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We describe a robust method for the recovery of the depth map (or height map) from a gradient map (or
normal map) of a scene, such as would be obtained by photometric stereo or interferometry. Our method
allows for uncertain or missing samples, which are often present in experimentally measured gradient
maps, and also for sharp discontinuities in the scene’s depth, e.g. along object silhouette edges. By using
a multi-scale approach, our integration algorithm achieves linear time and memory costs. A key feature of
our method is the allowance for a given weight map that flags unreliable or missing gradient samples. We
also describe several integration methods from the literature that are commonly used for this task. Based
on theoretical analysis and tests with various synthetic and measured gradient maps, we argue that our
algorithm is as accurate as the best existing methods, handling incomplete data and discontinuities, and
is more efficient in time and memory usage, especially for large gradient maps.

� 2012 Elsevier Inc. Open access under CC BY-NC-ND license.
1. Introduction

The integration of a gradient map to yield a height map is a com-
putational problem that arises in several computer vision contexts,
such as shape-from-shading [1,2] and multiple-light photometric
stereo [3,4]. These methods usually determine a mean normal
direction within each image pixel, from which one can obtain the
surface gradient. Although this information alone does not deter-
mine the absolute heights, it can yield height differences between
parts of the same surface. This relative height information is suffi-
cient for many applications, such as industrial quality control [5],
pottery fragment reassembly [6], surveillance and customs inspec-
tions [7], face recognition [8], and many others.

1.1. The mathematical problem

Abstractly, our goal is to determine an unknown function Z of
two variables x and y defined on some region D of R2, given its gra-
dient rZ = (@Z/@x, @Z/@y). That is, we wish to find Z such that

@Z
@x
ðx; yÞ ¼ Fðx; yÞ @Z

@y
ðx; yÞ ¼ Gðx; yÞ ð1Þ
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at every point (x, y) within the region D, where F and G are two gi-
ven real functions defined on D. It is well known that this problem
has a differentiable solution if and only if

@F
@y
ðx; yÞ � @G

@x
ðx; yÞ ¼ 0 ð2Þ

for all (x, y) in D. The left-hand side of formula (2) is the curl (rota-
tional) of the vector field (F, G), so this requirement is often called
the zero curl condition.

If Eq. (2) holds, the solution Z can be expressed in many ways.
For a rectangular domain with corner at (0, 0), for example, it
can be written as

Zðx; yÞ ¼ C þ
Z y

0
Gð0; vÞ dv þ

Z x

0
Fðu; yÞ du ð3Þ

where C is an arbitrary constant. Note that the degree of freedom
represented by C is an inherent feature of the original problem,
not a limitation of the method.

1.2. Computational difficulties

In practical contexts, there are at least three difficulties with
this approach. First, the gradient functions F and G are usually dis-
cretized, i.e. known only at certain gradient sampling points p[u, v],
which usually form a regular orthogonal grid. Each sample
value f[u, v] (resp. g[u, v]) is some weighted average of F (resp. G)
over some neighborhood of the point p[u, v]. Note that photometric

https://core.ac.uk/display/81983615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.cviu.2012.03.006
mailto:saracchini@gmail.com
http://dx.doi.org/10.1016/j.cviu.2012.03.006
http://www.sciencedirect.com/science/journal/10773142
http://www.elsevier.com/locate/cviu
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


R.F.V. Saracchini et al. / Computer Vision and Image Understanding 116 (2012) 882–895 883
stereo methods will typically estimate the x-gradient and the y-
gradient at the same points, e.g. at the center of each image pixel.

Second, the data is usually contaminated with noise arising from
unavoidable measurement, quantization, and computation errors.
At some points, the expected magnitude of the error may be so
high that the gradient is essentially unknown. In the case of photo-
metric stereo, these regions include all pixels where the scene’s
surface is too dark, shadowed, specular, or outside the range of
the illumination source.

Third, the height function Z is usually discontinuous: It almost
always has step-like discontinuities, or cliffs, at the edges of solid
objects. At any pixel of a real scene that straddles a cliff, photomet-
ric stereo and other gradient acquisition techniques usually fail to
detect cliffs, and return a grossly incorrect gradient sample that
gives no clue as to the height of the cliff. This happens because
the computation of f[u, v], and g[u, v] from raw photometric stereo
data is a highly non-linear process, especially when the surface
normal is nearly perpendicular to the viewing direction. Therefore,
the samples f[u, v] or g[u, v] will be proper local averages of F and G
only when the scene has nearly constant slope within the pixel. See
Fig. 1.

Finally, the scene may also have regions where the height and
gradient functions are poorly defined, e.g. where the scene is
highly porous, covered with hair-like structures, or transparent.
1.3. Reliability weight maps

As Fig. 1 shows, one cannot always deduce the position of cliffs
and invalid gradient data from the gradient map alone. To work
around this problem, practical integration algorithms (including
ours) require the user to provide a weight map, that specifies the
reliability of each gradient sample. (In this paper we consider a sin-
gle weight map for both f and g, but our algorithm can be trivially
adapted to use a separate mask for each map.)

The weight map may be a simple binary mask which is 0 at any
pixel whose gradient data is unknown or unreliable (e.g. it is sus-
pected to contain a cliff), and 1 elsewhere. See Fig. 1c. More gener-
ally, the weight should be inversely proportional to the estimated
variance of the measurement noise affecting the corresponding
Fig. 1. A height map with cliff-like discontinuities (a), its color-coded gradient map
(b), as could be obtained by photometric stereo methods, and a binary mask (c)
showing the location of the cliffs. Note that the gradient map is oblivious to the
cliffs, and gives no clue as to which end of the ramp (if any) is at ground level. Image
(d) shows a distorted height map computed from (b) by the Frankot–Chellapa
integrator [9], which is oblivious to cliffs. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
gradient sample. If all data samples are equally reliable, one may
set all weights to 1. Fractional values between 0 and 1 may be used
to indicate varying degrees of data reliability.

The weight map can be obtained in many ways, either from
external information or by error detection algorithms applied to
the gradient data [10–15]. The weights are often generated as a
by-product of the measurement process that yielded the gradient
data.

1.4. Our solution

Several integration methods that have been described in the lit-
erature (see Section 2) are unsuitable for gradient maps obtained
by photometric stereo; either because they are too sensitive to
noise, or because they cannot cope with cliffs and missing data
samples, or because they are too costly for use with high-resolu-
tion maps.

In this paper we describe a new multi-scale iterative procedure
for gradient map integration (see Section 5), that is as accurate and
robust as the state-of-art methods, but substantially more efficient.
Except for some extreme cases, its memory and time cost scale lin-
early with the number of data pixels, making it quite practical even
for multi-megapixel maps.

2. Related work

2.1. Gradient map integration algorithms

In their survey [16], Kettle and Schlüns classified integration
methods in two categories: local path algorithms, that compute
the height values incrementally by line integrals along selected
paths, and global algorithms that compute all height values simul-
taneously by an error minimization procedure. We will extend
their classification into four broad groups: path integration, Fourier
filtering, local iteration, and direct system solving.

Path-integration methods assign a height to one reference pixel p
and then compute the height of every other pixel q by performing a
numerical line integral of the gradient field along a path from p to
q. This group includes the naive row-by-row integration, which is
the discrete version of Eq. (3) [17] as well as other methods that
choose the paths so as to avoid low-quality or missing data—e.g.
by finding an optimum spanning tree and integrating along it, as
done by Fraile and Hancock [18,10]. These methods are generally
quite fast, since they require only O(N) operations for an image
with N pixels. However, as pointed out by Kettle and Schlüns
[16], they are very sensitive to noise and discontinuities: if the
heights of two adjacent pixels p0,p00 are computed by distinct paths,
the integration of the noise component of the gradient will result
in a spurious height difference between them. See Fig. 2.

This problem can be alleviated, but not solved, by averaging the
integral along many distinct paths between the two pixels [19]. Ro-
bles-Kelly and Hancock have proposed a variant where the gradi-
ent is integrated along a straight line between every pair of
pixels, and these pairwise increments are then averaged to obtain
Fig. 2. Reconstruction of a noisy gradient map by the path-based integration
method of Fraile and Hancock [18].
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the height of each pixel [19]. While this approach gets rid of spu-
rious steps due to noise, its cost is prohibitive (proportional to
N2.5 for an image with N pixels) and its results are still inferior to
those of the other methods described below.

Fourier filtering methods rely on the fact that integrating a func-
tion corresponds to dividing each component of its Fourier trans-
form by 2p times its frequency. This approach was pioneered by
Frankot and Chellapa [9]. In the frequency domain one can easily
filter out the curl component of the gradient data and apply other
smoothing filters [20].

Through the use of fast Fourier transform algorithms (FFT or
DCT) these methods obtain the height field for N pixels using only
O(N) memory and O(NlogN) operations. However, this approach
does not allow the use of a weight map, because the FFT always
gives the same weight to all data samples. As a result, these meth-
ods will flatten out any invisible cliffs and deform the surface over
a wide area surrounding them. See Fig. 1d.

Moreover, the Fourier integrator assumes that the Z function is
periodic, meaning that the integral along each row of F and each
column of G must be zero. This assumption can be met by properly
mirroring and negating the gradient maps, which makes them four
times as large. We note that popular implementations of the Frank-
ot–Chellapa algorithm ignore this detail, and therefore fail if the Z
values along each edge of D differ from those along the opposite
edge.

Direct system solving methods reduce the gradient integration
problem to a system of N equations whose unknowns are the N
heights, and where each equation relates one height value and
its neighbors to the given derivatives in that neighborhood. They
then solve the system by a direct (non-iterative) method, such as
Gaussian LU or Cholesky factorization. (If the equations are non-
linear, they must be linearised and the process must be iterated
over, as in the Newton-Raphson method. This outer loop usually
has second-order convergence speed, so a few iterations are usu-
ally sufficient.) This approach is used, in particular, by several of
Agrawal’s ‘‘Poisson based’’ methods, including M-Estimators, En-
ergy Minimization, a-Surface, and Affine Transform [11].

The local equations can be derived in several ways, e. g. as an
energy minimization problem [11], or as the least-squares solution
of an overdetermined system [2], or by averaging height estimates
obtained from surrounding heights and gradients [21]. However,
all these local criteria generally yield some discrete (and possibly
non-linear) version of Poisson’s equation r2Z(x, y) = H(x, y).
Namely, each equation states the identity between two numerical
estimates of the Laplacian of the height field: one (r2Z) computed
from the unknown heights, and one (H) computed from the given
gradient data. The latter is, typically, a numerical estimate of the
divergence r � (F, G) of the given gradient field.

Since each equation refers to a small number of height values,
the whole system uses only O(N) storage. Unlike path-integration,
the Poisson approach uses all the information that is present in the
gradient map, automatically discarding its curl component, and
does not generate spurious steps in the presence of noise. Indeed,
the solution computed by these methods is theoretically equal to
that of Fourier filtering if all the weights are equal. In this case, fast
Fourier transforms can be used to efficiently solve the Poisson
equation, as shown by Georghiades et al. [22].

The main advantage of the Poisson approach, as pointed out by
Agrawal et al. in 2006 [11], is that each equation of the linear sys-
tem can be individually adjusted so as to ignore bad data samples
and suspected cliffs, as specified by the weight map. On the other
hand, the direct solution of the Poisson system is generally slower
than Fourier filtering and uses substantially more memory.
Although the system’s matrix is quite sparse, its Gaussian or Chole-
sky factors are substantially denser, so that memory usage scales
more than linearly with the number of pixels N. According our
tests, Agrawal’s M-Estimator method, for example, needs about
5N nonzero elements in the system’s matrix, but about 5N1.15 in
its Cholesky factor, even with optimum row and column ordering
and well-tuned sparse matrix algorithms. For N = 1024 �
1024 = 220, that would be about 5 � 223 � 8,000,000 nonzero ele-
ments, or about 128 MB of memory. The number of operations also
grows proportionally to N1.5. In our tests, the memory required by
Agrawal’s M-Estimator method grows like N1.15, and its running
time like N1.5. For these reasons, direct system solving methods
are impractical for multi-megapixel gradient maps.

Local iteration methods also set up an N � N system of equations
from local constraints, but then solve the system iteratively, as in
the Gauss–Seidel algorithm. Namely, they start with some initial
guess for the height map, and then repeatedly use each equation
in turn to recompute one height value, assuming the neighbors
are fixed—until all the heights appear to stabilise. This approach
was first described by Horn and Brooks [23,2].

Local iteration methods can use the same Poisson-like equa-
tions used by direct methods, including locally tuned formulas that
take weight map into account. In addition, they can also handle
moderately non-linear equations without the need for the New-
ton-Raphson linearization and its additional outer loop.

Local iteration methods require little memory space, which
grows proportional to N rather than N1.5. Their main drawback is
excessive processing time. Although each iteration requires only
O(N) operations, the number of iterations needed to reduce the ini-
tial error E below a specified tolerance e is usually proportional to
log(E/e) times the square of the image’s diameter, that is to Nlog(E/
e); so the total running time is proportional to N2log(E/e).

This inefficiency can be explained by considering the effect of
the Gauss–Seidel iteration on each Fourier component of the cur-
rent error map d (the difference between the current height map
and the correct one). Each iteration essentially reduces the ampli-
tude of / by a factor a = cos(2p/x), where x is the wavelength of /.
In a square mesh with N pixels, the lowest-frequency component
has x ¼

ffiffiffiffiffiffiffi
2N
p

, so a ¼ cosð2p=
ffiffiffiffiffiffiffi
2N
p

Þ � 1� p2=N. Therefore, the
number of iterations needed to reduce its initial amplitude from
E to e is proportional to log(E/e)/log(1 � p2/N) � N/p2log(E/e). On
the other hand, any components of the error map d whose wave-
length is only a few pixels will be reduced to insignificance with
O(1) iterations. Indeed, the correction of the initial guess error
propagates across the height map by a diffusion-wave process,
mathematically similar to the spreading of heat in a solid plate.

One way to accelerate the convergence of local iterative meth-
ods is to use multi-scale techniques as suggested by Terzopoulos
[24,25] in 1986. This is the approach we use in our algorithm;
see Section 5.

Other methods. The Kernel method introduced by Ng et al. [26]
assumes a sparse gradient field, and reduces gradient integration
to a high-dimensional data fitting problem using certain kernel
(basis) functions. This approach can accomodate irregularly spaced
gradient sampling points and is claimed to provide better ‘‘fill in’’
for missing data than Poisson methods. However it requires solving
an even larger (3N � 3N) linear equation system, and is therefore
much more expensive in terms of time and memory usage.

The ‘‘pyramid-based’’ method of by Chen, Wang and Wang [27]
(which does not accept weights) uses the idea of working at several
scales of resolution, but is not truly ‘‘multi-scale’’ since the
problem is not reduced and expanded between successive scales.
Instead, their algorithm solves a sequence of N � N Poisson
systems. System k related each height z[u, v] to heights z[u ± 2k,
v ± 2k]. Expensive line integrals are used to compute the right-hand
side for each equation. While the use of longer strides substantially
improved convergence, the speed and accuracy reported by the
authors were still quite inferior to those of Fourier-based
algorithms.



Fig. 3. The gradient and height sampling points around point q[u, v] = (u, v).
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2.2. Computing weights from the gradients

Several papers on path- or Poisson-based integrators that use a
weight map assume that the latter is not given by the user, but is to
be computed from the given gradient data. Typically, these meth-
ods assume that errors in measured gradient samples can be de-
tected by checking the curl-free condition (2). They therefore
assign the weight of each data sample as some decreasing function
of the local curl, estimated by some discrete version of (2) [10,11].

Other methods adjust the weights iteratively by analyzing the
integrated height map [28,15]. Other methods adjust the weights
iteratively by analyzing the integrated height map. An example is
the method described in 2009 by Durou et al. [28]. Another exam-
ple is the ‘‘‘1 error correcting’’ approach described by Reddy and
others [15]. They observed that the curl filtering performed by Fou-
rier or Poisson integrators is equivalent to approximating the given
gradient data by the nearest curl-free field in the ‘2 error metric
(‘‘root of sum of squares’’). Since ‘2 approximations are notoriously
sensitive to outliers, they propose instead to use the curl-free map
that is nearest to the data in the ‘1 metric (‘‘sum of absolute val-
ues’’). However, the ‘1 measure of a vector v is equal to a weighted
version of the ‘2 metric, for properly chosen weights (that depend
on v). Therefore, these ‘1-based integrators can be viewed as vari-
ants of the weighted ‘2-based methods described in Section 2.1,
where the weight map is computed iteratively by specific
algorithms.

Most of these weight acquisition and adjustment techniques
can be used with our integrator as well. However, as we discussed
in Section 1, the gradient map may not contain enough information
to determine the location of cliffs and other data problems. In par-
ticular, there may be large cliffs in regions where the curl is zero.
For reliable results, the weight map should be obtained by some
other means, such as analysis of shadows and specular highlights
under varied light conditions [14,12], polarimetry [13], geometric
stereo hints [29], and prior knowledge about the scene’s geometry.
Accordingly, in this paper, we consider only the central integration
problem, assuming that the weight map is fixed and given as input
to the integrator.

3. The weighted Poisson system

Our integrator builds the linear equation system for a weighted
variant of the discrete Poisson problem, and solves it by a multi-
scale version of the Gauss–Seidel (or Gauss–Jacobi) iterative algo-
rithm. In this section we formulate the continuous version of the
Poisson method for error-free gradient fields, and then obtain a
discrete version that takes weights into account.

3.1. The continuous Poisson formulation

Conceptually, in the Poisson approach, we differentiate both
sides of the defining Eq. (1) and add them to obtain a single func-
tional equation

LðZÞðx; yÞ ¼ HðF;GÞðx; yÞ ð4Þ

where

LðZÞ ¼ @
2Z
@x2 þ

@2Z
@y2 HðF;GÞ ¼ @F

@x
þ @G
@y

ð5Þ

Eq. (4) says that the Laplacian L(Z) of the height field Z computed
from Z itself should be equal to the Laplacian H(F,G) computed from
the given gradient fields F, G [25,23]. It turns out that Eq. (4) has a
solution Z for any differentiable functions F, G.

On the other hand, being a second-order differential equation, it
allows for spurious solutions that do not satisfy formula (1).
Namely, the homogeneous version L(Z) = 0 is satisfied by an arbi-
trary linear function of position Z(x, y) = A x + B y + C, which when
added to any solution of Eq. (4) will yield infinitely many addi-
tional solutions. In contrast, the original equations (1) have only
one degree of freedom, the offset C. The two degrees of freedom
corresponding to A and B can be fixed by suitable global or bound-
ary constraints derived from the gradient data f and g. We will de-
fer this issue until after we describe our algorithm.

3.2. Discretizing the heights

In order to discretize Eq. (4), the height function Z is repre-
sented by a height map, an array of height samples z[u, v], nomi-
nally placed at height sampling points q[u, v]; and the derivative
operators in Eq. (4) are replaced finite difference operators applied
to the arrays z, f, and g. The differential Eq. (4) then becomes a sys-
tem of linear equations, whose unknowns are the elements of z
array.

In order to obtain comparable derivative estimates for both
sides of Eq. (4), we assume that the height sampling points q[u,
v] are displaced from the gradient sampling points p[u, v] by half
a step in each direction. Specifically, we assume that p[u, v] is
the point (u + 1/2, v + 1/2) in R2, while q[u, v] is the point (u, v). This
convention is illustrated in Fig. 3.

Therefore, if the gradient map has nx samples in x and ny sam-
ples in y, we can assume that the nominal domain D of the problem
is the rectangle [0_ nx] � [0_ ny] of R2. Each pixel [u, v] of the deriv-
ative maps f and g can be identified with the unit square centered
at p[u, v], with q[u, v] and q[u + 1, v + 1] at opposite corners. Note
that the height map z, on the other hand, has nx + 1 columns and
ny + 1 rows, and its pixels are centered at the corners of the gradi-
ent pixels.

In practice, the derivative values f[u, v]g[u, v] are almost always
averages of the derivatives @Z/@x and @Z/@y over a neighborhood of
the point p[u, v], with some gradient sampling kernel, that is as-
sumed to be symetric about p[u, v] and do overlap in part the adja-
cent kernels. Likewise, the computed height z[u, v] is an estimate
for an average of the height Z around the point q[u, v], taken with
some other height sampling kernel.

We assume that the weight map is given as an array w of non-
negative numbers, with the same dimensions as f and g. In what
follows, we assume that w[u, v] is zero whenever the pixel [u, v]
is outside the domain D. As we shall see, only the relative magni-
tudes of the weights are important; multiplying all weights by a
positive scale factor will not affect the result.

3.3. The discrete equations

In the discrete version, the differential operators L and H of Eq.
(4) are replaced by finite difference estimators L and H (which are
often called ‘‘Poisson kernels’’ in the literature.)
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To make the formulas more readable, we will use z�� for a gen-
eric height sample z[u,v], and the following notations for its four
neighboring height values:

z�� ¼ z½u� 1; v� z�� ¼ z½u; v � 1�
zþ� ¼ z½uþ 1; v� z�þ ¼ z½u; v þ 1�

Moreover, we use the following symbols for derivative values that
are interpolated by our algorithm, from the maps f and g, at the
midpoints of the edges between q[u, v] and its four neighbors:

f�� � @Z
@x u� 1

2 ;v
� �

g�� � @Z
@y u;v � 1

2

� �
fþ� � @Z

@x uþ 1
2 ;v

� �
g�þ � @Z

@y u;v þ 1
2

� �
We will also use w��, w+�, w��, and w�+ for the edge reliability
weights, assigned by our algorithm to the interpolated slopes f��,
f+�, g��, and g�+, respectively. See Fig. 4. The interpolation formulas
for these derivatives and weights are described in Section 4.

If all the weights are 1, we could use the discrete operators eLðzÞ
and eHðf ; gÞ to approximate L(Z) and H(F,G), where

eLðzÞ½u;v � ¼ þðz�þ � z��Þ � ðz�� � z��Þ þ ðzþ� � z��Þ � ðz�� � z��Þ
ð6Þ

eHðf ; gÞ½u; v� ¼ fþ� � f�� þ g�þ � g�� ð7Þ

The discrete version of Eq. (4) is then the set of equations

eLðZÞ½u; v� ¼ eHðf ; gÞ½u; v� ð8Þ

for all [u, v] in the domain of z. Note that the first term z�+ � z�� in
formula (6) is another estimate for the derivative @Z/@x on the mid-
point of the horizontal grid edge between q[u, v] and q[u + 1, v], de-
rived from the height map z, that may be compared to the
interpolated derivative datum f+�. Similarly, the other terms of for-
mula (6) are numerical height derivatives estimates that are com-
pared to the derivative data f��, g��, and g�+. Inspired by this
observation, we split each Eq. (8) into four equations: For each edge
incident to q[u, v], we write a finite difference equation:

zþ� � z�� ¼ þfþ� z�þ � z�� ¼ þg�þ
z�� � z�� ¼ �f�� z�� � z�� ¼ �g��

ð9Þ

In general, the system (9) is overdetermined, as it has �2N equa-
tions (after eliminating duplicates) on �N unknowns. We look for
the weighted least-squares near-solution, that minimizes the
weighted sum of squared differences between the two sides of
those equations. For this sum we use the weights w��, w+�, w��,
and w�+ of the interpolated edge data. The least-squares solution
turns out to be given by another system of N linear equations of
Fig. 4. Notations for the interpolated height, gradient and weight values around
point q[u, v].
the N unknown heights. Each equation says that some height value
z[u, v] is equal to the weighted average of its four neighbors, dis-
placed by the interpolated edge derivatives and weighted by the
edge weights:

z�� ¼ þ
w��
w��
ðz�� þ f��Þ þ

wþ�
w��
ðzþ� � fþ�Þ þ

w��
w��
ðz�� þ g��Þ

þw�þ
w��
ðz�þ � g�þÞ ð10Þ

where w�� is the total vertex weight,

w�� ¼ w�� þw�þ þw�� þwþ� ð11Þ

Note that only the relative values of the edge weights are relevant.
Rearranging Eq. (10) to separate unknown and known terms, we get

�LðzÞ½u;v � ¼ �Hðf ; gÞ½u;v � ð12Þ

where

�LðzÞ½u;v � ¼ þz�� �
w��
w��

z�� �
w�þ
w��

z�þ �
w��
w��

z�� �
wþ�
w��

zþ� ð13Þ

and

�Hðf ; gÞ½u; v� ¼ �w��
w��

g�� þ
w�þ
w��

g�þ �
w��
w��

f�� þ
wþ�
w��

fþ� ð14Þ

Note that when an edge has zero weight, the corresponding term
drops out in Eqs. (10), (13), and (14). Along the lower margin
(v = 0), for example, Eq. (12) will relate z[u, v] to its three neighbors
z�+, z+� and z��, ignoring the non-existing term z��. We refer to for-
mula (12) as the axial equation for z[u, v].

The value w�� can be interpreted as a local reliability weight for
the computed height z[u, v]. Values of z[u,v] that have w�� = 0
should be considered meaningless in subsequent computations.

Failover to diagonal equations: When many data values around
q[u, v] are missing, all four edge weights w�+, w��, w+�, w�� may
be zero. In that case we replace the axial Eq. (12) by a diagonal
equation, that relates z�� to its four diagonal neighbors

z�� ¼ z½u� 1;v � 1� zþ� ¼ z½uþ 1;v � 1�
z�þ ¼ z½u� 1;v þ 1� zþþ ¼ z½uþ 1;v þ 1�

Namely, we use the Eq. (12) with

�LðzÞ½u;v � ¼ z�� �
w��
w��

z�� �
w�þ
w��

z�þ �
wþ�
w��

zþ� �
wþþ
w��

zþþ ð15Þ

and

�Hðf ; gÞ½u; v� ¼ þw��
w��
ðþf�� þ g��Þ þ

w�þ
w��
ðþf�þ � g�þÞ

þwþ�
w��
ð�fþ� þ g�þÞ þ

wþþ
w��
ð�fþþ � gþþÞ ð16Þ

where the total vertex weight w�� is redefined as

w�� ¼ w�� þw�þ þwþ� þwþþ ð17Þ

Uncoupled height values: When both the axial and the diagonal
equations fail (that is, when formulas (11) and (17) are zero), we
consider z[u, v] to be uncoupled. We handle this special case by set-
ting the height z[u, v] to zero and removing that unknown and its
corresponding equation from the system. In any case, the values as-
signed to uncoupled pixels z[u, v] by these fixes will not affect any
neighboring z value, unless that neighbor too is uncoupled.

3.4. Assembling the system

After excluding the uncoupled heights, there is a one-to-one
correspondence between the discrete Poisson equations (12) (axial
or diagonal) and the height sampling points q[u, v]; so the number
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of equations is equal to the number of unknowns. We gather all
those equations in a linear equation system

Mẑ ¼ b ð18Þ

where ẑ is a vector with N = (nx + 1)(ny + 1) elements, which are the
unknown heights z[u, v]; M is the N � N coefficient matrix of the
left-hand sides (13) of those of equations; and b is the N-vector con-
taining the corresponding right-hand sides (14).

Note that M depends on the weights w[u,v] but not on the given
gradients f and g; while b depends on w, f, and g. Note also that any
constant height map z[x, y] = C for all x, y and any c satisfies the
homogeneous system Mẑ ¼ 0. As a consequence, the solution of
system (18) is determined only up to an additive constant.

It may happen that the missing data partition the height map
into two or more unrelated components, such that no equation re-
lates height values belonging to different components. In that case,
the system (18) splits into two or more independent systems, with
one indeterminate offset for each component.

4. Estimating the edge derivatives

To compute the right-hand side of Eq. (14) we need the estimate
g�+ for the derivative @Z/@y at the edge midpoint r ¼ ðu;v þ 1

2Þ be-
tween q[u, v] and q[u, v + 1], taking weights into account. For that
purpose, we use the four data values ga = g[u � 2, v], gb = g[u � 1, v],
gc = g[u, v], and gd = g[u + 1, v], which are assumed to be the deriv-
atives sampled around the points u� 3

2 ;v þ 1
2

� �
; ðu� 1

2 ;v þ 1
2Þ;

uþ 1
2 ;v þ 1

2

� �
, and uþ 3

2 ;v þ 1
2

� �
, respectively. Note that the signed

horizontal distances from these points to r are � 3
2 ;� 1

2 ; þ 1
2, and

þ 3
2, respectively. We also use the four reliability weights wa, wb,

wc, and wd of these data values. See Fig. 5.
Considering consecutive pairs of these four values, by linear

interpolation or extrapolation we obtain three estimates for the
derivative @Z/@y at r:

g� ¼ ð3gb � gaÞ=2
g� ¼ ðgb þ gcÞ=2
gþ ¼ ð3gc � gdÞ=2

ð19Þ

Given the interpretation of w[u, v] as the reciprocal of the variance
of g[u, v] (see Section 1.3), the weights of these estimates are

w� ¼ 4=ð9=wb þ 1=waÞ
w� ¼ 4=ð1=wb þ 1=wcÞ
wþ ¼ 4=ð9=wc þ 1=wdÞ

ð20Þ

We then take a weighted average of the three estimates, and assign
it the appropriate weight:

w�þ ¼ w� þw� þwþ

g�þ ¼
w�g� þw�g� þwþgþ

w�þ

ð21Þ

As usual, any samples that lie outside the domain of the g-map are
assigned zero weight, so their value will ignored in this computa-
tion. Note that any estimate of g�, g�, or g+ that depends on a
zero-weight sample will itself have zero weight, and therefore will
not contribute to the final result. If all three weights w�,w�, and w+
Fig. 5. Interpolating the derivative @Z/@y.
are zero, the final weight w�+ will be zero, and therefore g�+ will be
excluded from formula (14). In this case, we set arbitrarily g�+ = g�.

We denote this computation by

ðg�þ;w�þÞ ¼ Interpolateðga;wa; gb;wb; gc;wc; gd;wdÞ ð22Þ

The same algorithm is used to estimate g��. To estimate @Z/@x at the
midpoint s ¼ ðuþ 1

2 ;vÞ of a horizontal edge, we use the same func-
tion, applied to the four vertically adjacent samples fa = f[u,
v � 2], fb = f[u, v � 1], fc = f[u, v], and fd = f[u, v + 1] and their respec-
tive weights., displaced and/or rotated, are used to estimate g��, f+�,
and f��.
5. Multiscale solver

The Poisson-like system (18) is usually too large to solve by di-
rect elimination methods, therefore we use the iterative Gauss–
Seidel method. Note that the matrix M is large but quite sparse,
with at most five non-zero terms in each row. We use the same
ordering for the heights in ẑ and for the rows of M, so that the diag-
onal elements of M are all 1, while the off-diagonal coefficients are
non-positive and add up to �1. These features ensure that the iter-
ation converges. Furthermore, each equation has at most five non-
zero coefficients in the left-hand side, so the system’s coefficient
matrix M uses only O(N) storage, and the product Mẑ can be com-
puted in O(N) time.

As discussed in Section 2, for faster convergence we use the
Terzopoulos’s multiscale approach [24]. Namely, to obtain the ini-
tial guess for the solver, we reduce the gradient arrays f, g to half
their original width and height, compute from this reduced-scale
data a reduced-scale height map z, and expand the latter to the full
scale. The reduced problem is solved recursively in the same way.

In other words, we construct a pyramid of horizontal derivative
maps f(k), where f(0) = f and each map f(k+1) is a reduced copy of the
previous one f(k). The same procedure yields a pyramid g(k) of ver-
tical gradient maps from g. The reduction stops at a level m such
that f(m) and g(m) are small enough to be integrated efficiently
(e.g. by Gauss–Seidel or even Gaussian elimination), resulting in
a height map z(m) at the same scale. Then we integrate the maps
f(k) and g(k), in order of decreasing k, each time with an iterative
method using the solution z(k+1) as the initial guess, and obtaining
a more detailed solution z(k). The height map z(0) is the result. See
Fig. 6. If the reduction and expansion steps are done properly—in
particular, if the connectivity is preserved within regions that are
separated by height discontinuities—the recursively computed ini-
tial guess will be close to the correct solution in its broad features.
The iterative solver will then converge quickly, since it has only to
adjust details at a scale of one or two pixels. Terzopoulos [24] uses
trivial subsampling for reduction and bilinear interpolation for
expansion. Although those choices are adequate for smooth contin-
uous surfaces, they do not perform well next to domain edges and
discontinuities. To get the benefit of multiscale in those cases too,
we use more elaborate reduction and expansion formulas, de-
scribed in Sections 5.2 and 5.3, that take the weight map into
account.

5.1. The algorithm

The central part of our multiscale integration algorithm is the
recursive procedure ComputeHeights whose pseudocode is given
in Fig. 7. As discussed in Section 3.2, the input maps f, g, w must
have the same dimensions, namely nx columns by ny rows. while
the output height map z will have nx + 1 columns and ny + 1 rows.
The parameter j is the maximum number of Gauss–Seidel itera-
tions allowed, and s is a numeric convergence criterion, both for
scale 0. The constants k and smallsize are internal parameters.



Fig. 6. Schematic of multiscale integration method with maximum scale m = 4.
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The procedure BuildSystem constructs the system’s matrix
M = M and the right-hand side vector b = b as described in Sec-
tion 3. The procedure SolveSystem(M, b, z, s) is the Gauss–Seidel
algorithm, that repeats ẑ b��ðM��IÞẑ at most j times, stop-
ping when every height changes by less than s from its previous
iteration. The procedures ReduceGradientMap, ReduceWeightMap,
and ExpandHeightMap are explained in Sections 5.2 and 5.3 below.

We implemented our algorithm as a set of library procedures
and a main program (slope_to_height) written in the GNU dia-
lect of C. The code is available at the URL http://www.ic.uni-
camp.br/stolfi/EXPORT/projects/photo-stereo/.

5.2. Reducing the slope and weight maps

At each level in the recursion, the procedures ReduceGradient-
Map and ReduceWeightMap are used to compute the reduced-scale
data f0,g0 and w0. By assumption, every sample f0[u,v] should be the
value of the derivative @Z/@x averaged over the pixel of the reduced
map f0 with indices [u, v]; which corresponds to the 2 � 2 block of
pixels of the original map f centered at the point (2u + 1, 2v + 1).
Therefore, the value of f0[u,v] should be the unweighted average
of the original samples f�� = f[2u, 2v], f+� = f[2u + 1, 2v], f�+ = f[2u,
2v + 1], and f++ = f[2u + 1, 2v + 1]. Then the weight w0[u, v] of the re-
duced sample should be 16 divided by the sum of the reciprocals of
the four original weights.

However, this approach would give w0[u, v] = 0 (or a very low
value) if any of the four original weights is zero (or very low).
We use a more robust formula, based on the observation that the
average of any two diagonally opposite samples in the block is
an acceptable estimate for the derivative at the center of the block.
Namely, we first compute the two estimates

f 0a ¼ ðf�� þ fþþÞ=2 f 0b ¼ ðf�þ þ fþ�Þ=2
Fig. 7. The main procedure of the integrator.
with the respective weights

w0a ¼
4

1
w��
þ 1

wþþ

w0b ¼
4

1
w�þ
þ 1

wþ�

We then take a weighted average of the two estimates, and assign
to it the appropriate weight:

w0½u;v � ¼ w0a þw0b

f 0½u;v � ¼ w0af 0a þw0bf 0b
w0a þw0b

As usual, samples that lie outside the domain of the f-map are as-
signed an arbitrary value with zero weight. Note that w0[u, v] will
be zero only if both diagonals of the block include at least one sam-
ple with zero weight. The same formulas are used for the vertical
derivatives map g.

Observe that the integration operator is linear when the inputs
are the derivatives f, g, but non-linear when the inputs are the sur-
face normals~n. Therefore, when reducing the problem to a smaller
scale, one must average the gradients f and g within each 2 � 2
block, rather than the normal directions ~n.

5.3. Expanding the height map

The procedure ExpandHeightMap computes an estimate z for
the heights at some scale k, given the heights z0 computed for scale
k + 1. Let z0a ¼ z0½u� 1;v �;z0b ¼ z0½u;v �;z0c ¼ z0½uþ 1;v �;z0d ¼ z0½uþ 2;v �
and w0a;w

0
b;w

0
c;w

0
d be the respective vertex weights as defined in

Section 3.3. We use the Interpolate function derived in Section 4
to estimate the height z0x at the midpoint of q[u, v] and q[u + 1, v]:

z0x;w
0
x

� �
¼ Interpolate z0a;w

0
a; z
0
b;w

0
b; z

0
c;w

0
c; z
0
d;w

0
d

� �
In the same way we compute height estimates for z0y at the midpoint
of q[u, v] and q[u, v + 1], and the respective weight w0y. Then we set

z½2u;2v� ¼ 2z0½u;v�
z½2uþ 1;2v � ¼ 2zx

z½2u;2v þ 1� ¼ 2zy

z½2uþ 1;2v þ 1� ¼ 2
w0xz0x þw0yz0y

w0x þw0y

for all u, v where the left-hand side is defined. The factor of 2
accounts for the change in pixel spacing from scale k + 1 to scale
k. As a special case, if both w0x and w0y are zero, we set z[2u + 1,
2v + 1] to the simple average of z0x and z0y.

5.4. Ordering the equations

In the Gauss–Seidel iterative method, the order of the variables
may have a substantial impact on the speed of convergence.

http://www.ic.unicamp.br/stolfi/EXPORT/projects/photo-stereo/
http://www.ic.unicamp.br/stolfi/EXPORT/projects/photo-stereo/
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Ideally, variables whose neighbours are closest the correct values
should be recomputed first, so that good values will tend to replace
bad estimates, rather than the other way around. In general, points
q[u, v] that have higher total vertex weights by formula (11) or (17)
are expected to be more correct than those with lower weights.
Therefore, we reorder the equations so that height values with
higher total weight are computed first. For that purpose we create
a directed graph whose vertices are the unknowns z[u, v], with an
edge from z[u, v] to z[u0, v0] when both occur in same equation and
the vertex weight of z[u, v] is higher than that of z[u0, v0]. The equa-
tion ordering is then obtained by a topological sort [30] of the ver-
tices of this graph.
5.5. The indeterminate linear term

Unlike Eq. (1), the second-order continuous Poisson Eq. (4) has a
solution for any functions F,G. Actually Eq. (4) is under-determined
because the homogeneous version L(Z) = 0 is satisfied by any affine
function of position Z(x,y) = Ax + By + C, which when added to any
solution of Eq. (4) will yield infinitely many solutions. The additive
constant C is truly indeterminate, but the linear part Ax + By is an
artifact of the method.

In a single-scale solution, the term Ax + By becomes determined
in part by the gradient values at the effective domain boundaries
(the boundaries of D as well as the points adjacent to zero-weight
data samples). At these points the weighted Laplacians LðzÞ and
Hðf ; zÞ become a combination of first- and second-order deriva-
tives, so the equations become sensitive to gradients rather than
just curvature. If the iteration is stopped early, the linear term is
also determined in part by the average linear term contained in
the starting guess.

Note that this overall linear term is largely preserved by the
expansion of the height maps. This spurious linear term is often
conspicuous in height maps integrated by single-scale iterative
methods, since the iteration usually has to be terminated well be-
fore it converges. In those methods one could remove that term by
computing the average x-gradient over D from the data f[u, v] and
from the height field z, and then subtract the appropriate linear
term Ax from the latter to make the two values equal. A similar cor-
rection would take care of the term linear in y. However, this fix
will not correct localized errors in the mean gradients that may
occur due to premature termination.
Fig. 8. A pathological case for multiscale iterative integration. On top: maps f(0) and w(

direct solution of the Poisson System [11] (correct) and by our algorithm with 200 itera
The height map computed by the multiscale integration algo-
rithm is usually free from such spurious linear terms, and therefore
does not need such post-processing. To understand why, observe
that the gradient map reduction method largely preserves the
average gradient over the domain. Therefore, at the coarsest scale,
the computed height map, which is an exact solution, will have an
approximately correct average gradient too.

5.6. Analysis

To analyse the efficiency of this algorithm, we consider how it
operates in the frequency domain. When the gradient maps are re-
duced, the higher-frequency components of the data are lost, while
the lower-frequency components have their wavelengths reduced
by one half. Therefore, the recursively computed solution z(k+1) to
the reduced problem, after being expanded to the original scale,
will be mostly correct in the lower frequencies; only the small de-
tail (at the scale of one or two pixels) will be missing. Thus, each
Fourier component of the height map will be computed at the scale
where its wavelength is only a few pixels; which requires only a
small number of iterations by the Gauss–Seidel solver.

In any case, the algorithm limits the number of iterations at
each scale k to jkk. Therefore, the time spent in the Gauss–Seidel
solver at that scale will be proportional to Nj(k/4)k. The total sys-
tem-solving time for all scales will be 1 + k/4 + k2/42 + � � � km/4m)
times the work of scale 0. As long as k < 4, this sum is less than
1/(1 � k/4), therefore that cost will be O(N). The cost of building
the linear system at each scale k, including the topological sort,
is proportional to N/4k; therefore that part of the cost too is O(N).

5.7. Limitations

The multiscale approach is not valid in situations like Fig. 8,
when the effective domain (the region where the weights are
non-zero) includes a long and narrow corridor.

Note that the ReduceWeightMap procedure must ensure that
any pixels that might be crossed by a cliff have their weight set
to zero. It follows that if the corridor is t pixels wide and T pixels
long, it will be disconnected and/or obliterated at the scale k � log2

t. Then the intermediate map z(k) will be useless, and at level k � 1
the Gauss–Seidel algorithm would have to compute the heights
along the corridor from a incorrect guess—which will require
0) (256 � 256), and the reduced map w(4) (16 � 16). Bottom: heights z obtained by
tions per level (quite incorrect).
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X((T/t)2) iterations, i.e. X(N2) in the worst case possible. This prob-
lem occurs also when the weight map has zero elements scattered
with mean spacing t in a region with diameter T. For these patho-
logical cases, direct solution of the linear system may be much fas-
ter than our iterative method.

6. Test datasets

In this section we describe our test datasets, which are similar
to those proposed by Kettle and Schlüns in their survey [16], but
include reference height maps for all cases. They comprise four vir-
tual 3D scenes, and one real scene. See Table 1 and Fig. 9.

Virtual scenes: In these datasets each height field Z(x, y) was de-
fined by an algebraic formula. The spdome field is a hemispherical
dome on a flat groundplane, C smooth except for a gradient discon-
tinuity around its rim. The sbabel field is a spiral ramp connecting
a flat floor with a horizontal platform at the center. The ramp is
flanked by steep (but not vertical) walls with rounded shoulders.
It is C smooth everywhere except at the ends of the ramp. The
cbramp field is C-smooth everywhere except for the vertical cliffs
on three sides. Finally, mixwav is the sum of two sinuisodal waves
with different frequencies.

For these virtual scenes, each data sample f[u, v] or g[u, v] was
obtained by evaluating the analytic derivative of Z(x, y) on a
11 � 11 subsampling grid within a 2 � 2 pixel square centered at
p[u, v], and averaging those sub-samples with a 2D Hann window.
Table 1
Datasets used in our tests.

Set Source Description

spdome Synth. Spherical dome
sbabel Synth. Conical tower with spiral ramp.
cbramp Synth. Cubic ramp with cliffs
mixwav Synth. Low and high frequency waves.
dtface Real Face captured by 3D scanning

Fig. 9. Test datasets, showing the gradient maps f,g,w and the height map z⁄.
The reference height map z⁄[u, v] was generated by averaging Z(u,
v) on a subsampling grid within the pixel centered at q[u, v]. The
weights were set to 1 for all pixels and all datasets, except for
cbramp where any pixel containing cliffs where masked out by
hand.

The sampling procedure above resembles the photometric ste-
reo gradient acquisition process in that it is oblivious to cliffs of
the Z function, and is subject to sampling noise wherever the gra-
dient rZ changes abruptly. Note that taking finite differences of
the reference height map z⁄ will not yield adequate test data, since
such gradients would be correct everywhere—even across cliffs. In
that case the heights could be recovered by trivial path integration,
with zero error.

Real scene: The dtface data set is derived from a digital mesh
model of a human face consisting of 84,590 triangles, acquired
from a live subject with a commercial 3D acquisition camera that
combines structured lighting and geometric stereo [31]. We used
the POV-Ray [32] raytracer to extract the gradient and height
maps. The heights were obtained by rendering the scene
with orthogonal projection and proper Z-dependent texture. The
gradients were obtained by rendering the object using the
in-built texturing function slope a which is defined as
P½u;v� ¼ 0:5þ arcsinð~na½u;v �Þ=p, where a is ‘x’, ‘y’, or ‘z’, and
P 2 [0, 1] is the scaled pixel intensity, and ~na is the a component
of the average surface normal at this pixel. The binary weight mask
was manually created with an image editor, and excludes regions
where the data is known to be unreliable or missing, such as back-
ground, hair, and under-chin.
7. Reference algorithms

We compared our integrator against the best methods available
for each category, which are listed in Table 2.

For path integration (PI), we used the Fraile-Hancock [18] Com-
binatorial Surface Integration algorithm implemented in Matlab
[36], using the Norm method to compute the MST. We modified
the latter to accept a weight map and exclude from the MST any
samples with zero weight.

For Fourier filtering, we used the Frankot–Chellappa (FC) algo-
rithm [9] implemented in Matlab/Octave by Peter Kovesi [33]. It
uses Matlab’s FFT functions for the transform, and does not accept
a weight map. We did not use Wei’s reformulation [20] since that
merely modified the frequency-domain filter coefficients to add
extra smoothing.

The Poisson-based methods are represented by the unweighted
Poison–Solver (UP) of Agrawal et al. [11], and its weighted variants
M-Estimators (ME) and Diffusion with Affinely-Transformed ker-
nels (AT), all three implemented in Matlab by their authors [34].
Algorithm UP uses a discrete cosine transform to solve the Poisson
system, while AT and ME solve using Matlab’s linear system solver.
The Laplacian estimator used by AT depends on a variable number
of z values, averaging to about 6 in our tests, while UP and ME use a
5-point estimator like ours. The original versions of AT and ME
Table 2
Integration methods used in the tests.

Code Description Type Takes
w

PI Combinatorial Surface Integration
[18]

Path integral Yes

FC Frankot-Chellappa [9,33] Fourier integral No
UP Unweighted Poisson [11,34] Poisson by DCT No
AT Affine-Transform Diffusion [11,34] Poisson direct sol. Yes
ME M-Estimators [11,34] Poisson direct sol. Yes
MS Our multiscale integration method

[35]
Poisson multi-scale
iter.

Yes



Table 3
Relative RMS errors of each method for gradient maps without noise.

Meth. spdome sbabel cbramp mixwav dtface

e/R (%) e/R (%) e/R (%) e/R (%) e/R (%)

PI 5.5 0.2 0.1 7.2 1.5
FC 0.2 0.2 120.4 42.9 48.8
UP 1.6 2.1 107.3 1.2 32.2
AT 5.2 12.4 0.4 2.3 4.0
ME 1.9 2.1 0.4 1.2 4.1
MS 0.5 0.6 2.6 0.9 2.3

R.F.V. Saracchini et al. / Computer Vision and Image Understanding 116 (2012) 882–895 891
attempt to identify noisy and outlier samples in the gradient maps
by an iterative weight deduction loop; we modified the Matlab
implementations to start this loop with the given weight map.

Method MS is our proposed multi-scale iterative integrator. For
all runs, we set the maximum number j of Gauss–Seidel iterations
to 50, and the convergence threshold s to 0.0005 (at scale 0), with
internal parameters k = 2 and smallsize = 2.

We did not test Ng’s kernel method [26] since its time and
memory requirements are much higher than other methods avail-
able, and its advantage seems to be mainly its ability to fill in gaps
in the data. We considered testing Agrawal’s Alpha-Surface and En-
ergy Minimization algorithms [11] but we could not see how to
modify them to accept our weight map. For datasets which do
not have a weight map, we verified that those methods were about
as accurate as FC, but considerably slower.
8. Results and discussion

We evaluated the accuracy and robustness of all integrators on
the five datasets, comparing the integrated height map with the
reference one. We also evaluated the execution time and memory
usage of those algorithms that accept input weight maps.
Fig. 10. Computed height maps and error maps for the tests of the PI, FC and UP method
the true height.
8.1. Robustness and accuracy

To test the robustness and accuracy of our method, we com-
pared its output with each of the algorithms in the Table 2, on
all datasets. The results are shown in Table 3 and Figs. 10 and 11.

In order to analyse the behavior of the integration algorithms in
presence of noise, we also tested the algorithms on the same gra-
dient maps mixed with 30% of Gaussian noise with zero mean
and unit variance. The result of these runs are shown in Table 4
and Figs. 12 and 13.

Evaluation: Ideally, the accuracy of a gradient integrator
should be evaluated by comparing the computed z values with
the ‘‘true’’ height field. However, even the synthetic datasets
are affected by gradient sampling noise in regions of high curva-
ture. The discretization of the gradient map implies loss of high-
frequency detail, especially in regions of high curvature (such as
around the rim of the spdome set and along the shoulders of the
sbabel set). Therefore, due to sampling effects it is mathemati-
cally impossible to reconstruct the function Z exactly; the best
one could hope for is to recover its Fourier components up to
a certain cutoff frequency—which depends on the gradient sam-
pling kernel. Thus, some errors are unavoidable in the discrete
surface integration.

Another issue that arises is the fact that our method produces
height maps with one pixel more in each axis, due its interpreta-
tion of gradient maps described in Section 3.2, while most other
methods return height maps with the same size. To make a proper
comparison, we generated ground-truth height maps with proper
size for each integrator output.

In each case, we computed the RMS error e between the two
integrated height fields, and the relative RMS error e/R, where R
is the RMS value of the two height fields. The values of e and R
are computed after shifting both depth maps to have zero mean,
so as to compensate for the arbitrary integration constant C; and
s. Blue and orange indicate that the computed height is respectively below or above



Fig. 11. Computed height maps and error maps for the tests of the AT, ME and MS methods.

Table 4
Relative RMS errors of each method for gradient maps with noise added.

Meth. spdome sbabel cbramp mixwav dtface

e/R (%) e/R (%) e/R (%) e/R (%) e/R (%)

PI 10.8 19.3 8.9 10.8 19.8
FC 0.9 1.1 120.5 42.9 49.1
UP 1.8 2.4 107.4 1.3 31.8
AT 9.8 15.5 4.5 13.0 4.9
ME 2.0 2.4 1.2 1.3 4.4
MS 1.1 1.5 2.4 1.1 3.7
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weighting the difference at each vertex by its total vertex weight
(formula (11) or (17)) at scale 0.

Discussion: As shown by Tables 3 and 4, the only methods that
obtained usable results for all data sets were Agrawal’s Diffusion
by Affine Transforms (AT) and M-Estimators (ME) methods, and
our multiscale method (MS). The sensitivity of Path-Integration
(PI) to noise is evident in Fig. 12. As expected, the unweighted
methods FC and UP failed completely on the datasets with cliffs
and invalid data. The FC method failed on the mixwave dataset
as well, even in absence of discontinuities, due the edge effect ex-
plained in Section 2.1.

8.2. Time and memory

To evaluate the efficiency of our method, we measured the com-
puting time and memory needed for the integration of two square
gradient fields, spdome and dtface, sampled with various grid
sizes from 64 � 64 to 512 � 512.

We compared our method against two weighted Poisson inte-
grators provided by Agrawal et al. [34], namely the Diffusion by Af-
fine Transforms method (AT) and the weighted Poisson system
builder and solver (PC) that is the innermost loop of their M-Esti-
mator, Energy Minimisation, and a-Surface methods. Those are
the only methods in the literature that accept a weight map (thus
solving the same problem as ours) and are fast enough for practical
use. We removed the outermost loop of these three methods since
we are concerned only with the gradient map integration problem,
not with the generation of weight map.

Evaluation: All the tests were run on a laptop Dell XPS 1340,
with a 2.4 Ghz Intel P8600 Core Duo processor and 4 GB of avail-
able memory with 64-bit versions of all software involved. How-
ever, the absolute running times are not directly comparable
since Agrawal’s integrators were implemented in Matlab 2008b
under Windows Vista, while our code was compiled with GNU
GCC and executed under Mandriva Linux 2010. Therefore, we ana-
lysed how the run time and memory usage scale with increasing
input map sizes.

We timed only the construction and solution of the linear sys-
tem, excluding input and output overhead. For the memory figures,
we counted only the memory used by the linear system itself and
by the working storage used in its solution. In the case of our algo-
rithm, we counted also the time and memory used to prepare the
pyramid of gradient and weight maps. The results of these tests are
shown in Figs. 14 and 15, and Table 5.

Discussion: The plots in Fig. 14 show that the running times
scale quite differently: like O(N) for our algorithm (solid line) and
apparently like O(N1.5) for the direct Poisson solvers (dashed lines).

Our multiscale integrator also uses less memory than the direct
solvers; see Fig. 15. Its memory usage is dominated by the Poisson
system’s matrix M which has at most 5N nonzero entries and is
stored in a specialized sparse data structure that uses 60N bytes.
The reduced-scale gradient and weight maps use an additional
5N bytes in all.

The direct solving methods need to store the matrix M and also
Gauss’s triangular factor U (or Cholesky’s R). Note that Gauss’s low-
er factor L need not be stored. For these methods, we counted the
nonzero entries NM in M and NU in U, and estimated the memory
usage conservatively as 12NM + 16NU bytes assuming a general



Fig. 12. Computed height maps and error maps obtained from PI, FC and UP methods with 30% of Gaussian noise added to the gradient maps.

Fig. 13. Computed height maps and error maps obtained from AT, ME and MS methods with 30% of Gaussian noise added to the gradient maps.
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sparse matrix representation for U. We observed that NM does not
exceed 5N for PC and 7N for AT, but NU is much larger and seems to
grow like O(N1.15) (dotted lines). The actual memory usage of the
Matlab implementation is much larger than this estimate: both
PC and AT run out of memory, on an unloaded machine with
4 GB of RAM, given a 1024 � 1024 map.
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Fig. 14. Log–log plots of the running time of two direct solving methods (PC, AT) and of our multiscale method (MS), in seconds, on two representative datasets and various
map resolutions. The straight lines are fitted power laws, O(N) (solid) and O(N1.5) (dotted).
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Fig. 15. Log-log plots of memory usage for the system’s matrix M and its U factor (if any), in MBytes. The straight lines are fitted power laws, O(N) (solid) and O(N1.15) (dotted).

Table 5
Running times and memory usage of methods MS, PC, and AT on two representative
datasets.

N Time Memory

AT PC MS AT PC MS

spdome

64 � 64 = 4096 0.4 0.3 0.1 1.7 1.3 0.3
90 � 90 = 8100 1.1 0.9 0.1 3.6 3.0 0.5
128 � 128 = 16384 2.9 2.0 0.2 8.4 7.1 1.1
180 � 180 = 32400 7.5 7.3 0.4 18.1 15.6 2.1
256 � 256 = 65536 22.7 18.8 0.9 40.5 35.5 4.3
360 � 360 = 129600 74.0 69.2 1.9 88.1 77.2 8.4
512 � 512 = 262144 195.4 131.8 4.1 200.2 174.1 17.0

dtface

64 � 64 = 4096 0.1 0.1 0.1 0.5 0.5 0.3
90 � 90 = 8100 0.3 0.2 0.1 1.2 1.0 0.5
128 � 128 = 16384 0.7 0.5 0.3 2.5 2.4 1.1
180 � 180 = 32400 1.7 1.5 0.6 5.7 5.8 2.1
256 � 256 = 65536 4.8 5.1 1.1 13.3 13.3 4.3
360 � 360 = 129600 15.5 13.2 2.2 28.7 28.8 8.4
512 � 512 = 262144 40.6 40.8 4.7 64.8 64.7 17.0
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Note that time and memory costs are much lower for the
dtface dataset than spdome. This is because the three algoritms
exclude from the Poisson system the height values which have
no gradient data (w[u, v] = 0) and set them to zero directly.
9. Conclusions

We have described in this paper an algorithm that integrates a
gradient map to yield a height (depth) map. It accepts reliability
weights for individual gradient samples, thus allowing reliable
reconstruction of discontinuous height fields. Thanks to the use
of multiscale integration, our method is as accurate as competing
algorithms but considerabily faster in most inputs. The exceptions
are gradient maps that have narrow corridors or isthmuses
bounded by cliffs or missing data (such as the example in Fig. 8).
Our algorithm could be used also as the inner loop of nonlinear
iterative outlier detection methods such as described by Agrawal
et al. [11]. It also can be easily parallelized for SIMD platforms such
as GPU and FPU for real-time processing.
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