xk+�i−�j+1w(x; �j − 1, � − 1 | q)Q|�n|+1(x)dqx

= −q
∫ 1

0
w(x; �j , � | q)p�n(x; ��, � | q)Dqxk+�i−�j+1 dqx,

and since�i − �j /∈ Z we have

Dqx
k+�i−�j+1 = 1− qk+�i−�j

1− q
xk+�i−�j ,

hence∫ 1

0
xkw(x; �i , � − 1 | q)Q|�n|+1(x)dqx = 0, k = 0,1, . . . , ni − 1.

Hence all the orthogonality conditions forp�n+�ej (x; �� − �ej , � − 1 | q) are indeed satisfied.�
As a consequence we find aRodrigues formula:

Theorem 2.2. The multiple little q-Jacobi polynomials of the first kind are given by

p�n(x; ��, � | q)= C(�n, ��, �) (q
�+1x; q)∞
(qx; q)∞

r∏
j=1

(x−�jD
nj
p x

�j+nj ) (qx; q)∞
(q�+|�n|+1x; q)∞

, (2.5)
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where the product of the difference operators can be taken in any order and

C(�n, ��, �)= (−1)|�n| (1− q)|�n|q
∑r
j=1(�j−1)nj+

∑
1� j � k� r nj nk∏r

j=1(q�j+�+|�n|+1; q)nj
.

Proof. If we apply the raising operator for�j recursivelynj times, then

D
nj
p w(x; �j , � | q)p �m(x; ��, � | q)

= (−1)nj (q
�j+�+| �m|−nj+1; q)nj

(1− q)nj q(�j+| �m|−1)nj
× w(x; �j − nj , � − nj | q)p �m+nj �ej (x; �� − nj �ej , � − nj | q). (2.6)

Use this expression with�m= �0 andj = 1, then

Dn1p w(x; �1, � | q)= (−1)n1 (q
�1+�−n1+1; q)n1

(1− q)n1q(�1−1)n1
× w(x; �1 − n1, � − n1 | q)pn1�e1(x; �� − n1�e1, � − n1 | q).

Multiply both sides byw(x; �2, � − n1 | q) and divide byw(x; �1 − n1, � − n1 | q), then

xn1+�2−�1Dn1p w(x; �1, � | q)= (−1)n1 (q
�1+�−n1+1; q)n1

(1− q)n1q(�1−1)n1
× w(x; �2, � − n1 | q)pn1�e1(x; �� − n1�e1, � − n1 | q).

Apply (2.6) withj = 2, then

Dn2p x
n1+�2−�1Dn1p w(x; �1, � | q)

= (−1)n1+n2 (q
�1+�−n1+1; q)n1(q�2+�−n2+1; q)n2
(1− q)n1+n2q(�1−1)n1+(�2−1+n1)n2

× w(x; �2 − n2, � − n1 − n2 | q)pn1�e1+n2�e2(x; �� − n1�e1 − n2�e2, � − n1 − n2 | q).
Continuing this way we arrive at

(Dnrp x
�r )(xnr−1−�r−1Dnr−1p x�r−1) · · · (xn1−�1Dn1p )w(x; �1, � | q)

= (−1)|�n|∏r
j=1(q�j+�−nj+1; q)nj

(1− q)|�n|q
∑r
j=1(�j−1)nj+

∑
1� j<k� rnj nk

w(x; �r − nr, � − |�n| | q)p�n(x; �� − �n, � − |�n| | q).

Now replace each�j by �j + nj and� by � + |�n|, then the required expression follows. The order in
which we took the raising operators is irrelevant.�

We can obtain an explicit expression of the multiple littleq-Jacobi polynomials of the first kind using
this Rodrigues formula. Indeed, if we use theq-binomial theorem, then

(qx; q)∞
(q�+|�n|+1x; q)∞

=
∞∑
k=0

(q−�−|�n|; q)k
(q; q)k q(�+|�n|+1)kxk.
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Use this in (2.5), together with

x−�Dnpx
�+n+k = (q�+1; q)n

(1− q)n
(q�+n+1; q)k
(q�+1; q)k q−n(k+�)−n(n−1)/2xk,

then this gives

p�n(x; ��, � | q)= C(�n, ��, �)
∏r
j=1(q�j+1; q)nj
(1− q)|�n|

q
−∑r

j=1 �j nj−∑r
j=1 (

nj
2
)

× (q�+1x; q)∞
(qx; q)∞ r+1�r

(
q−�−|�n|, q�1+n1+1, . . . , q�r+nr+1
q�1+1, . . . , q�r+1

∣∣∣∣ q; q�+1x
)
. (2.7)

This explicit expression uses a nonterminating basic hypergeometric series, except when� is an integer.
Another representation, using only finite sums, can be obtained by using the Rodrigues formula (1.8)r
times. Forr = 2 this gives,

Theorem 2.3. The multiple little q-Jacobi polynomials of the first kind(for r = 2) are given by

pn,m(x; (�1, �2), � | q)
= qnm+m2+n2+�1n+�2m(q−�1−n; q)n(q−�2−m; q)m

(q�1+�+n+m+1; q)n(q�2+�+n+m+1; q)m
×

n∑
�=0

m∑
k=0

(q−n; q)�(q−m; q)k(q�2+�+m+n+1; q)k(q�1+�+n+1; q)k+�(q�1+n+1; q)k
(q�2+1; q)k(q�1+1; q)k+�(q�1+�+n+1; q)k

× qk+�xk+�

qkn(q; q)k(q; q)� . (2.8)

Proof. For r = 2 the Rodrigues formula (2.5) is

pn,m(x; (�1, �2), � | q)= (−1)n+m(1− q)n+mq�1n+�2m−n−m+nm+n2+m2

(q�1+�+n+m+1; q)n(q�2+�+n+m+1; q)m
× (q�+1x; q)∞

(qx; q)∞ x−�1Dnpx
�1+n−�2Dmp x

�2+m (qx; q)∞
(q�+n+m+1x; q)∞

.

Observe that by the Rodrigues formula (1.8) for the littleq-Jacobi polynomials

Dmp x
�2+m (qx; q)∞

(q�+n+m+1x; q)∞
= (−1)m(q�2+�+n+m+1; q)m

(1− q)mq�2m+m2−m
(qx; q)∞

(q�+n+1x; q)∞
x�2pm(x; �2, � + n | q),

and hence

pn,m(x; (�1, �2), � | q)= (−1)n(1− q)nq�1n−n+nm+n2

(q�1+�+n+m+1; q)n
(q�+1x; q)∞
(qx; q)∞ x−�1

× Dnpx
�1+n (qx; q)∞

(q�+n+1x; q)∞
pm(x; �2, � + n | q).
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Now use the explicit expression (1.9) to find

pn,m(x; (�1, �2), � | q)= (−1)n(1− q)nq�1n+�2m−n+nm+n2+m2(q−m−�2; q)m
(q�1+�+n+m+1; q)n(q�2+�+n+m+1; q)m

× (q�+1x; q)∞
(qx; q)∞ x−�1

m∑
k=0

(q−m; q)k(q�2+�+n+m+1; q)kqk
(q�2+1; q)k(q; q)k

× Dnpx
�1+n+k (qx; q)∞

(q�+n+1x; q)∞
.

In this expression we recognize

Dnpx
�1+n+k (qx; q)∞

(q�+n+1x; q)∞
= (−1)n(q�1+�+k+n+1; q)n

(1− q)nq�1n+kn+n2−n x�1+k (qx; q)∞
(q�+1x; q)∞

pn(x; �1 + k, � | q),

hence

pn,m(x; (�1, �2), � | q)

= q�2m+nm+m2(q−m−�2; q)m
(q�1+�+n+m+1; q)n(q�2+�+n+m+1; q)m
×

m∑
k=0

(q−m; q)k(q�2+�+n+m+1; q)k(q�1+�+k+n+1; q)nqk
(q�2+1; q)k(q; q)kqkn xkpn(x; �1 + k, � | q).

If we use the explicit expression (1.9) for the littleq-Jacobi polynomials once more, then after some
simplifications we finally arrive at (2.8).�

2.2. Multiple little q-Jacobi polynomials of the second kind

Multiple little q-Jacobi polynomials of the second kindp�n(x; �, �� | q) aremonic polynomials of degree
|�n| satisfying the orthogonality relations

∫ 1

0
p�n(x; �, �� | q)xkw(x; �, �j | q)dqx = 0, k = 0,1, . . . , nj − 1, j = 1,2, . . . , r, (2.9)

where�, �1, . . . , �r > − 1. Observe that all the measures are orthogonality measures for littleq-Jacobi
polynomials with the same parameter� but with different parameters�j . All the multi-indices will be
normal when we impose the condition that�i − �j /∈ Z wheneveri �= j , because then all the measures
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are absolutely continuous with respect to(qx; q)∞w(x; �,0 | q)dqx and the system of functions
1

(q�1+1x; q)∞
,

x

(q�1+1x; q)∞
, . . . ,

xn1−1

(q�1+1x; q)∞
,

1

(q�2+1x; q)∞
,

x

(q�2+1x; q)∞
,

. . . ,
xn2−1

(q�2+1x; q)∞
, . . . ,

1

(q�r+1x; q)∞
,

x

(q�r+1x; q)∞
, . . . ,

xnr−1

(q�r+1x; q)∞
is a Chebyshev system1 on[0,1], so that the vector of measures(�1, . . . , �r ) forms anAT-system, which
implies that all the multi-indices are normal[11, Theorem 4.3].
Again there arer raising operations

Theorem 2.4. Suppose that�, �1, . . . , �r >0,with �i − �j /∈ Z wheni �= j , and putp = 1/q, then

Dp[w(x; �, �j | q)p�n(x; �, �� | q)]

= q�+�j+|�n| − 1

(1− q)q�+|�n|−1 w(x; � − 1, �j − 1 | q)p�n+�ej (x; � − 1, �� − �ej | q), (2.10)

for 1�j�r, where�e1 = (1,0,0, . . . ,0), . . . , �er = (0, . . . ,0,0,1) are the standard unit vectors.

Observe that these operations raise one of the indices in the multi-index and lower the parameter� and
one of the components of��.
Proof. Again we see that

Dp[w(x; �, �j | q)p�n(x; �, �� | q)]

= q�+�j+|�n| − 1

(1− q)q�+|�n|−1w(x; � − 1, �j − 1 | q)Q|�n|+1(x), (2.11)

whereQ|�n|+1 is a monic polynomial of degree|�n| + 1. We will show that this monic polynomialQ|�n|+1
satisfies the multiple orthogonality conditions (2.9) ofp�n+�ej (x; � − 1, �� − �ej | q) and hence, since all
�i −�j /∈ Zwheneveri �= j , the unicity of the multiple orthogonal polynomials implies thatQ|�n|+1(x)=
p�n+�ej (x; � − 1, �� − �ej | q). Integration by parts gives

1− q�+�j+|�n|

(1− q)q�+|�n|−1

∫ 1

0
xkw(x; � − 1, �j − 1 | q)Q|�n|+1(x)dqx

= −q
∫ 1

0
w(x; �, �j | q)p�n(x; �, �� | q)Dqxk dqx,

so that∫ 1

0
xkw(x; � − 1, �j − 1 | q)Q|�n|+1(x)dqx = 0, k = 0,1, . . . , nj .

1The fact that this system is a Chebyshev system is not obvious but is left as an advanced problem for the reader.
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For the other components�i (i �= j) of �� we have

1− q�+�j+|�n|

(1− q)q�+|�n|−1

∫ 1

0
xkw(x; � − 1, �i | q)Q|�n|+1(x)dqx

= 1− q�+�j+|�n|

(1− q)q�+|�n|−1

∫ 1

0
xk

(q�j x; q)∞
(q�i+1x; q)∞

w(x; � − 1, �j − 1 | q)Q|�n|+1(x)dqx

= −q
∫ 1

0
w(x; �, �j | q)p�n(x; �, �� | q)Dq

(
xk

(q�j x; q)∞
(q�i+1x; q)∞

)
dqx,

and since�i − �j /∈ Z we have

Dq

(
xk

(q�j x; q)∞
(q�i+1x; q)∞

)
= xk−1 (q

�j+1x; q)∞
(q�i+1x; q)∞

ak(x),

where eachak is a polynomial of degree exactly 1 anda0(0)= 0. Therefore

∫ 1

0
xkw(x; � − 1, �i | q)Q|�n|+1(x)dqx = 0, k = 0,1, . . . , ni − 1.

Hence all the orthogonality conditions forp�n+�ej (x; � − 1, �� − �ej | q) are indeed satisfied.�
As a consequence we again find aRodrigues formula:

Theorem 2.5. The multiple little q-Jacobi polynomials of the second kind are given by

p�n(x; �, �� | q)= C(�n, �, ��)
(qx; q)∞x�

r∏
j=1

(
(q�j+1x; q)∞D

nj
p

1

(q�j+nj+1x; q)∞

)
(qx; q)∞x�+|�n|, (2.12)

where the product of the difference operators can be taken in any order and

C(�n, �, ��)= (−1)|�n| (1− q)|�n|q(�+|�n|−1)|�n|∏r
j=1(q

�+�j+|�n|+1; q)nj
.

Proof. The proof can be given in a similar way as in the case of multiple littleq-Jacobi polynomials of
the first kind by repeated application of the raising operators.Alternatively one can use induction onr. For
r=1 theRodrigues formula is the sameas (1.8). Suppose that theRodrigues formula (2.12) holds forr−1.
Observe that the multiple orthogonal polynomials with multi-index(n1, . . . , nr−1) for r − 1 measures
(�1, . . . , �r−1) coincide with themultiple orthogonal polynomials withmulti-index(n1, n2, . . . , nr−1,0)
for r measures(�1, . . . , �r ) for any measure�r . Use the Rodrigues formula forr − 1 for the polynomial
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p�n−nr �er (x; � + nr, �� + nr �er | q) to find
w(x; � + nr, �r + nr | q)p�n−nr �er (x; � + nr, �� + nr �er | q)

= C(�n− nr �er , � + nr, ��) 1

(q�r+nr+1x; q)∞
×
r−1∏
j=1

(
(q�j+1x; q)∞D

nj
p

1

(q�j+nj+1x; q)∞

)
(qx; q)∞x�+|�n|.

Now apply the raising operation (2.10) for�r to this expressionnr times to find the required
expression. �

In a similar way, as for the first kind multiple littleq-Jacobi polynomials, we can find an explicit
formula with finite sums using the Rodrigues formula for littleq-Jacobi polynomialsr times. Forr = 2
this gives the following:

Theorem 2.6. The multiple little q-Jacobi polynomials of the second kind(for r = 2) are explicitly
given by

pn,m(x; �, (�1, �2) | q)=
q�(n+m)+n2+m2+nm(q−m−�; q)m(q−n−�; q)n(q�+1; q)m+n
(q�+�1+n+m+1; q)n(q�+�2+n+m+1; q)m(q�+1; q)n(q�+1; q)m
×

n∑
�=0

m∑
k=0

(q−n; q)�(q−m; q)k(q�+�2+n+m+1; q)k(q�+�1+n+1; q)k+�
(q�+1; q)k+�(q�+�1+n+1; q)k

× qk+�xk+�

qnk(q; q)k(q; q)� . (2.13)

Proof. The Rodrigues formula (2.12) forr = 2 becomes

pn,m(x; �, (�1, �2) | q)=
(−1)n+m(1− q)n+mq(�+n+m−1)(n+m)

(q�+�1+n+m+1; q)n(q�+�2+n+m+1; q)m
× x−� (q

�1+1x; q)∞
(qx; q)∞ Dnp

(q�2+1x; q)∞
(q�1+n+1x; q)∞

Dmp
(qx; q)∞

(q�2+m+1x; q)∞
x�+n+m.

The Rodrigues formula (1.8) for littleq-Jacobi polynomials gives

Dmp
(qx; q)∞

(q�2+m+1x; q)∞
x�+n+m

= (−1)m(q�+�2+n+m+1; q)m
(1− q)mq�m+m2−m+nm x�+n (qx; q)∞

(q�2+1x; q)∞
pm(x; � + n, �2 | q),

hence

pn,m(x; �, (�1, �2) | q)=
(−1)n(1− q)nq�n+n2+nm−n

(q�+�1+n+m+1; q)n
x−� (q

�1+1x; q)∞
(qx; q)∞

× Dnpx
�+n (qx; q)∞

(q�1+n+1x; q)∞
pm(x; � + n, �2 | q).
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Now use the explicit expression (1.9) for the littleq-Jacobi polynomials to find

pn,m(x; �, (�1, �2) | q)=
(−1)n(1− q)nq�(n+m)+n2+m2+2nm−n(q−m−n−�; q)m

(q�+�1+n+m+1; q)n(q�+�2+n+m+1; q)m
× (q�1+1x; q)∞

x�(qx; q)∞
m∑
k=0

(q−m; q)k(q�+�2+n+m+1; q)kqk
(q�+n+1; q)k(q; q)k

× Dnpx
�+n+k (qx; q)∞

(q�1+n+1x; q)∞
.

Again we recognize a littleq-Jacobi polynomial

Dnpx
�+n+k (qx; q)∞

(q�1+n+1x; q)∞
= (−1)n(q�+�1+k+n+1; q)n

(1− q)nq�n+kn+n2−n x�+k (qx; q)∞
(q�1+1x; q)∞

pn(x; � + k, �1 | q),

and if we use the explicit expression (1.9) for this littleq-Jacobi polynomial, then we find (2.13) after
some simplifications. �

3. Zeros

The zeros of the multiple littleq-Jacobi polynomials (first and second kind) are all real, simple and in
the interval(0,1). This is a consequence of the fact that�1, . . . , �r form anAT-system[11, first Corollary
on p. 141]. For the usual orthogonal polynomials with positive orthogonality measure� we know that an
interval[c, d] for which the orthogonality measure has no mass, i.e.,�([c, d])= 0, can have at most one
zero of each orthogonal polynomialpn. In particular this means that each orthogonal polynomialpn on
the exponential lattice{qk, k = 0,1,2, . . .} can have at most one zero between two pointsqk+1 andqk
of the lattice. A similar result holds for multiple orthogonal polynomials if we impose some conditions
on the measures�i .

Theorem 3.1. Suppose�1, . . . , �r are positive measures on[a, b] with infinitely many points in their
support, which form an AT-system, i.e., �k is absolutely continuous with respect to�1 for 2�k�r with

d�k(x)

d�1(x)
= wk(x),

and

1, x, . . . , xn1−1, w2(x), xw2(x), . . . , xn2−1w2(x), . . . , wr(x), xwr(x), . . . , xnr−1wr(x)

are a Chebyshev system on[a, b] for every multi-index�n. If [c, d] is an interval such that�1([c, d])= 0,
then each multiple orthogonal polynomialp�n has at most one zero in[c, d].
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Proof. Suppose thatp�n is a multiple orthogonal polynomial with two zerosx1 andx2 in [c, d]. We can
then write it asp�n(x) = (x − x1)(x − x2)q|�n|−2(x), whereq|�n|−2 is a polynomial of degree|�n| − 2.
Consider a functionA(x) =∑r

j=1Aj(x)wj (x), wherew1 = 1 and eachAj is a polynomial of degree
mj − 1�nj − 1, with | �m| = |�n| − 1. Since we are dealing with a Chebyshev system, there is a unique
functionA satisfying the interpolation conditions

A(y)=
{
0 if y is a zero ofq|�n|−2,
1 if y = x1.

Furthermore,A has|�n| − 2 zeros in[a, b] and these are the only sign changes on[a, b]. Hence
∫ b

a

p�n(x)A(x)d�1(x)=
∫

[a,b]\[c,d]
(x − x1)(x − x2)q|�n|−2(x)A(x)d�1(x) �= 0,

since the integrand does not change sign on[a, b]\[c, d]. On the other hand,
∫ b

a

p�n(x)A(x)d�1(x)=
r∑
j=1

∫ b

a

p�n(x)Aj (x)d�j (x)= 0,

since every term in the sum vanishes because of the orthogonality conditions. This contradiction implies
thatp�n can’t have two zeros in[c, d]. �

In particular, this theorem tells us that the zeros of the multiple littleq-Jacobi polynomials are always
separated by the pointsqk and that between two pointsqk+1 andqk there can be at most one zero of a
multiple little q-Jacobi polynomial. Note that the pointsqk have one accumulation point at 0, hence as a
consequence the zeros of the multiple littleq-Jacobi polynomials (first and second kind) accumulate at
the origin.

4. Asymptotic behavior

The asymptotic behavior of littleq-Jacobi polynomials was given in[7] and an asymptotic expansion
wasgiven in[6]. In this section,wegive theasymptotic behavior of themultiple littleq-Jacobi polynomials
which extends the result of Ismail andWilson.

Theorem 4.1. For the multiple little q-Jacobi polynomials of the first kind we have

lim
n,m→∞ xn+mpn,m(1/x; (�1, �2), � | q)= (x; q)∞. (4.1)

The order in which the limits for n and m are taken is irrelevant.



374 K. Postelmans, W. Van Assche / Journal of Computational and Applied Mathematics 178 (2005) 361–375

Proof. If we use (2.8) and reverse the order of summation (i.e., change variablesm−k=j andn−�= i),
then

xn+mpn,m(1/x; (�1, �2), � | q)

= qnm+m2+n2+�1n+�2m(q−�1−n; q)n(q−�2−m; q)m
(q�1+�+n+m+1; q)n(q�2+�+n+m+1; q)m

×
n∑
i=0

m∑
j=0

(q−n; q)n−i(q−m; q)m−j (q�2+�+m+n+1; q)m−j (q�1+�+n+1; q)m+n−i−j (q�1+n+1; q)m−j
(q�2+1; q)m−j (q�1+1; q)m+n−i−j (q�1+�+n+1; q)m−j

× qm+n−i−j xi+j

q(m−j)n(q; q)m−j (q; q)n−i
.

Now observe that

(q−m; q)m−j = (−1)m−j q−m(m+1)
2 + j (j+1)

2
(q; q)m
(q; q)j ,

(q−m−�; q)m = (−1)mq−m(m+1)/2q−m�(q�+1; q)m,

(qc+n; q)m = (qc; q)n+m
(qc; q)n ,

therefore we find

xn+mpn,m(1/x; (�1, �2), � | q)
= (q�2+1; q)m(q�1+�+1; q)n+m(q; q)m(q; q)n

(q�1+�+1; q)2n+m(q�2+�+1; q)n+2m
×

n∑
i=0

m∑
j=0

(q�2+�+1; q)n+2m−j (q�1+�+1; q)2n+m−i−j (q�1+1; q)n+m−j
(q�2+1; q)m−j (q�1+1; q)m+n−i−j (q�1+�+1; q)m+n−j (q; q)n−i(q; q)m−j

× (−1)i+j q( i2)+( j2 ) qnjxi+j

(q; q)i(q; q)j .

If we use Lebesgue’s dominated convergence theorem, then we taken,m → ∞ in each term of the sum.
The factorqnj tends to zero wheneverj >0, hence the only contributions come fromj = 0, and we find

lim
n,m→∞ xn+mpn,m(1/x; (�1, �2), � | q)=

∞∑
i=0

q(
i
2)
(−x)i
(q; q)i .

The right-hand side is theq-exponential function

Eq(−x)= (x, q)∞,

[5, (II.2) in Appendix II], which gives the required result.�
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Theorem 4.2. For the multiple little q-Jacobi polynomials of the second kind we have

lim
n,m→∞ xn+mpn,m(1/x; �, (�1, �2) | q)= (x; q)∞. (4.2)

The order in which the limits for n and m are taken is irrelevant.

Proof. The proof is similar to the case of the first kind multiple littleq-Jacobi polynomials, except that
now we use expression (2.13).�

As a consequence (using Hurwitz’ theorem) we see that every zero of(1/x; q)∞, i.e., each number
qk, k = 0,1,2, . . ., is an accumulation point of zeros of the multiple littleq-Jacobi polynomialpn,m of
the first and of the second kind.
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