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Abstract 

The goal of this paper is to present an efficient framework for non-rigid medical image matching. Previous non-rigid 
matching often produces unpredictable deformation field and unwanted stretching in the images. The as-rigid-as-
possible nature of the Moving-LS technique thus makes it a new candidate by providing transformation that 
maintains the rigidity of structures for underlying physical reasons, while producing local deformations. In addition, 
it is very suitable for parallel computation, and the performance can be accelerated by multi-core processors through 
employment of multiple threads. The results demonstrate that the proposed matching method has good balance 
between accuracy and speed, and has potential in many medical applications.  
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1. Introduction 

Medical images are increasingly being used within healthcare for diagnosis, planning treatment, guiding 
treatment and monitoring disease progression. Within medical research they are used to investigate 
disease processes and understand normal development and ageing. In many of these studies, multiple 
images are acquired from subjects at different times, and often with different imaging modalities. In 
research studies, it is sometimes desirable to compare images obtained from patient cohorts rather than 
just single subjects imaged multiple times. Furthermore, the amount of data produced by each successive 
generation of imaging system is greater than the previous generation. This trend is set to continue with the 
introduction of multislice helical CT scanning and MR imaging systems with higher gradient strengths. 
There are, therefore, potential benefits in improving the way in which these images are compared and 
combined. 

                                                           
 The research was supported by the National Natural Science Foundations (No.60903136, No.60970098) of China, the Special 

Postdoctoral Science Foundation of China (No.201003723), the Fundamental Research Funds for the Central Universities 
(No.201021200062).  

Available online at www.sciencedirect.com

© 2012 Published by Elsevier B.V. Selection and/or peer review under responsibility of ICMPBE International Committee.
Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81983763?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


 Sheng-hui Liao et al.  /  Physics Procedia   33  ( 2012 )  118 – 124 119

Image matching (also known as image registration) is an important technology aimed to align two or 
more images by finding a suitable transformation that relates the involved images. As a pre-step to 
compare and combine information taken from different images, image matching plays an important role 
in many medical applications, such as information fusion, 3D volume construction, atlas building and so 
on. For a mathematical treatment of this problem, image matching can be considered as an optimization 
problem which tries to maximize an objective energy function with respect to the transformation that 
measures the similarity between the two involved images under some regularization constraints.  

Usually, image matching is classified as rigid or non-rigid based on the transformation function used 
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Rigid matchings are those in which the distances between all points remain 
constant before and after the matching. This type of image matching is popular since it involves a rotation 
and translation alone to achieve the mapping between two images. Rigid matchings have the advantage of 
being simple and easy in the sense that it is possible to predict how the transformation will perform. The 
most common application for rigid matchings is to register images obtained from same subject over a 
short duration time. 

Non-rigid matchings are those in which distance between all points do not necessarily remain constant 
after the matching. Unlike rigid matchings, non-rigid matchings involve more complex computations like 
local stretching and scaling to map the two images. Non-rigid matching in an active area of research in 
the field of medical image matching, as there exists no universal solution for the mapping problem, and 
one cannot decide on the best algorithm for all applications. Each algorithm works well under certain 
constraints and conditions but may not do so under a different set of conditions. The main drawback of 
non-rigid matching is the unpredictable nature of the deformation. It is not possible to exactly specify the 
mapping of each point in the source image to the target image. It is also possible that such matchings can 
cause certain regions, which should remain rigid for underlying physical reasons, to deform due to scaling 
or shearing. 

To address these problems, this paper focuses on a new deformation method called the Moving Least 
Squares (Moving-LS) transformation. This technique is relatively recent and is better know for surface 
reconstruction [11] and in computer graphics for image deformation and morphing [12] but has not been 
previously applied to medical images previously. We will introduce this method in more detail, and then 
apply it for medical image matching. Finally, the performance is accelerated by multi-core processors 
through the use of multiple threads.  

2. Moving-LS 

2.1  Feature of Moving-LS 

Unlike other deformation methods, for the Moving-LS method [12], a transformation function is obtained 
for each point in the image and is based on a weight function included in the least squares error function 
at each point of evaluation. This weight function ensures that the effect of a control point is seen most in 
the regions immediately surrounding it, while its effect is less prominent in far off regions.  

In addition, the transformation matrix of the Moving-LS deformation can include affine, similarity and 
as-rigid-as-possible transformations. Affine transformations are those which preserve the parallel nature 
of lines in the image and also produce non-uniform scaling and skewing, Similarity transformations are a 
part of the affine transformations but with uniform scaling. As-rigid-as-possible transformations are those 
which are capable of producing local deformations while maintaining a global rigidity of the image. 

Take the application of medical image matching, this paper focuses on the as-rigid-as-possible 
transformations.  

2.2 As-Rigid-As-Possible Transformations 
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Given a set of control points on the source and target images, the Moving-LS technique computes the 
transformation )(xlv   that best minimizes the least squares error  

2( )v i i
i

l p q ,      (1) 

when  ip  and iq are the set of control points in the source and target images respectively. This 
transformation however produces a single affine transformation of the entire image as there is no control 
over the scaling or shearing in the image. A weighting function included to this least squares error fixes 
this problem and thus produces a different transformation function for each point of evaluation of the 
image 
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The weighting function iw  of  the form  
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where v is the point of evaluation in the image and   is a parameter of the weighting function whose 
value decides if the weights computed are small or large. The weighting function  iw  is  dependent  on  
the  point  of  evaluation  and  thus  produces  a  different transformation for each point of the image. 
Hence the method is called Moving Least Squares. We can see that as v approaches ip , the weight 
approaches infinity and the transformation function interpolates. 

The  transformation  function  can  be  solved  as  a  simple  linear  transformation matrix, M  and a 
translation vector,T   as 

TxMxlv )( .        (4) 

The transformation matrix M  can be modified to include affine, similarity and rigid transformations. 
To perform as-rigid-as-possible transformations, the matrix, M must be constrained to satisfy the 
condition for rigidity TM M I . The translation component can be easily computed by  

MpqT ** ,        (5) 

where *p  and *q  are the weighted centroids of the control points given by 
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The transformation function can now be calculated as 

** )()( qMpxxlv .      (7) 
The least squares problem can be written as  

i
iii qMpw 2ˆˆ ,        (8) 

where *ˆ ppp ii  and *ˆ qqq ii . 
The transformation  matrix  for  the  as-rigid-as-possible  transformations  can  be obtained by 

eliminating the scaling constant. The solution is simple and closed form. It can be obtained easily by a 
slight modification of the similarity transformation for which the transformation matrix must satisfy the 



 Sheng-hui Liao et al.  /  Physics Procedia   33  ( 2012 )  118 – 124 121

condition 2
1 2 1 2
T TM M M M I , where   is some constant and 1M  and 2M  are the columns of 

M  and are vectors of size 2. 1M  and 2M  have  the  relationship 2 1M M  such that 

( , ) ( , )x y y x . For rigidity condition to be satisfied TM M I , the scaling constant needs to be 
removed. By using partial derivatives with respect to the free variables in M  and substituting the values 
back into the error function the optimum transformation function is obtained as 
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where
2 2

ˆ ˆ ˆ ˆT T
r i i i i i i

i i
w q p w q p  removes any scaling and thus produces an as rigid-

as-possible  transformation.  The detailed derivation  for  the  as-rigid-as-possible transformations can be 
seen in [12]. 

3. Medical image matching 

3.1 Operation framework and Experiments 

The Moving-LS deformation is carried out by selecting control points on the source image, such as shown 
in Fig 1. (a, c). The points to which these control points must be mapped to in the target image are chosen 
as the deformed points, such as shown in Fig 1. (b, d). In addition, the 4 corner points of each image are 
automatically selected as deformation control points. This presents the deformation as a matching problem.  

 
Fig. 1 Test data-set 1: (a) Source image. (b) Target image. (c) Select control points on the source image. (d) Select deformed points 
on the target image. 
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Fig. 2 Result of data 1:  (a) Matching result image. (b) Target image.  (c) Edge contour for the matching image. (d) Edge contour for 
the target image. (e) Source image blends with target image. (f) Matching image blends with target image. 

We did the experiments using one human thoracic CT scan data, such as shown in Fig. 1 (a-b), and one 
rat lung CT scan, such as shown in Fig. 3 (a-b). The shape of lung is changed while other parts almost 
remain rigid. So we select control points mainly around the deformation objects. 

 
Fig. 3 Test data-set 2. (a) Select control points on the source image. (b) Select deformed points on the target image. 
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Fig. 4 Result of data 2: (a) Matching result image. (b) Target image.  (c) Edge contour for the matching image. (d) Edge contour for 
the target image. (e) Source image blends with target image. (f) Matching image blends with target image. 

After finish selection of control points, the matching result image is generated by deformation of the 
source image, such as shown in Fig 2. (a) and Fig 4. (a).  

To have a better view of the matching result, we detect edge contour for the matching image, and target 
image, such as shown in Fig 2. (c-d), and Fig 4. (c-d), then blend the target image with the source image 
and matching image separately, such as shown in Fig 2. (e-f) and Fig 4. (e-f). We can see that so that the 
edge contour of the matching result image fits with the edge contour of the target image very well, 
especially the contour of the lung. Note that shape of lung is changed while other parts almost remain rigid. 

For a common PC with Intel P4 processor 3.0 GHz and 4G RAM, the deformation time is about 1.8 s. 
This has a longer computation time than the most popular point-based non-rigid method e.g., the Thin-
plate Spline (TPS) transformation [13]. This is because for the Moving-LS method, a transformation 
function is obtained for each point in the image, instead of a global transformation function. This problem 
can be addressed by the multi-core acceleration technology. 

3.2  Multi-core Acceleration 

To accelerate the matching performance, we further employ multi-core technology through the use of 
multiple threads. This is based on the observation that the Moving-LS method is very suitable for parallel 
computation. Because the calculation of each transformation function for each point in the image is 
performed independently. 

Our implementation of multithreading is based on OpenMP, a method of parallelization whereby the 
master "thread" (a series of instructions executed consecutively) "forks" a specified number of slave 
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"threads" and a task is divided among them. The threads then run concurrently, with the runtime 
environment allocating threads to different processors. For a PC equipped with a Pentium Core 2 Quad 
processor running at 4 × 2.13 GHz, the multi-core implementation of the matching method is about 3.2 
times faster. 

4. Conclusion 

This paper presents a new method for medical image matching by using the moving least squares 
transformation. Previous non-rigid matchings often produce unwanted stretching in the images and the 
unpredictable nature of the deformation field poses a major drawback which makes an algorithm with the 
ability to produce as-rigid-as-possible transformations attractive. The as-rigid-as-possible nature of the 
Moving-LS technique thus makes it a suitable candidate for non-rigid matchings as it provides a 
transformation that maintains the rigidity of structures that need to remain non-deformed, while 
producing local deformations. In addition, the performance is accelerated by multi-core processors 
through the use of multiple threads. The results demonstrate that the proposed medical image matching 
method has good balance between accuracy and speed, and has potential in many medical applications.  
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