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A B S T R A C T

The underlying working principle of detecting impulsive stimulated scattering signals in a differential

configuration of heterodyne diffraction detection is unraveled by involving optical scattering theory. The

feasibility of the method for the thermoelastic characterization of coating-substrate systems is

demonstrated on the basis of simulated data containing typical levels of noise. Besides the classical

analysis of the photoacoustic part of the signals, which involves fitting surface acoustic wave dispersion

curves, the photothermal part of the signals is analyzed by introducing thermal wave dispersion curves

to represent and interpret their grating wavelength dependence. The intrinsic possibilities and

limitations of both inverse problems are quantified by making use of least and most squares analysis.

� 2015 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The elastic and thermal characterization of functional materials
plays a crucial role in the development of technological applica-
tions, with intriguing metrological challenges when the structural
dimensions become of nanometric scale. Photoacoustics can
provide a way to assess the elastic [1,2], thermal [3,4], optical
and electronic characteristics [5–8] of materials through the
observation the dynamics of optically excited thermoelastic
displacement fields. In nanosecond to picosecond laser ultrasonics
[9], a pulsed laser beam is employed to launch acoustic waves in
and along the surface of a sample in order to determine the elastic
properties and thickness of thin films [10–12] and to characterize
nanostructures [13]. Laser ultrasonics can also be used as a non-
destructive evaluation technique to reveal internal inhomogenei-
ties such as cracks [14] and delaminations [15].

The unique potential of the photoacoustic approach and the
steep evolution in the performance of lasers has stimulated many
research groups to develop advanced electro-optical schemes and
data acquisition systems. As a result, an extensive toolbox for
optical excitation and detection of the laser-induced thermoelastic
response of materials is now available. For the generation, both
broadband and narrowband excitation setups are commonly
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employed. In broadband laser ultrasonic excitation, a simple
optical lens system is typically used to focus a pulsed laser beam
into a narrow point or line on the surface of the sample [16–18].
The generated guided acoustic waves have a broadband character
as a consequence of the short laser pulse duration, and of the
wide wavenumber spectrum that goes along with the sharp spatial
features of the focused laser beam. Analysis of the dispersion of the
velocity of the guided acoustic waves in a given wavelength range
allows to determine absolute elastic properties of material layers
as thin as the shortest wavelength, and relative changes in elastic
parameters and thickness down to subnanometer scale [19–22].

When the experimental goals require the generation of
monochromatic or narrowband acoustic waves, a transient grating
excitation scheme can be used [23–25]. In this case, a spatially
periodic light pattern, created by the interference of two crossing
coherent beams from a pulsed laser, produces a transient light
intensity grating on the surface or in the bulk of the sample. Optical
absorption of the light energy then results in a heating and thermal
expansion grating. As a result of the impulsive dynamics of this
photothermal effect, it goes along with photoacoustic excitation of
two spatially periodic counter-propagating acoustic wave packets.
Both the thermal expansion grating, which gradually decays due to
thermal diffusion between the hot and cold regions of the grating,
and the propagating acoustic wave gratings, result in dynamic
density gratings that go along with a spatially periodic ripple on
le under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
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Fig. 1. Schematic overview of a differential heterodyne detection setup, with a

polarizing beam splitter (BPS), a grating phase mask (GPM), a phase retarder (PR), a

quarter wave plate (QWP), cylindrical lenses C1 and spherical lenses L1,2 with focal

length f1,2.
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the surface of the sample and with a photoelastically induced
refractive index grating. The diffraction of a probe beam by this
grating then reveals the thermoelastic response of the material at a
particular wavenumber. Historically, this transient grating tech-
nique has been referred to as impulsive stimulated scattering (ISS)
[26–29]. A comprehensive review of more general laser ultrasonic
detection schemes can be found in [30], discussing the principles
of popular detection schemes that are either based on physical
beam deflection [31,32], or on the interference of two probe beams
[33–35].

In 1998, Maznev et al. [36] showed how heterodyne detection
(HD) could be achieved for the ISS experiment, by introducing an
optical scheme in which two coherent probe beams are used and in
which the non-diffracted part of the second probe beam is collinear
with the diffracted part of the first probe beam. In this approach, by
virtue of the optical interference with the strong probe beam, the
intensity and optical phase variations of the diffracted probe beam
are substantially amplified, allowing the detection of very small
density changes.

This article reviews the main elements of a HDISS experiment,
from measurement to interpretation, with the focus on how to get
the most of it and what to expect. For that purpose, Section 2
presents a differential approach to the heterodyne measurement
technique delivering a signal which is directly proportional to
the response of the material under investigation, free of any
background and its accompanying fluctuations. Section 3 then
addresses the inversion of the HDISS signal to material parameters
for bulk material, based on thermoelastic theory. It is shown how
to circumvent the numerical problem associated with the presence
of two very different time scales. In Section 4, extension is made to
a coating-substrate configuration. In that case the presence of
the coating evokes a wavenumber dependence of an effective
value for the thermal diffusivity, as extracted from the decay rate
of the photothermal part of the signal. The basic features of this
thermal wave dispersion behavior are discussed and the inverse
problem, i.e. the extraction of thermal and elastic parameters from
the signal, is tackled. A thorough sensitivity and uncertainty
assessment is performed, by making use of most squares analysis,
both for the photoacoustic and photothermal part of the HDISS
signal. Section 5 summarizes the conclusions. The thermoelastic
theory underlying the generation of light grating induced
displacements is briefly summarized in Appendix A.

2. Heterodyne detection of ISS signals in a differential
configuration

In this section, it is shown how the thermal response of a
material can be measured in an ISS measurement. A differential
heterodyne setup is presented, which yields a signal that is directly
proportional to the thermoelastic response of the material under
investigation, guaranteeing the best possible signal-to-noise ratio.

2.1. From setup to grating

ISS methods utilize narrowband photothermal/photoacoustic
grating excitation [27] as schematized in Fig. 1. This can be
achieved by crossing two coherent pulsed laser beams, generating
a spatially sinusoidal interference pattern on the surface of a
sample. A part of the pulsed (10 ps) excitation laser light is
absorbed, resulting in a transient sinusoidal heat source with
the same wavenumber as the one of the light pattern [26]. The
impulsive heating leads to sudden thermal expansion, which in
turns launches two counter propagating acoustic waves with the
same wavenumber.

The two coherently interfering beams can easily be generated
from a single pump laser beam by using a square relief grating
phase mask diffracting the light predominantly to the two first
order directions. These two beams leave the phase mask at
angles �u with respect to the incident pump beam, given by

sinu ¼ lpu

d
; (1)

where lpu is the wavelength of the pump beam and d the phase
mask spacing. The two beams can then be crossed on the sample
surface with the aid of a two-lens imaging system (L1L2). When
d � lpu, the angles of incidence �upu are given by

upu ¼
lpu

Md
; (2)

where M � f2/f1 is the magnification of the optical system. The
interference of the crossing beams at the surface of the sample then
leads to an optical intensity pattern given by

I ¼ IpuðtÞð1 þ cosðKxÞÞ; (3)

where the x-axis was chosen along the intersection of the
sample surface and the plane defined by the crossing beams,
with the origin x = 0 situated on the optical axis. Ipu(t) represents
the time dependence of the intensity of the pump beam pulse.
The wavenumber K of the periodic light pattern at the sample
surface is given by

K ¼ 2kpusinupu ¼
4p
lpu

sinupu�
4p
Md

: (4)

If there is no magnification (M = 1), then K equals twice the wave
number of the phase mask.

The simultaneous presence of the two counter-propagating
acoustic waves results in a standing wave pattern along the x-axis,
leading to a beating normal displacement grating with wave-
number K, on top of the non-propagating thermal expansion
grating, which slowly decays due to thermal diffusion. Choosing
the y-axis perpendicular to the surface and restricting ourselves to
the variable part of the displacement, the relief grating is then
described by

y ¼ hðx; tÞ ¼ AðtÞcosðKxÞ: (5)

The modulated ripple amplitude A(t) represents the time
dependence of the normal displacement due to the combination
of thermal expansion and surface acoustic wave (SAW) motion.

2.2. From grating to heterodyne signal

2.2.1. Probing beams

In principle, the surface ripple induced by transient grating
excitation can be locally detected by focusing a probe beam to a



B. Verstraeten et al. / Photoacoustics 3 (2015) 64–7766
spot that is much smaller than the grating spacing. In that case, the
local displacement leads to measurable deflection and optical
phase change of the probe beam, which can be detected
respectively by a knife edge [37,30] or an interferometer [38–
40] approach. The feasibility of such approach depends on the
smallness of the focal probe beam spot, which is diffraction
limited. In ISS, the probe beam spot is covering a region much
larger than the grating wavelength, causing reflective diffraction
into diffraction orders in addition to the specularly reflected beam,
which represents the zero order diffraction component. In the
experimental setup under consideration, a continuous probe beam
with optical wavelength lp is superposed on the pump beam with
the help of a polarizing beam splitter (PBS). Just like the pump
beam, the probe beam is then split into two first order diffracted
probe beams by the same grating phase mask that splits the pump
beam. The two probe beams are then crossed again and, due to the
periodic ripple, each of them is reflectively diffracted. A quarter
wave plate (QWP) optimized for lp can be introduced to retrieve
the reflected and diffracted probe beams at a second polarizing
beam splitter right behind the grating phase mask, where they are
guided towards a differential detector. The use of a cylindrical lens
(C1) helps to focus the pump and probe laser light energy on a line
in order to increase the thermal excitation and signal quality. As
will be shown further, the differential heterodyne detection
principle is based on phase quadrature between both incident
probe beams, which is created by a phase retarder (PR) inserted in
one of the beams.

2.2.2. Diffraction orders

The probe beams that are incident on the relief grating at the
sample surface are reflectively diffracted into several orders. The
diffraction efficiency for these diffraction beams will be shown to
be a function of the angle of incidence of the respective probe
beams, the ripple height, and the spatial period D � Md/2. Fig. 2
schematically depicts one of the scattered beams for both probe
beams. The electric fields of the incident probe beams can be
expressed as

E j ¼ E0ei k j �r�vtþ’ jð Þ (6)

where v is the angular frequency of the probe beams and j = 1,
2 refers to either of the incident beams. The wavevectors kj are
given by

k1 ¼ �kpsinupex � kpcosupey; (7)

k2 ¼ kpsinupex � kpcosupey; (8)
Fig. 2. Schematic presentation of the scattering process of the probe beams E1 and E2

incident at respective angles up and �up. The electric fields E1s and E2s are diffracted

fractions of probe beams E1 and E2 respectively, with diffraction angles u1s and

u2s. Here the angles of scattering were chosen arbitrarily.
with kp = 2p/lp. By symmetry, it can be assumed that both fields
have an equal amplitude E0. The optical phase difference
Dw = w1 � w2 between both beams can be controlled by the phase
retarder.

In practice, the relief depth h(x, t) caused by the pump beam is
of the order of a few picometers to nanometers [41], which is
much smaller than the relief period D varying from 1 mm to
100 mm. Therefore the scattered field can be expressed as a
Rayleigh expansion [42], which is obtained by expanding the
scattered field in a Fourier series along the grating direction x

and by applying the Helmholtz equation [43] to obtain the
wavenumbers in the perpendicular direction y. The diffracted
field then reads as

E j;s ¼
Xþ1

n j¼�1
Rn j

e
i kn j

xþ
ffiffiffiffiffiffiffiffiffiffiffiffi
k2

p�k2
n j

q
y�vtþ’ j

� �
; (9)

where nj denotes the order of the diffracted bundle originating
from the jth incident probe beam, with a wave vector component
along the x-direction given by

kn j
¼ ð2n j þ ð�1Þ jÞkpsinup: (10)

The amplitudes Rn j
represent the diffraction efficiency corre-

sponding to the diffraction order nj with scattering angle uj,s. These
angles are crucial as they determine which diffraction orders can
be used to obtain the heterodyne interference. From Eqs. (9)–(10),
the scattering angles for the different diffraction orders are found
to be

u j;s n j

� �
¼ tan�1 ð2n j þ ð�1Þ jÞsinupffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ð2n j þ ð�1Þ jÞ
2
sin2up

q
0
B@

1
CA: (11)

In the following, we focus on the zeroth and first order diffracted
beams. For the zeroth order (nj = 0) diffracted beams Eq. (11)
yields u1,s(0) = � up and u2,s(0) = + up, corresponding to specular
reflection off the surface. From here on, the zeroth order fields
will be denoted respectively Eref,1 and Eref,2. For first order
diffraction, Eq. (11) yields u1,s(1) = + up and u2,s(� 1) = � up, and
we will denote the corresponding first order diffracted fields
Edif,1 and Edif,2. It follows that the fields Eref,2 and Edif,1 are
superposed in the direction up. The superposed fields interfere,
thus producing an intensity signal S+ that can be captured with
a detector. In the same way the fields Eref,1 and Edif,2 are
superposed in the direction �up, resulting in the signal S�. These
signals, which are the basis of the heterodyne measuring
technique, can be written as

Sþ ¼ Eref ;2 þ Ediff ;1 ¼ R0ei’2 þ Rþei’1

� �
eikþ�r�vt; (12)

S� ¼ Eref;1 þ Ediff;2 ¼ R0ei’1 þ R�ei’2

� �
eik��r�vt; (13)

where Rþ � Rðn1¼þ1Þ, R� � Rðn2¼�1Þ and k+ and kS are the signal beam
wavenumbers given by

kþ ¼ kpsinupex þ kpcosupey; (14)

k� ¼ �kpsinupex þ kpcosupey: (15)

It is important to note that the coincidence of both diffracted
beams is a consequence of the underlying probes beams having
been split by the same phase mask as the pump beams. Hence,
guiding the probe beam through the same phase mask and optical
path as the pump beam is a crucial aspect of this technique.
In practice the probe and pump laser often have a different optical
wavelength, so that the optical paths of the pump and probe
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beams diffracted by the phase mask are not the same. Therefore,
care should be taken to use lenses in the optical path with a
minimum of spherical aberration. This is quite challenging for large
diffraction angles, corresponding to short wavelength transient
gratings.

2.2.3. Diffraction efficiencies

In order to calculate the heterodyne signals S+ and S�,
expressions for the diffraction efficiencies R0 and R� are needed.
Here we assume a metallic surface, which is most interesting
because it guarantees good reflection of the probe beam, but the
results can be easily extended to dielectric surfaces [42]. For
metallic surfaces, the diffraction efficiencies can be obtained by
making use of the homogeneous Dirichlet boundary condition,
which expresses that the sum of incident field (6) and diffracted
field (9) is zero at the surface. Assuming that the expansion (9) for
the diffracted field remains valid at the surface y = h(x, t) [44], the
homogeneous Dirichlet condition for the incident field Ej becomes

Xþ1
n j¼�1

Rn j
e

i kn j
xþ

ffiffiffiffiffiffiffiffiffiffiffiffi
k2

p�k2
n j

q
hðx;tÞ

� �0
B@

1
CAþ E0eikp ð�1Þ jsinupx�cosuphðx;tÞð Þ

¼ 0: (16)

Multiplication by exp �i km j
x þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

p � k2
m j

q
hðx; tÞ

� �� �
=D and inte-

gration over one ripple then yields, using Eq. (7)–(8),

Xþ1
n j¼�1

Rn j

1

D

Z D=2

�D=2
e

i n j�m jð ÞKxþkp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

kn j
kp

� �2
r

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

km j
kp

� �2
r  !

hðx;tÞ

  !
dx

0
BBB@

1
CCCA

¼ �E0
1

D

Z D=2

�D=2
e

�i m jKxþkp cosupþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

km j
kp

� �2
r  !

hðx;tÞ

  !
dx

0
BBB@

1
CCCA:

(17)

For low diffraction orders kn j ;m j
� kp, and the bracket on the left-

hand side roughly equals dn j ;m j
. Hence, to a very good approxima-

tion the diffraction efficiency can be written as

Rm j
¼ � E0

D

Z D=2

�D=2
e
�i m jKxþkp cosupþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m jþð�1Þ jð Þ2sin2up

q� �
hðx;tÞ

� �
dx;

(18)

where use was made of Eq. (10) and of the equality K = 2kp sin up,
which was obtained from Eq. (4) by the observation that pump and
probe beams pass through the same phase mask.

According to Eq. (5), at any particular moment the ripple
generated by the pump beam is given by h(x, t) = A(t) cos(Kx). Using
DK = 2p, the relevant diffraction efficiencies become

R0 ¼ � E0

2p

Z p

�p
e�ijcosðxÞdx ¼ �E0J0ðjÞ; (19)

Rþ ¼ � E0

2p

Z p

�p
e�iðxþjcosðxÞÞdx ¼ iE0J1ðjÞ; (20)

R� ¼ � E0

2p

Z p

�p
e�ið�xþjcosðxÞÞdx ¼ iE0J1ðjÞ; (21)

where j = 2A(t)kp cos up and Jn denotes the Bessel function of order
n. As could have been expected from the symmetry of the relief
grating, it turns out that R+ = R�.
2.2.4. Differential heterodyne ISS signal

Combining Eqs. (12)–(13) with Eqs. (19)–(21), the heterodyne
signal intensities are found to be

Iþ ¼
e0c

2
jSþj2 ¼ I0 J2

0ðjÞ þ J2
1ðjÞ þ 2J0ðjÞJ1ðjÞsinðDfÞ

� �
; (22)

I� ¼
e0c

2
jS�j2 ¼ I0 J2

0ðjÞ þ J2
1ðjÞ � 2J0ðjÞJ1ðjÞsinðDfÞ

� �
; (23)

where I0 ¼ e0c
2 jE0j2 is the intensity of the incident probe beam.

Remark that I+ and I� are different in case of a phase shift between
both probing beams, as obtained by the phase retarder in the setup.

The heterodyne signals consist of three parts. In practice, j is
very small and therefore the first term, due to the zeroth order
diffraction, is nearly constant. The second term, which would
constitute the non-heterodyne signal obtained from the diffracted
beam without the heterodyne superposition, is variable with
varying relief depth, but is of second order and hence very small.
Therefore the third term, which is due to the interference,
constitutes the main dynamic part of the observed ISS signal. It
is of first order and thus strongly amplified by the heterodyning
effect. Nonetheless, the signals are still substantially dominated by
the reference beam, whose noise and intensity fluctuations easily
compete with the most important first order part of the signal. This
affects the signal to noise ratio of the individual detector signals.
This problem can be circumvented by electronically subtracting
both heterodyne signals, which cancels the reference beam
contribution and results in the differential heterodyne signal

SHD ¼
Iþ � I�

2
¼ 2I0J0ðjÞJþ1ðjÞsinðD’Þ: (24)

When measuring SHD, the sensitivity of the preamplifier after the
differential photodiodes can be made very high without electronic
overload caused by large reference beam contributions. The signal
can be maximized by setting the phase retarder so as to create
phase quadrature Df = p/2 between the probing beams, which
we will assume from now on. The background term SDC is obtained
by averaging both heterodyne signals as follows

SDC ¼
Iþ þ I�

2
¼ I0 J2

0ðjÞ þ J2
1ðjÞ

� �
: (25)

Because j � 1 the differential heterodyne signal can be rewritten
to very good approximation as

SHD ¼ 2SDCkpcosupAðtÞ: (26)

The signal depends linearly on the ripple modulation amplitude.
Moreover, Eq. (26) allows direct retrieval of A(t) without the
knowledge of detector parameters.

The scalar treatment of the fields in the foregoing may suggest
that Eq. (26) is only valid for an s-polarized probe beam, with its
field in the z-direction. However, for p-polarization, separate
versions of Eq. (16) can be written for the x-component and
y-component of the fields, ultimately leading to the same result.

As an illustration, Fig. 3 shows the dependence of the two
probe beam intensities on the ripple depth for lp = 532 nm and
D = 40 mm. The linear relation between the differential heterodyne
signal and the ripple depth is satisfied for modulation amplitudes
exceeding 50 nm, and hence a fortiori for real experimental ripple
magnitudes, which are typically less than 1 nm. For the non-
differential heterodyne signals the ripple amplitude information
is deeply buried in the signal.

2.3. Experimental aspects

In order to illustrate the typical outcome of a differential HDISS
measurement, Fig. 4 depicts the fast transient thermoelastic decay



Fig. 3. Ratio of the signal beam intensities to the incident probe light intensity as a

function of the ripple depth for a thermal grating spacing of 40 mm and a probe

wavelength of 532 nm. The resulting difference signal is shown in the inset.

Fig. 4. Decay of the ripple magnitude of a 40 mm thermal grating on the surface of a

glass substrate, as measured with six different probe beam intensities. The Rayleigh

and Scholte frequencies are indicated. The peak value around t = 70 ns is caused by

the presence of a thin aluminum coating. The noise floor of the signal is around

10 pm rms.

Fig. 5. SAW amplitudes extracted from the fast detector response as a function of

the incident pump power, for four different probe intensities. The line through the

origin represents a linear fit to the first 4 pump energy points for all probe

intensities.
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of the amplitude of a 40 mm thermal grating generated on a glass
surface. In this experiment, thermoelastic signals were generated
by a light pulse of 40 mJ from a Nd:YLF 1057 nm infrared pump
laser Q-switched with a 1000 Hz pulse repetition frequency. The
sample surface was coated with a 100 nm aluminum layer in order
to increase the optical reflection. The probe light power generated
with a 532 nm Nd:YAG CW laser was measured using a Thorlabs
PM100D power meter. The heterodyne diffraction signal was
detected by a fast AC coupled differential detector (Hamamatsu
S5973 photodiodes with a Femto HSA (10 kHz–2 GHz) amplifier).
The retrieved ripple magnitude did not vary much for probe beam
intensities ranging from 1.5 to 5 mW, which illustrates the good
signal-to-noise ratio of the differential technique.

The retrieved evolution of the ripple can be understood as
follows. The impulsively generated thermoelastic stress is released
by the generation of two counter-propagating Rayleigh SAW
waves with frequency fR � 80 MHz traveling along the surface with
an amplitude in the order of 50 pm. The Rayleigh waves are
accompanied by a slowly propagating interfacial Scholte wave [45]
of frequency fS = 8.5 MHz, for which no ripple amplitude can be
extracted as it mainly modulates the phase of the probe beam via
its effect on the local refractive index of the surrounding air. As the
velocity of the Scholte wave is known to be very close to the speed
of sound in air, the extracted frequency of the Scholte wave
signature in the heterodyne signal can be used to check the value of
the imposed wavelength.
According to Fig. 4, the signal-to-noise-ratio of the full
thermoelastic signal is good, but what really matters for the
retrieval of the acoustic parameters is the signal-to-noise ratio of
the SAW contribution, which inevitably is lower. In order to
investigate this, thermoelastic signals were created for 5 different
pump energies, and measured at four probe intensities. The SAW
amplitudes were extracted after subtracting the Scholte wave and
the slow-varying temperature decay from the signal. Fig. 5 shows
the measured SAW amplitudes as a function of the incident pump
energy. The difference between the measurements with different
probe intensities shows that the signal-to-noise ratio is more than
decent, except for the lowest pump energy. The nonlinear trend at
higher pump energy is somehow unexpected and cannot be
explained by a linear thermoelastic theory. It is probably related to
the emergence of signal contributions due to ablation effects at
high amplitudes.

When using Eq. (26) for the retrieval of the ripple amplitude,
one should realize that the conditions leading to Eq. (26) are not
fully achievable in practice. First of all, in the theoretical derivation,
the thermal grating and probe beam are assumed to be extended to
infinity along the x-direction. The finite size of the probe and/or
pump beam affects the diffraction efficiencies, as the integrand in
Eq. (18) should be convolved with the spatial profile of the laser
beams. Secondly, roughness of the surface results in the addition of
a spatially randomized component to the surface ripple modula-
tion function in Eq. (5). In this case, the solution in terms of the
Bessel function in Eq. (16) is altered, especially when the roughness
domain scale is comparable with the probe beam width.
Depending on the scale of the roughness, the diffraction angles
are then modified randomly, breaking the symmetry of the
excitation. Hence, the proposed laser ultrasonic excitation and
detection technique is only fully suitable for optically reflecting
samples with an adequate optical surface finish.

3. From HD signal to the physical material properties

In Section 2, it was shown how a HDISS experiment is able to
produce a signal proportional to the magnitude of a thermally
created surface ripple. The ultimate goal of the experiment is to
retrieve thermal and acoustic material parameters. This section
focuses on this inverse problem.

In an ISS experiment, the ripple amplitude modulation A(t)
originates from the response of the surface region of the sample to
the incident pump power, through an intricate interaction of
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thermal and elastic properties. An analytical inversion of A(t) to
retrieve the thermal and elastic material properties is therefore
generally impossible. The way to go is to solve the forward problem
for adequately chosen parameters in order to fit a representative
simulated thermoelastic decay profile to the experimental one. For
that purpose, a set of coupled differential equations must be
solved. Appendix A briefly summarizes the thermoelastic theory
underlying the generation of light grating induced displacements.
In general, the integral in Eq. (A.21) can only be calculated
numerically. However, some annotation can already be made
based on the fact that, as expressed in the theorem of residues [46],
the time dependence of the expression is determined by the
singularities of the integrand in frequency domain.

It can be verified that there are three such divergencies. The first
one is determined by s = 0, governing the thermal decay process
giving rise to a damped term. The other ones are the Rayleigh poles
�vR [47], which are the only nontrivial zeros of the Rayleigh
determinant DR and give rise to an oscillatory term describing
Rayleigh surface waves with the non-dispersive Rayleigh velocity
cR = vR/K. As such, the ripple amplitude evolution is the superposition
of a background with thermal decay time tth = 1/(K2a) and a smaller
oscillatory part with the Rayleigh frequency vR.

The ISS technique is limited by the optical diffraction limit to
grating wavelengths longer than 1 mm. As a consequence, in
general, vR� 1/tth. Except for some temperatures and frequencies
with strongly relaxing viscoelastic materials, the Rayleigh wave
frequency is several of orders of magnitude larger than the thermal
relaxation rate. In order to simulate a full thermoelastic decay
process, i.e. well-sampled acoustics together with the thermal
decay, the numerical Fourier integral should amply span the
interval around both characteristic frequencies. For thermally fast
materials (e.g. aluminum) and wavelengths smaller than 100 mm,
this can be done by a standard desktop computer. However, for
thermally slow materials the simulation of the thermoelastic decay
can become problematic.

Another problem arises in the calculation of Eq. (A.21) at v = 0,
where the Rayleigh determinant vanishes. This leads to a 0/0
situation, which is particularly delicate and leads to numerical
instabilities at low frequencies. This is especially true for large
wavenumber K, where DR is the result of the subtraction of two
large nearly equal numbers. This problem can, however, be
circumvented by replacing, at low frequencies, the integrand by its
series expansion to the lowest non-vanishing order [48]. As an
example, Fig. 6 (top) shows (in arbitrary units) the integrand for
Fig. 6. Frequency dependence (top) and time dependence (bottom) of the ripple

amplitude A (in arbitrary units) for the thermoelastic decay of a 40 mm thermal

grating on the surface of a glass substrate. The dashed curve represents the

low-frequency expansion. In the inverse Fourier transform yielding A(t) the

low-frequency approximation of A(f) was used up to 106 Hz (vertical dashed line).
a 40 mm thermal grating on the surface of a glass sample. The
glass parameters used in this simulation were cL = 5712 m/s,
cT = 3350 m/s and a = 4 	10�7 m2/s. For frequencies lower than
50 Hz, the numerical noise associated with the Rayleigh determi-
nant becomes apparent. The low-frequency limit, which is close to
the actual spectrum up to frequencies close to the Rayleigh pole
(fR � 80 MHz), is displayed in dashes. In order to simulate the full
signal in time domain without numerical noise, a new combined
frequency spectrum can be used that consists of the low-frequency
limit at frequencies lower than a transition frequency fc, and of the
full expression at frequencies larger than fc. Fig. 6 (bottom) shows
the inverse Fourier transform of the combined signal of Fig. 6 (top)
with fc = 1 MHz �fR. The non-zero value at the onset of the signal
is a consequence of not taking into account frequencies above
5 GHz in the numerical integration.

The simulated ripple in Fig. 6 (bottom) contains four
characteristics: the Rayleigh frequency, the thermal relaxation
time, and the amplitudes of the thermal diffusion decay and
Rayleigh wave contributions. In this way, apart from the Rayleigh
velocity and the thermal diffusion, a best fit of a simulated profile
to an experimental ripple can give access to two additional
material parameters. Note that the damping of the simulated
Rayleigh wave is related to the choice of the numerical finite value
at the Rayleigh pole but has no further meaning. Experimentally,
the width of the Rayleigh peak is determined by the acoustic
damping of the SAW by the material and by the finite width of the
beam.

4. Differential heterodyne ISS for layered materials

Section 3 discussed the inversion of a HDISS signal for
homogeneous materials. In this section, we discuss the feasibility
of ISS together with heterodyne detection to characterize layered
structures. Indeed, thin layered films are commonly used in
modern industry, creating a need for fast and reliable non-
destructive methods to gain knowledge of adhesion, thicknesses
and various elastic properties. It is shown how the analysis of
dispersion curves allows to retrieve material parameters, and how
most squares analysis can be used to assess the uncertainty.

4.1. Dispersion curves

In layered structures, different geometrical and elastic param-
eters of each individual layer have an influence on the SAW
propagation velocity, provided that the layer of interest is probed
by the SAW. As was shown in Eqs. (A.10) and (A.11), the SAW
displacement and stress fields decay exponentially with depth,
with a characteristic penetration depth that is of the order of the
acoustic wavelength. Therefore, SAWs with a wavelength that is
very small compared to the thickness of the coating are unaffected
by the substrate. Similarly, a coating much thinner than the
wavelength will have no effect on the wave velocity, which will be
the velocity for the substrate. However, when the thickness
becomes comparable to the wavelength, the wave velocity is
affected by the finite thickness of the coating. This gives rise to a
wavelength dependence of the SAW, commonly depicted in
a dispersion curve where the SAW phase velocity is plotted as a
function of the wavelength or frequency of the wave. In addition
to the Rayleigh type SAW dispersion, the perturbations traveling in
the material can feel the existence of the interface between coating
and surface, potentially giving rise to the excitation of surface
waves at the interface, i.e. Stoneley and Sezawa waves [49].

For modeling a system with two layers, two sets of acoustical
potentials and thermal fields are required. The coating is physically
attached to the substrate and material from both sides of the
interface is assumed to be in perfect adherence, without
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introducing an elastic stress or a thermal resistance. Hence, the
two sets of equations are coupled by boundary conditions
expressing continuity of displacements and stress, temperature
and heat flux. The solution of these equations gives rise to
thermoelastic transients with acoustic frequency content and
thermal diffusion rates depending on the thermal grating spacing
and thermoelastic properties of the material. By using a similar
approach as in Ref. [47], the acoustic dispersion curve of a
fictive coating-substrate material (cL,c = 4000 m/s, cL,s = 7000 m/s,
cT,c = 2000 m/s, cT,s = 4000 m/s, rc = 8000 kg/m3 and rs = 3000 kg/
m3) with different coating thicknesses was calculated and is shown
in Fig. 7. Although Rayleigh waves in many materials are
intrinsically non-dispersive, the Rayleigh type mode shown in
Fig. 7 (bottom) does depend on the frequency. Indeed, for large
wavelengths compared to the coating thickness, or equivalently for
low frequencies, the coating layer has no influence on the
perturbations in the material and the Rayleigh velocity of the
substrate (cR,s = 3683 m/s) is retrieved. As the applied frequency
increases, the wavelength decreases until it becomes comparable
to the coating thickness. Hence, the waves in this frequency range
are affected by both layers, resulting in a velocity intermediate
between the Rayleigh velocities of coating and substrate. When
the frequency is increased further, eventually the wavelength
becomes much smaller than the coating thickness, the coating
itself appears as a semi-infinite half space with the corresponding
Rayleigh velocity of the coating (cR,c = 1865 m/s). The Sezawa mode
shown in Fig. 7 (top) has the longitudinal velocity of the substrate
layer as a low frequency limit and the transverse velocity of
the coating as high frequency limit. Note that when the Sezawa
dispersion curve crosses the longitudinal velocity of the coating or
the transverse velocity of the substrate, a wiggle appears. Also
remark that the thickness of the coating fully determines the
location of the sigmoidal transition of the dispersion curves. As a
matter of fact, both for Sezawa and Rayleigh waves, the dispersion
curves for different coating thickness would reduce to a single
one when plotted versus the product of frequency and coating
thickness. However, we preferred to plot them versus frequency
alone for the sake of visualizing which frequencies are needed in
practice to characterize coatings of different thicknesses.
Fig. 7. Dispersion of the Sezawa mode velocity cS and Rayleigh mode velocity cR of a

fictive coating-substrate material. For dc = 10 mm the influence is shown of

changing er by +40% (dotted line) or �40% (dashed line).
As solutions of the thermal diffusion equation constitute a
thermal wave-like behavior, with a frequency dependent penetra-
tion depth (see Eq. A.6), one can envisage, in analogy with acoustic
waves, thermal dispersion curves for multilayered materials,
which express the observation that thermal diffusion rates change
with frequency or imposed grating spacing. Käding et al. showed in
[50] that the normal displacement at the surface (y = 0) of a semi-
infinite substrate in the low-frequency limit of the thermoelastic
equation follows a complementary error function evolution

uyðy ¼ 0Þ / erfcð
ffiffiffiffiffiffiffiffiffiffiffi
t=tth

p
Þ; (27)

where erfc(x) = 1 � erf(x) is the complementary error function. The
decay time t = 1/(K2a) of this complementary error function,
which sets the characteristic time scale for the thermal diffusion,
corresponds with a thermal diffusion depth L ¼ 2

ffiffiffiffiffiffi
at
p

¼ D=p. For
thermoelastic signal calculations for a gaussian excitation beam
we refer to Baesso et al. [51], who modeled the photothermal
displacements in a thermal mirror geometry, and to Todorovic
et al. [52,53], who modeled thermoelastic bending in membranes.

In analogy with SAW, the thermal diffusion depth can be
regarded as the depth to which the surface temperature field is
sensitive to the thermal properties of the structure. Thus, for a
given coating thickness dc one expects that in the limiting case
when D � dc the thermal decay process will be governed by the
thermal properties of the substrate only. In the opposite limit
D � dc, the temperature field is concentrated in the coating and is
hardly affected by the thermal properties of the substrate.
Therefore, using different grating spacings, the depth-dependent
thermal properties of the multilayer can be probed. For this, Käding
et al. proposed to make use of an effective thermal diffusivity,
which takes a value between the thermal diffusivities of the
coating and substrate material for intermediate thermal diffusion
depths L � dc. The thermal decay in the multilayered structure is
then fitted assuming a complementary error function to extract
the effective diffusivity aeff. In Fig. 8 the thermal decay in a fictive
coating-substrate material (a1 = 2 �10�5 m2/s anda2 = 1 �10�5 m2/s)
with a coating thickness of 1 mm is shown, together with the fitted
erfc and the reference signals of pure coating and pure substrate
material. Thermal wave dispersion is readily visible by observing
the shift of the full coating-substrate signals from the reference
pure coating to pure substrate signal with increasing grating
spacing D. By estimating an effective diffusivity for various
diffusion depths of the thermal wave field, a thermal dispersion
curve can be constructed as shown in Fig. 9. In the limit of small
diffusion depth, the effective diffusivity equals the coating
diffusivity, as expected. For increasing diffusion depth, the
Fig. 8. Amplitude of transient thermal gratings with three different spacings D in a

fictive substrate material covered by a 1mm coating (black). For reference, the

corresponding amplitudes are added for pure substrate material (blue) and pure

coating material (green). The red line shows the best fitting complementary error

function with an effective diffusivity.



Fig. 9. Thermal wave dispersion curve depicting the effective thermal diffusivity of a

fictive material consisting of a coating (a1 = 2 �10�5 m2/s) on a substrate

(a2 = 1 �10�5 m2/s) as a function of the dimensionless ratio of the diffusion

depth L to the coating thickness dc.

Fig. 10. Dispersion curve with (circles) and without added noise (full line) of the

Rayleigh velocity for the fictive material defined in the text.
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effective diffusivity monotonically decreases and converges to the
thermal diffusivity of the substrate layer.

4.2. Most-squares analysis of the inverse problem

An acoustic or thermal dispersion curve can be seen as the
elastic or thermal fingerprint of a multilayered system. The
experimental access to a dispersion curve provides a direct means
to extract some of the elastic and thermal parameters by solving
the inverse problem. In Ref. [11], it was shown that the inverse
problem of extracting the elastic properties and thickness of a
subsurface layer in a multilayer structure through ISS is well-
posed, provided that both the Rayleigh and Sezawa modes are
experimentally available. In experiments where only the Rayleigh
mode is accessible due to non-ideal experimental conditions, the
inverse problem is only feasible when no more than one coating
layer is covering the substrate.

Four independent parameters can be retrieved from the
Rayleigh dispersion. The Rayleigh velocities cR,1 and cR,2 of coating
and substrate material can be obtained from the high and low
frequency limits of the measured SAW dispersion curves. The
position and shape of the transition is fully determined by the
coating thickness dc and the density ratio er = r1/r2 [54], which
serve as third and fourth fitting parameter.

In general, the inverse problem is solved by minimizing a
multiparameter x2 cost function to extract plausible system
parameters. In order to illustrate the method and its pitfalls, we
discuss the inverse extraction of the parameters (er, cR,1, cR,2, dc) from
the Rayleigh dispersion for a theoretical coating-substrate system
with actual parameters (e
r ¼ 2; c
R;1 ¼ 3218 m/s, c
R;2 ¼ 5908 m/s,
d
c ¼ 10�5 m). In order to mimic real experimental data, white
Gaussian noise with a standard deviation of 100 m/s was added to this
dispersion curve, which is shown in Fig. 10. The x2 cost function for
a trial set of parameters (er, cR,1, cR,2, dc) was calculated according to

x2ðer; cR;1; cR;2; dcÞ ¼ 1

N

XN

i¼1

ðcR f i; er; cR1
; cR2

; dc

� �

�cR f i; e
r; c
R1
; c
R2

; d
c

� �
Þ

2
; (28)

where cRð f ; er; cR1
; cR2

; dcÞ denotes the Rayleigh velocity for
frequency f and parameters (er, cR,1, cR,2, dc), and N is the number
of frequencies taken into account in the calculation.
A possible problem complicating the reliable parameter
retrieval is parametric degeneracy. In order to get some insight
in possible pairwise degeneracy, the x2 cost function was
evaluated around the best fitting values (e
r; c
R;1; c
R;2; d
c) for all
parameter pairs. Fig. 11 shows the result by means of the contour
plots for each of the six parameter pairs. If a genuine minimum in
the x2 cost function exists in the contour plot for a particular
parameter pair, then this infers that there is only one unique value
of these parameters that minimizes the cost function. On the other
hand, a valley of equivalent minima in a contour plot indicates
interdependence between the two parameters of that particular
pair.

In Fig. 11, the variation of each pair of parameters results in a
genuine minimum, indicating a possible unique solution for the
inverse problem of each pair of parameters. However, the
steepness of the gradient in the cost function along each direction
is different for different parameters. This indicates that the
respective relative uncertainties vary. This behavior is inherent
to Rayleigh waves. The correlation between two parameters with
respect to the Rayleigh mode is witnessed by a long minimum
valley. Zero correlation, i.e. parameters having a dissimilar
influence on the Rayleigh mode, is reflected by a deep minimum,
resulting in a steep gradient in all directions. E.g., while Fig. 11f
shows that the Rayleigh velocities cR,1 and cR,2 are only weakly
correlated, the rather long minimum valley in Fig. 11a indicates the
existence of a relatively large correlation between coating
thickness and density ratio. This means that they influence the
Rayleigh dispersion in a comparable way, which is corroborated by
Fig. 7.

Focusing only on the pairwise covariance between the material
parameters to investigate the degeneracy does not necessary
reveal all existing covariance, since the other parameters can
introduce the chance of threefold or higher-order degeneracy
between the unknown fitting parameters. Evidently, it is
impossible to visualize multifold covariances in three or higher
dimensions in a regular two-dimensional contour plot. However,
possible multifold interdependence can be investigated by
performing a so-called most-squares (MSQ) analysis [55,11],
rather than a least-aquares (LSQ) analysis.

Although the real strength of the MSQ approach lies in the
handling of multifold covariance, the MSQ principle is most easily
explained for twofold correlation. Fig. 12 illustrates how a LSQ
analysis underestimates the error on the parameter estimation, by
means of an artificial example of a fit with 2 parameters. The LSQ
approach finds parameter a by looking for the minimum of x2 as a
function of a while keeping parameter b fixed to its global best
fitting value, which equals zero in this case. This amounts to
looking for the minimum of the red parabola in the bottom
subfigure. The fitting uncertainty on parameter a is derived from
the width of this red curve. The MSQ analysis, on the other hand,
takes fitting covariance into account by considering, for every
value of a, the local minimum value of x2 by using the optimum
value of b. This is shown in the left subfigure and the resulting x2 is



Fig. 11. Contour plots of the x2 cost function Eq. (28) using 50 frequencies, for the fictive material defined in the text. For some of the contour lines, the corresponding values of

the cost function are indicated.

Fig. 12. Contour plot (top right) of cost function for a fitting problem with two fitting parameters a and b, each with best fitting value 0. Cost function as a function of a for

global best fitting value b = 0 (bottom, red line) and for local best fitting value of b (bottom, black line). Cost function as a function of b (left) for various values of a, leading to

the black line.
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depicted as the black curve in the bottom subfigure. In this way, the
colored dots monitor the variation of x2 along the stretched valley
seen as the black diagonal line in the contour plot. Since the
minima along this valley are lower than the values along the line
b = 0, the corresponding width of the valley is larger. This means
that the MSQ uncertainties on the fitting parameters, which are
derived from the width of the stretched diagonal valley, are larger
and more realistic than the respective LSQ errors. An extreme
situation would exist when a and b are interdependent. This occurs
when different combinations of parameters a and b produce the
same minimum value for x2, resulting in a minimum valley in
parameter space and infinite width for the x2

MSQ parabola. Then the
considered parameters cannot be determined independently,
which leads to an ill-posed inverse problem [56]. While MSQ
analysis reveals the problem, LSQ analysis does not. Finally, due to
the more detailed parameter search around the best least squares



Fig. 13. Dependence of the LSQ (red) and MSQ (black) cost functions on the four fitting parameters for a simulated experimental Rayleigh dispersion together with their

corresponding fitted parabolae.

Fig. 14. Dispersion curve with (circles) and without added noise (full line) of the

effective diffusivity for the fictive material defined in the text.
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minimum during the most squares scanning of the cost function,
the position of the minimum found by the MSQ procedure in
Fig. 13c is more reliable than the LSQ minimum. All this comes at a
price, as the MSQ approach requires considerably more computing
power than the LSQ fitting procedure, because the minimizations
take place in a higher-dimensional parameter space.

Fig. 13 shows the dependence of x2
MSQ and x2

LSQ on each of the
parameters considered in the present feasibility study. The fact
that the most squares parabolae exhibit a distinct minimum
indicates that there is no multifold fitting parameter degeneracy
and that the inverse problem is well-posed. This indicates that in
principle SAW laser ultrasonic spectroscopy allows to estimate
four of the seven acoustic parameters required to obtain the elastic
properties of the two layers.

As expected, the most squares minima are broader than the
least squares minima, especially for the parameters er and dc. This
means that the corresponding uncertainty on their retrieved
values is greater than as suggested by an LSQ analysis. In general,
the least squares fitting uncertainty sp,LSQ of parameter p with real
value p* can be determined by [57]

s p;LSQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

N � Pð Þ @2

@ p2

x2
LSQ

pð Þ
x2 p
ð Þ

� �
vuuut ; (29)

where P is the number of fit parameters, which equals 4 for our
parameter set (er; cR1

; cR2
; d). Due to the parabolic form of the cost

function near its minimum, this is equivalent to

s p;LSQ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

N � P
p wLSQ ; (30)

where wLSQ is the width of the parabola (x2
LSQ ð pÞ=x2ð p
ÞÞ at the

level 2. As such, the fitting uncertainty of each parameter can be
read out directly from Fig. 13. Analogously, the most squares fitting
uncertainty of a parameter p can be written as

s p;MSQ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

N � P
p wMSQ ; (31)

where wMSQ is the width of the parabola (x2
MSQ pð Þ=x2 p
ð ÞÞ at the

level 2.
For the present example with the four parameters, Eq. (31)

yields the MSQ uncertainties (Der/er = 75%, Ddc/dc = 90%,
DcR1

=cR1
¼ 5:5%, DcR2

=cR2
¼ 2:5%). At first sight, it may seem

strange that the uncertainty on the retrieved coating thickness as
predicted by the MSQ analysis turns out so big, while Fig. 7 shows
a strong influence of the coating thickness on the transition
frequency. But a closer look shows that this is due to the correlation
between d and er, rendering both values much less certain. Remark
that the LSQ values of the uncertainties (Der/er = 25%, Ddc/
dc = 30%) are three times smaller than the MSQ values. The LSQ
approach fails to recognize the correlation and hence puts too
much faith in the retrieved values.

In a similar way as for the acoustic dispersion curve, the inverse
problem can also be solved for a thermal dispersion curve, aiming
at the extraction of the thermal diffusivity of the two layers in a
coating-substrate material. Both elastic and thermal material
parameters enter this low-frequency signal, so that it can be
expected that they have a mixed influence on the thermal
dispersion curve. However, here we assume that the elastic
properties of both materials are well-established, so that only the
thermal diffusivities and the coating thickness (a
1 ¼ 2 � 10�5 m2/s,
a
2 ¼ 10�5 m2/s, d
c ¼ 10�4 m) enter as unknown fitting parame-
ters. Again, a least and most squares analysis was performed along
the three-dimensional parameter space (a1, a2, dc), with a cost
function analogous to Eq. (28). Normally distributed white noise
with a signal-to-noise ratio equal to 10 was added to the theoretic
thermal dispersion curve in order to mimic an experimental trace,
as shown in Fig. 14. The x2 contour plots in Fig. 15 all show an
absolute regional minimum close to the exact values, confirming
the expected absence of pairwise fitting degeneracy. The thermal
diffusivity of the coating and the substrate determine the short and
long wavelength limit of the thermal dispersion curve, respective-
ly, while the coating thickness determines the location of the
transition on the wavelength axis. In Fig. 16 the least and most
squares parabola are shown for the three parameters, showing a
genuine minimum in both the least and most squares cost
functions. Again, this demonstrates that the thermal diffusivities
and coating thickness can unambiguously be extracted from a
thermal dispersion curve provided that the elastic properties are



Fig. 15. Contour plots of the x2 cost function for the diffusivity, using 20 frequencies, for pairs of thermal coating-substrate parameters.

Fig. 16. Dependence of the least squares (red) and most squares (black) cost functions on the three thermal fitting parameters for a simulated experimental thermal dispersion

curve, together with their corresponding fitted parabola.
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known and that the dispersion curve is acquired over a sufficient
broad wavelength range. The difference between the LSQ and MSQ
uncertainties is now immaterial.

For completeness, it should be mentioned that in many
experimental situations the uncertainty on measured quantities
is mainly caused by systematic errors. The presented analysis of
the effect of random errors should therefore be seen as giving
information about the intrinsic and maximum attainable fitting
quality, taking into account fitting covariance and degeneracy, for
a finite number of measurement points affected by random noise.

5. Conclusions

The implementation of heterodyne detection of impulsive
stimulated scattering signals was revisited, considering a differential
measurement configuration in which both diffracted and
specularly reflected probe beams are exploited. The underlying
diffraction theory was elaborated for shallow ripple displace-
ments. The modified detection scheme allows to remove dc
signal contributions, the accompanying laser light fluctuation
noise, and homodyne signal components from the signal.
Expressions for the signal response allow to reliably predict
the magnitude of transient grating ripples. Starting from
expressions by Käding et al. for the decay of the photothermal
part of ISS signals on semi-infinite substrates, the concept of
thermal wave dispersion in coating-substrate configurations was
introduced. This involves curves for the frequency or grating
wavelength dependence of an effective diffusivity value that was
determined by fitting the photothermal signal decay by a model
for a homogeneous semi-infinite medium. The feasibility of
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extracting relevant elastic and thermal characteristics from the
photoacoustic and photothermal part of ISS signals was
demonstrated on the basis of simulated data with typical levels
of noise added. Taking into account the possible pairwise
degeneracy of the acoustic parameters to express the elastic
moduli of an isotropic material, it was shown by a least and most
squares analysis that there exists no supplementary degeneracy
in the fitting parameters for both the elastic and thermal
dispersion curves. The analysis shows that both the acoustic and
thermal inverse problems are well posed, and that ISS is a
suitable technique to thermally and elastically characterize
coating-substrate materials.
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Appendix A. Thermoelastic response

We revisit the configuration of Fig. 2, assuming a homoge-
neous semi-infinite solid situated at negative y-values. If the
heating produced by mechanical deformation is negligible, then
the thermo-acoustic coupled equations for temperature T(x, y, t)
and displacement u(x, y, t) of the material can be approximated
by [58]

1

a
@T

@t
� r2T ¼ Q

k
; (A.1)

u€� c2
Tr2u � c2

L � c2
T

� �
r r � uð Þ ¼ �grT; (A.2)

where Q(x, y, t) is the absorbed heat power density, k the thermal
conductivity, a the thermal diffusivity, cL and cT are the
longitudinal and transverse bulk wave velocities, while the
thermo-elastic coupling constant is given by g ¼ 3c2

L � 4c2
T

� �
ath,

where ath is the thermal expansion coefficient.
For ISS we can restrict Q(x, y, t) to its spatially periodic part,

which according to Eq. (3) is given by

Qðx; y; tÞ ¼ IpuðtÞð1 � rÞbebycosðKxÞ; (A.3)

where r is the surface reflectivity and b the optical absorption
coefficient for the optical wavelength of the laser light. The
resulting temperature evolution can then be rewritten as

Tðx; y; tÞ ¼ Tðy; tÞcosðKxÞ; (A.4)

and in frequency domain Eq.(A.1) turns into

s2ðy; vÞ � @2
Tðy; vÞ
@2

y
¼ ð1 � rÞIpuðvÞ

k
beby; (A.5)

with s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ iv=a

q
. Assuming boundedness of temperature and

zero heat loss to positive y-values (@T=@yjy¼0 ¼ 0) the solution
reads as

Tðy; vÞ ¼ IpuðvÞð1 � rÞb
k s2 � b2
� � �b

s
esy þ eby

� �
: (A.6)
The temperature variations act as a driving force for the
displacements, which are most conveniently found by using the
Helmholtz decomposition [59]

u ¼ r’ðx; y; tÞ þ r 	 cðx; y; tÞ: (A.7)

Using Eq. (A.7), Eq. (A.2) becomes

r2’ � 1

c2
L

’̈ ¼ g
c2

L

T; (A.8)

r2c � 1

c2
T

c̈ ¼ 0; (A.9)

where due to translation symmetry in the z-direction, c = (0, 0, c).
In frequency domain, the solution for the potentials then reads

’ðx; y; vÞ ¼ ’1e pLy þ ’2esy þ ’3eby
� �

cosðKxÞ; (A.10)

cðx; y; vÞ ¼ ic1e pT yð ÞsinðKxÞ; (A.11)

with

’2 ¼ � gð1 � rÞIpuðvÞb2

c2
L ks s2 � b2

� �
s2 � p2

L

� � ; (A.12)

’3 ¼
gð1 � rÞIpuðvÞb

c2
L k s2 � b2
� �

b2 � p2
L

� � ; (A.13)

pL;T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � v2=c2

L;T

q
: (A.14)

The integration constants w1 and c1 can be found by
introducing stress-free boundary conditions at the free surface
y = 0 of the material, which read as [60]

sxy

		
y¼0
¼ rc2

T

@ux

@y
þ @uy

@x

� �				
y¼0

¼ 0; (A.15)

syyjy¼0 ¼ rð c2
L � 2c2

T

� � @ux

@x
þ c2

L

@uy

@y
� gTÞ

				
y¼0

¼ 0; (A.16)

yielding

’1
c1

� �
¼ 1

DR

K2 þ p2
T 2iK pT

�2iK pL K2 þ p2
T

  !
� S; (A.17)

where DR is the Rayleigh determinant given by

DR ¼ K4 þ 2K2 p2
T þ p4

T � 4K2 pT pL; (A.18)

and S is given by

S ¼ K2 ’2 þ ’3ð Þ c2
L

c2
T

�2

  !
� c2

L

c2
T

s2’2 þ b2’3

� �
þ g

c2
T

Tðy ¼ 0; vÞ

�2iK s’2 þ b’3ð Þ

0
B@

1
CA:

(A.19)

Since the displacements are very small compared with 1/K, the
surface ripple due to the excited waves corresponds with uy(x, y = 0,
t), which according to Eq. (A.7) is now given in time domain by

uyðx; y ¼ 0; tÞ ¼ AðtÞcosðKxÞ; (A.20)

in correspondence with Eq. (5), where the modulated amplitude
A(t) is given by

AðtÞ ¼
Z þ1
�1

eivtð pL’1 þ s’2 þ b’3 � iKc1Þdv: (A.21)



B. Verstraeten et al. / Photoacoustics 3 (2015) 64–7776
References

[1] C. Glorieux, W. Gao, S. Kruger, K. Van de Rostyne, W. Lauriks, J. Thoen, Surface
acoustic wave depth profiling of elastically inhomogeneous materials, J. Appl.
Phys. 88 (7) (2000) 4394–4400.

[2] J. Meth, C. Marshall, M. Fayer, Experimental and theoretical analysis of
transient grating generation and detection of acoustic waveguide modes in
ultrathin solids, J. Appl. Phys. 67 (7) (1990) 3362–3377.

[3] E. Abramson, J. Brown, L. Slutsky, Applications of impulsive stimulated
scattering in the earth and planetary sciences, Annu. Rev. Phys. Chem. 50 (1)
(1999) 279–313.
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