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Let CCRn and CCSn be the varieties of all completely regular and of all com-
pletely simple semigroups, respectively, whose idempotent generated subsemigroups
are periodic with period n. We use Ol’shanskĭı’s theory of geometric group presen-
tations to show that for large odd n these varieties (and similarly defined varieties
of epigroups) do not have finitely axiomatizable equational theories. © 1999 Academic

Press

1. INTRODUCTION AND PRELIMINARIES

The class of all completely regular semigroups, that is, the class of all
semigroups which are unions of groups, has been intensively studied and
plays a significant role in semigroup theory (see, e.g., the book of Petrich
and Reilly [10]). It has turned out to be natural and useful to endow a
completely regular semigroup with the unary operation −1 that assigns to
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each element x its inverse within the maximal subgroup containing x and
to consider such a semigroup as an algebra of type �2; 1�. As such the class
CR of all completely regular semigroups forms a variety.

A semigroup S is group bound or an epigroup if each element a ∈ S has
a power an which is in a subgroup of S. Each completely regular semi-
group is therefore an epigroup. On any epigroup one can naturally define
a unary operation which generalizes the inversion in a completely regular
semigroup as follows. For an element a, denote by a0 the (uniquely deter-
mined) identity element in the maximal subgroup of S containing all but
finitely many powers of a, and put a−1 to be the inverse of aa0 within this
subgroup. This unary operation satisfies

aa−1 = a−1a = a0 and a−1aa−1 = a−1:

The element a−1 is actually the so-called Drazin inverse of a (see [2]). As
in the case of completely regular semigroups, it is natural to consider any
epigroup as a semigroup endowed with the unary operation −1, that is, as
an algebra of type �2; 1�. The class of all epigroups does not form a variety
because it is not closed under the formation of direct products, yet the class
is closed under forming substructures (also called subepigroups), morphic
images, and finitary direct products. An epigroup S is of index t if for every
a ∈ S, at , and therefore also an for all n ≥ t belongs to a subgroup of S. In
contrast to the class of all epigroups, the class Pt of all epigroups of index t
does form a variety of algebras of type �2; 1�, and a basis for its equational
theory is

xx−1 ' x−1x; x−1xx−1 ' x−1; xt+1x−1 ' xt

together with the associative law for the multiplication. We have the fol-
lowing hierarchy of varieties:

CR = P1 ⊆ P2 ⊆ · · · ⊆ Pt ⊆ Pt+1 ⊆ · · · :
The systematic study of varieties of epigroups has been proposed by Shevrin
[11, 12]. The variety Pt; n of all periodic semigroups of index t and period
n, that is, the (semigroup) variety determined by the law xt ' xt+n; can be
regarded as a subclass of Pt , and in Pt; n the unary operation of Pt can be
expressed as a semigroup term: x−1 ' x2tn−1.

For each semigroup S denote by C�S� the core of S, that is, the subsemi-
group of S generated by its idempotents (provided S has idempotents). It
is known (see Volkov [15]) that the core of an epigroup forms a subepi-
group, that is, C�S� is an epigroup and its unary operation coincides with
the restriction of the unary operation of S. Let V be a subvariety of Pt
and put

CtV =
{
S ∈ Pt � C�S� ∈ V

}
:



epigroup varieties 439

It is easy to check that CtV is also a subvariety of Pt (and clearly V ⊆
CtV ). For t = 1 we will write C instead of C1. The operator V 7→ CV
(which operates on the lattice of all completely regular semigroup varieties)
has been intensively studied; see [10].

The purpose of this note is to study the finite basis problem for certain
varieties of the form CtPs; n and for similarly defined varieties. It is obvious
that an infinite basis for CtPs; n is given by the system

�x1x
−1
1 · · ·xkx−1

k �n+s ' �x1x
−1
1 · · ·xkx−1

k �s for k = 1; 2; : : : (1)

together with an identity basis for Pt . Yet it can happen that in certain
contexts such a system of identities is equivalent to a finite one. For ex-
ample, from Theorem VIII.6.15 in [10] it follows that the variety of all
completely simple semigroups whose idempotent generated members are
periodic with period 2 is finitely based (of course, here it is essential that
groups of exponent 2 are abelian). The intention of this paper is to show
that for large n this can never happen. That is, for large n, varieties of the
form CtPt; n, CtP1; n, CP1; n; etc., are never finitely based. In the main re-
sult (Theorem 3.1) we will actually show a more general result which holds
in the case n is large and odd.

We close this section by recalling all definitions and results of semigroup
theory which are needed to understand the paper. A general reference for
semigroup theory is the book of Howie [4]. As already mentioned, the core
C�S� of an epigroup [completely regular semigroup] is again an epigroup
[completely regular semigroup]. By the self-conjugate core C∗�S� of a com-
pletely regular semigroup S we mean the least subsemigroup of S which
contains all idempotents of S and which is closed under conjugation, that
is, xax′ ∈ C∗�S� for all a ∈ C∗�S� and x; x′ ∈ S1 such that x and x′ are
mutually inverse. The definition of the self-conjugate core in [10] or [16]
is slightly different but turns out to be equivalent to the given one. This
one applies to the larger class of all regular semigroups. One can define an
analogous concept for epigroups as well but we will not need it here. (This
analogue would, for finite semigroups coincide with the well-known type-II
subsemigroup.) For any variety V of completely regular semigroups put

C∗V = {S ∈ CR � C∗�S� ∈ V
}
:

It is known (e.g., [16]) that C∗V is again a variety of completely regular
semigroups. Since C�S� ⊆ C∗�S�, we have V ⊆ C∗V ⊆ CV for all com-
pletely regular semigroup varieties V . A semigroup is completely simple if
it is completely regular and simple. The class CS of all completely simple
semigroups forms a subvariety of CR. Completely simple semigroups ad-
mit a nice structural description via Rees matrix semigroups: let I; 3 be
non-empty sets, let G be a group, and let P = �pλi� be a 3 × I matrix
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with entries in G. Let M�I;G;3; P� be the set I ×G×3 endowed with the
multiplication �i; a; λ��j; b; µ� = �i; apλjb; µ�; then M�I;G;3; P� is a com-
pletely simple semigroup, and each completely simple semigroup can be so
constructed (up to isomorphism). For more details see [4]. The following
varieties of epigroups will play some role in the paper:

Pt epigroups of index t
CR = P1 completely regular semigroups
CS completely simple semigroups

= completely regular semigroups satisfying �xyx�−1xyx '
x−1x

Pt; n epigroups of index t with periodic subgroups of exponent n
= semigroups satisfying xt+n ' xt

CRn = P1; n periodic completely regular semigroups with period n
= semigroups satisfying xn+1 ' x

CSn periodic completely simple semigroups with period n
= semigroups satisfying �xyx�nx ' x

CtPs; n epigroups of index t whose core has index s and is periodic
with period n

CCRn completely regular semigroups whose core is periodic with
period n

C∗CRn completely regular semigroups whose self-conjugate core is
periodic with period n

CCSn completely simple semigroups whose core is periodic with
period n

CCSk
CSn periodic completely simple semigroups with period k whose

core has period n
C∗CSn completely simple semigroups whose self-conjugate core is

periodic with period n
C∗CSk

CSn periodic completely simple semigroups with period k whose
self-conjugate core has period n

For any n; q; l the following inclusions are obvious: C∗CSnq
CSn ⊆ CCSn ⊆

CCRn ⊆ CtPt; nl. The main theorem in Section 3 states that for suitable n;
q; l no variety in the interval �C∗CSnq

CSn; CtPt; nl� has a finite identity basis.

2. GROUPS

The finite basis problem for CCRn, CCSn; and similarly defined vari-
eties can be reduced to the problem of whether finitely generated groups
having certain properties do exist. We shall use the theory developed by
Ol’shanskĭı [8] in the context of free Burnside groups to show that indeed
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such groups exist. In particular, we shall refer to and use the main defini-
tions and statements in Sections 18, 19, 25, and 26 of [8].

In the following let n be any odd integer greater than 1010; let m be
any fixed positive integer. Denote by A = �x1; : : : ; xm� an alphabet of m
variables, let A−1 = �x−1

1 ; : : : ; x
−1
m � and Ā = A ∪ A−1. As usual, for any

non-empty set X, let X∗ be the free monoid on X, that is, the set of all
finite words in the elements of X. For each λ ∈ �1; : : : ;m� and W ∈ Ā∗

put

σλ�W � = the sum of the exponents of xλ in W .

Throughout this section, each presentation �A � · · ·� is understood as a
presentation of a group. The next lemma is obvious.

Lemma 2.1. Let B ⊆ Ā∗ and G = �A � W n = 1;W ∈ B� and A;B ∈ Ā∗;
if A = B in G then for each λ, σλ�A� ≡ σλ�B� �mod n� .

In the following we shall define a sequence of sets of relators Ri and
a sequence of groups Gi = �A � R = 1; R ∈ Ri� in a way very similar to
the definition in Section 18.1 (on p. 197) in [8]. For i = 0; 1; : : : ;m− 1 the
definition is precisely the same as on page 197 in [8]. The only modification
applies to i = m.

First we note that the word x1 · · ·xm is simple of rank m− 1: otherwise
this word would be conjugate in rank m − 1 to a power of some shorter
word (including periods of length ≤ m − 1) . That is, in Gm−1 we would
have x1 · · ·xm = Z−1CtZ for some word C of length less than m and for
some integer t. This implies σλ�C� = 0 for some λ and so σλ�Z−1CtZ� = 0.
Since σλ�x1 · · ·xm� = 1 6≡ 0 �mod n�, this contradicts Lemma 2.1. Now we
choose Xm to be a set of words of length m such that:

• x1 · · ·xm ∈ Xm

• each word in Xm is simple of rank m− 1

• Xm is maximal with respect to the property on page 197 in [8]: if A
and B are distinct words in Xm then A is not conjugate in Gm−1 to B or
B−1.

Let q > 1 be a divisor of n; the set Sm of relators is defined as

Sm =
{�x1 · · ·xm�nq

} ∪ {W n � W ∈ Xm \ �x1 · · ·xm�
}

and Rm = Rm−1 ∪ Sm. For each i > m the sets Xi, Si, and Ri are again
defined precisely as on page 197 in [8].

Notice that the sequence of groups Gi = �A � R = 1; R ∈ Ri� and the
sequence Ri of sets of relators satisfy the requirements of Section 25.1
(all periods and relators are of the first type). In particular, Lemma 25.2,
Theorem 26.2, and Theorem 26.4 of [8] apply. By Theorem 26.4(1), the
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order of x1 · · ·xm in G = G∞ is nq whence �x1 · · ·xm�n 6= 1 in G. In the
following, for words A; B ∈ Ā∗ we write A ≡ B to indicate that A and B are
graphically equal, that is, equal as words. By Theorem 26.2 in [8], the order
of any element of G is equal to the order of some relator. Consequently,
G satisfies the law xnq ' 1.

Lemma 2.2. Let X ∈ Ā∗ be a word such that σλ�X� ≡ 0 �mod n� for
some λ ∈ �1; : : : ;m�. Then Xn = 1 in G.

Proof. Let q be the divisor of n which is used in the definition of Sm
above. The proof of Theorem 26.2 in [8], in fact, shows that each word
A ∈ Ā∗, in particular also X, is conjugate in G to a power Ct of some
period C ∈ ⋃Xj . (Take any word A and denote its length by l. Either A is
conjugate in rank l − 1 to a power of a shorter word (including periods of
rank less than l)—then the assertion follows from the induction hypothesis;
otherwise A is simple of rank l − 1—then the assertion follows from the
maximality assumption on Xl.) If C 6≡ x1 · · ·xm then we are done because
in this case Cn = 1 in G (by 26.1(1)). Suppose that C ≡ x1 · · ·xm and in
G, X = Z−1CtZ for some integer t. By assumption, σλ�X� ≡ 0 �mod n�
for some λ. By Lemma 2.1 we have t = σλ�Z−1CtZ� ≡ σλ�X� �mod n�,
hence t ≡ 0 �mod n�, that is, t = nk for some k. But then, in G we have
Xn = �Z−1CnkZ�n = Z−1Cn

2kZ = Z−1Cnq�n/q�kZ = 1, as required.

Summing up, we have shown the existence of a group G = �x1; : : : ; xm�
enjoying the properties we need.

Corollary 2.3. Let n be odd and greater than 1010 and let q be a divisor
of n, q 6= 1. Then for each m > 1 there exists a group G = �x1; : : : ; xm� such
that in G

1. �x1 · · ·xm�n 6= 1,

2. W n = 1 for each word W ∈ �x±1
1 ; : : : ; x

±1
m �∗ for which σλ�W � = 0

for some λ ∈ �1; : : : ;m�,
3. G satisfies the law xnq ' 1.

The authors are indebted to V. Guba for drawing their attention to the
work of Ol’shanskĭı and for sketching a proof of Corollary 2.3. The authors
are also grateful to S. Ivanov for providing valuable information about the
case n being even. Indeed, recently he developed, for large even exponents,
a theory of group presentations which, to a certain extent, is analogous to
that in [8, Sects. 25, 26] (see [6]). However, not all results can be carried
over from odd to even exponents. For example, it is no longer true that
each element is conjugate to a power of some period. And this fact has
essentially been used in the construction of the groups we need. Therefore,
it is not clear if an analogue of Corollary 2.3 holds for even exponents. Yet
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a much weaker statement follows immediately from Ivanov’s presentation
of free Burnside groups of even exponents [5]:

Result 2.4. Let n be a positive integer such that 29 � n and n > 245. Then
for each m there exists a group G = �x1; : : : ; xm� such that in G:

1. �x1 · · ·xm�n 6= 1,
2. W n = 1 for each word W with length less than m.

3. NON-EXISTENCE OF FINITE BASES

In this section we prove the main theorem of the paper.

Theorem 3.1. Let t be any positive integer, let n be odd and greater than
1010; moreover, let q > 1 be a divisor of n and let l be any positive integer which
is not a multiple of q. Then no variety V between C∗CSnq

CSn and CtPt; nl has
a finite basis for its identities.

Proof. Let V be a variety between C∗CSnq
CSn and CtPt; nl. We argue

by a standard argument: for each positive integer k we construct a (com-
pletely simple) semigroup Sk such that Sk /∈ V but each completely simple
subsemigroup (that is, each subepigroup) of Sk which is generated by less
than k elements does belong to V .

Choose a group G = �x1; : : : ; x2k� as in Corollary 2.3 (for m = 2k) and
let Sk = M�2;G; 2k; P� be the 2 × 2k Rees matrix semigroup over G with
the 2k× 2 sandwich matrix

P =



1 1

1 x−1
2 x
−1
1

1 x3x
−1
1

:::
:::

1 x2k−1x
−1
1

1 x−1
2k x
−1
1


:

In Sk, the R-classes are Ri = �i� × G × �1; 2; : : : ; 2k�, i = 1; 2, and
the L-classes are Lj = �1; 2� ×G × �j�, j = 1; 2; : : : ; 2k. Denote by f1;
f2; : : : ; f2k and g1; g2; : : : ; g2k the idempotents in R1 and R2, respectively,
such that fj; gj belong to Lj , j = 1; 2; : : : ; 2k. Thus Sk looks like

f1 f2 f3 · · · f2k

g1 g2 g3 · · · g2k
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We consider the product of idempotents

f1g2f3 · · · f2k−1g2k

= �1; 1; 1�(2; �x−1
2 x
−1
1 �−1; 2

)�1; 1; 3� · · · �1; 1; 2k− 1�(2; �x−1
2k x
−1
1 �−1; 2k

)
= (1; �x1x2��x3x

−1
1 ��x1x4� · · · �x2k− 1x

−1
1 ��x1x2k�; 2k

)
= �1; x1x2 · · ·x2k; 2k�;

whence, for any positive integer s,

(
f1g2 · · · f2k−1g2k

)s = (1; �x1x2 · · ·x2k�s; 2k
)
:

By our assumption on G, the order of �x1 · · ·x2k� is nq. Since nq¦nl we
have �x1 · · ·x2k�nl 6= 1 hence

(
f1g2 · · · f2k−1g2k

)t+nl 6= (f1g2 · · · f2k−1g2k
)t
:

The element f1g2 · · · f2k−1g2k surely belongs to the core of Sk. Therefore Sk
does not belong to CtPt; nl (though it clearly belongs to Pt). Consequently,
Sk does not belong to V .

Now let T be any completely simple subsemigroup of Sk which is gen-
erated by less than k (even less than 2k) elements. Then for some λ ∈
�1; 2; : : : ; 2k�, T ⊆ Tλ x= Sk \ Lλ; where (as above) Lλ = �1; 2� × G ×
�λ�. Clearly, since G satisfies xnq ' 1, Tλ (and therefore also T ) belongs to
CSnq. In order to show that Tλ, and thus T , is contained in V , it suffices to
show that C∗�Tλ� ∈ CSn. Tλ is a completely simple semigroup isomorphic
to M�2;G; 2k− 1; Pλ� with a normalized matrix Pλ; where Pλ is obtained
as follows. If λ > 1 then simply delete the row λ in P to get Pλ. For λ = 1,
T1 is, first of all, isomorphic to M�2;G; 2k − 1; P1�; where P1 is obtained
from P by deletion of the first row:

P1 =



1 x−1
2 x
−1
1

1 x3x
−1
1

:::
:::

1 x2k−1x
−1
1

1 x−1
2k x
−1
1


:
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However, this matrix is not normalized. Normalization of P1 then gives (see,
e.g., [10, Lemma III.3.6])

P1 =



1 1

1 x3x2

1 x−1
4 x2

:::
:::

1 x−1
2k x2


and T1

∼= M�2;G; 2k− 1; P1�. Notice that, for each λ, the entries in Pλ do
not contain the element xλ. Let Nλ be the normal subgroup of G generated
by the entries of Pλ. Each element in Nλ can be expressed as a word W ∈
�x±1

1 ; : : : ; x
±1
2k �∗ such that σλ�W � = 0. (The element xλ does not occur in

the entries of Pλ and therefore it can come into play only by conjugation.)
From the choice of G it follows that Nλ satisfies the identity xn ' 1. From
Lemma 2.3 in [16] we have that C∗�Tλ� ∼= M�2;Nλ; 2k − 1; Pλ�. In other
words, the subgroups of C∗�Tλ� satisfy xn ' 1 whence Tλ ∈ C∗CSnq

CSn ⊆ V .

Immediately we have the following.

Corollary 3.2. Let t ≥ 1 and m ≥ 0 be integers; let n be odd and greater
than 1010 and let q 6= 1 be any divisor of n. Then the varieties CtPt; n2m ,
CtCRn2m , CCRn2m , C∗CRn2m , CCSn2m , CCSnq

CSn, C∗CSn2m , C∗CSnq
CSn,

etc., are not finitely based.

For an even number n such that 29 � n and n > 245 the sequence Sk,
k = 1; 2; : : :, based on groups as in Result 2.4, shows that the system of
identities (1) is not equivalent to any finite subsystem. From the Compact-
ness Theorem of Equational Logic we get the following.

Corollary 3.3. For each integer n such that 29 � n and n > 245 and for
any s and t the varieties CtPs; n—in particular, CtPt; n, CtCRn, CCRn—and,
moreover, the variety CCSn are not finitely based.

It should be noted that Theorem 3.1 is, in fact, new only for a particular
subinterval of I x= �C∗CSnq

CSn; CtPt; nl�. Namely, let DSt denote the class
of all members of Pt all of whose regular D-classes are (completely sim-
ple) subsemigroups. Then DSt is a subvariety of Pt and can be defined by
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the law (�xy�0�yx�0�xy�0)0 ' �xy�0;

where, for a term w, w0 stands for w−1w (see, for example, Pastijn [9]).
Furthermore, let DSt; nl be the subvariety of DSt consisting of all periodic
members with period nl. It is well known and follows from the ideas of
Volkov presented in [13] and [14] that all members of I which are not con-
tained in �C∗CSnq

CSn; CtDSt; nl� (that is, all varieties in I which contain the
five element combinatorial non-orthodox completely 0-simple semigroup
C2) are not finitely based. In this latter case, a much more general result
holds: the group variety defined by the law xnl ' 1 may be replaced by any
non-trivial group variety.

The sequence Sk; k = 1; 2; : : : ; constructed in the proof of Theorem 3.1
has applications also to e-varieties of regular semigroups. A class of reg-
ular semigroups is termed an e-variety if it is closed under forming direct
products, regular subsemigroups, and homomorphic images (see Hall [3]
and also Kaďourek and Szendrei [7]). Broeksteeg [1] has shown that for
each positive integer n, the class ESn of all regular semigroups S satis-
fying �ef �n+1 = ef for all idempotents e; f ∈ S is an e-variety of E-solid
semigroups, and moreover, the sub-e-varieties of ESn are precisely the sub-
classes which are definable by bi-identities of the form introduced in [7].
Without giving the precise definition, we mention that such a bi-identity is
an equation of the form w ' v, w and v being semigroup words on a dou-
bled alphabet X ∪X ′; where X ′ = �x′ � x ∈ X� is a disjoint copy of X.
When evaluating such words in a regular semigroup, the pairs of variables x
and x′ have to be substituted by mutually inverse elements. For k ≥ 2 define
ESn; k to be the class of all regular semigroups S such that �e1 · · · ek�n+1 =
e1 · · · ek for each k-tuple e1; : : : ; ek of idempotents of S. Then ESn; k is an
e-variety and ESn = ESn; 2 ⊇ ESn; 3 ⊇ · · · ⊇ ESn; k ⊇ ESn; k+1 ⊇ · · ·. More-
over,

⋂
k ESn; k is the e-variety CES CRn of all E-solid semigroups S whose

core C�S� is periodic with period n. Since in each E-solid semigroup, not
only the core but also the self-conjugate core is completely regular, another
natural sub-e-variety in ESn is C∗ES CRn, the class of all E-solid semigroups
S whose self-conjugate core C∗�S� is periodic with period n. Moreover,
note that each variety of completely regular semigroups is in particular an
e-variety of E-solid semigroups.

Now let n be odd and greater than 1010. The sequence Sk; k = 1; 2; : : : ;
proves that, for each k, the e-variety ESn; 2k is properly contained in
ESn; 2k−1. The fact that ESn; 2k properly contains ESn; 2k+1 for every k, can
be proved in a similar way by means of a family Uk; k = 1; 2; : : : ; of com-
pletely simple semigroups constructed as follows. Let G = �x1; : : : ; x2k+1�
be a group as in Corollary 2.3 (for m = 2k + 1) and let Uk =
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M�3; G; 2k + 1, Q� be the 3 × �2k + 1� Rees matrix semigroup over
G with the �2k+ 1� × 3 sandwich matrix

Q =



1 1 1

1 x−1
2 x
−1
1 1

1 x3x
−1
1 1

:::
:::

:::

1 x2k−1x
−1
1 1

1 x−1
2k x
−1
1 1

1 x2k+1x
−1
1 x−1

2k+1


:

Using an analogous notation for the idempotents introduced above for Sk,
Uk looks like

f1 f2 f3 · · · f2k f2k+1

g1 g2 g3 · · · g2k g2k+1

h1 h2 h3 · · · h2k h2k+1

:

Then we have(
f1g2 · · · f2k−1g2kh2k+1

)n+1 6= f1g2 · · · f2k−1g2kh2k+1

for the idempotents f1; g2; f3; : : : ; f2k−1; g2k; h2k+1, but the self-conjugate
core of each subsemigroup Uk \ Lλ (λ ∈ 3) is periodic with period n. In
addition, each of the sequences �Sk� and �Uk� proves that no e-variety
between C∗CSnq

CSn and CES CRn is finitely based in the above-mentioned
bi-identity signature. In particular, the e-variety C∗ES CRn has no finite ba-
sis for its bi-identities. Moreover, taking into account that a suitable ana-
logue of the Compactness Theorem also holds for the bi-identity signature
(see [7]) we also obtain, by a reasoning similar to that prior to Corollary 3.3,
that CES CRn is not finitely based provided 29 � n and n > 245.

Finally, it seems to be worth mentioning that a finitary analogue of Corol-
lary 2.3, that is, a proof of the existence of finite groups enjoying the prop-
erties of this corollary, is highly desirable. A positive answer of whether
such groups exist would solve the analogous finite basis problem in the
context of pseudovarieties. The problem seems to be even more natural
in this finitary context because there is no need to specify a fixed index t
there. In addition, a positive solution would provide a large new class of
non-finitely based pseudovarieties which are decidable in polynomial time
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(see [14]). But also the varietal question would profit from a finitary ana-
logue of Corollary 2.3: the lower bound of the interval I could be pushed
down to the variety of all completely simple semigroups S whose subgroups
are locally finite and of exponent, say, nq and whose self-conjugate core
C∗�S� has period n.
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