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Abstract

We present Lagrangian which implies both necessary constraints and dynamical equations for position
and spin of relativistic spin one-half particle. The model is consistent for any value of magnetic moment μ

and for arbitrary electromagnetic background. Our equations coincide with those of Frenkel in the approx-
imation in which the latter have been obtained by Frenkel. Transition from approximate to exact equations
yields two structural modifications of the theory. First, Frenkel condition on spin-tensor turns into the Pi-
rani condition. Second, canonical momentum is no more proportional to velocity. Due to this, even when
μ = 1 (Frenkel case), the complete and approximate equations predict different behavior of a particle. The
difference between momentum and velocity means extra contribution to spin–orbit interaction. To estimate
the contribution, we found exact solution to complete equations for the case of uniform magnetic field.
While Frenkel electron moves around the circle, our particle experiences magnetic Zitterbewegung, that is
oscillates in the direction of magnetic field with amplitude of order of Compton wavelength for the fast
particle. Besides, the particle has dipole electric moment.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Consistent and complete description of spin effects of the relativistic electron is achieved in
QED on the base of Dirac equation. However, starting from the pioneer works [1–3] and up to
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present date, interpretation of final results in some cases is under permanent and controversial
debates in various theoretical and experimental set-ups [4–16]. Understanding of spin preces-
sion in the case of arbitrary magnetic moment in an external electromagnetic field is important
in the development of experimental technics for measurements of anomalous magnetic moment
[17,18]. In accelerator physics [19] it is important to control resonances leading to depolarization
of a beam. In the case of vertex electrons carrying arbitrary angular momentum, semiclassical
description can also be useful [20]. So the relationship among classical and quantum descriptions
remains an important step of analysis, providing the interpretation of results of QFT computa-
tions in usual terms: particles and their interactions. Hence an actual task is to develop, in a
systematic form, the classical model of an electron [21–26,28,29,31–38,40] which would be as
close as possible to the Dirac equation.

Maybe the best candidates for classical equations of relativistic electron are those of Frenkel
[21,22] and Bargmann, Michel and Telegdi (BMT) [23]. They almost exactly reproduce spin
dynamics of polarized beams in uniform fields, and thus might be proper classical analog for
the Dirac theory. Integrability of BMT equations in the case of rather general electromagnetic
backgrounds were studied in [50]. Solutions to BMT equations in a constant magnetic field can
be associated with those of Dirac [49].

However, to be able to describe other spin effects, it is desirable to have systematically con-
structed Lagrangian and Hamiltonian formulations as well as proper quantization scheme for
these equations (note that one needs a Hamiltonian to describe, for instance, Stark and Zeeman
effects). Then it would be possible to use them as a semiclassical approximation of the QFT
computations based on Dirac equation.

Non-relativistic spin operators are proportional to the Pauli matrices, so they form a simple
algebra with respect to commutator

[Ŝi , Ŝj ]− = ih̄εijkŜk, (1)

as well as with respect to anticommutator

[Ŝi , Ŝj ]+ = h̄2

2
δij . (2)

These equations prompt that spin-space in classical model can be described by either even or
odd (Grassmann) variables. The pioneer model based on odd variables have been constructed
by Berezin and Marinov [26]. This gives very economic and elegant scheme for semiclassical
description of spin. For non-relativistic spin, the Lagrangian reads m

2 (ẋi)
2 + iξi ξ̇i , where the in-

ner space of spin is constructed from vector-like Grassmann variables ξi , ξiξj = −ξj ξi . Since
the Lagrangian is linear on ξ̇i , their conjugate momenta coincide with ξ , πi = ∂L

∂ξ̇i
= iξi . The

relations represent the Dirac second-class constraints and are taken into account by transition
from the grassmannian Poisson bracket to the Dirac one. After that, the constraints can be used
to exclude πi . Dirac bracket of the remaining variables reads {ξi, ξj }DB = iδij . Comparing this
with Eq. (2), we quantize the model replacing ξi → h̄

2 σi . Relativistic spin is described in a sim-
ilar way [26–29]. The problem here is that Grassmann classical mechanics represents a rather
formal mathematical construction. It leads to certain difficulties [26,29] in attempts to use it for
description the spin effects on the semiclassical level, before the quantization. Besides, general-
ization of Grassmann mechanics to higher spins is not known [30]. Hence it would be interesting
to describe spin on a base of usual variables, that is we intend to arrive at the commutator algebra
(1) instead of (2).
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Contrary to the models based on commuting spinors [32,33], in the Berezin–Marinov ap-
proach the σi (or γ μ) matrices do not appear in classical theory but produced through the
quantization process. The same turns out to be true in our model based on non-Grassmann vector
for description of spin.

Very general approach to description of rotational degrees of freedom in relativistic theory has
been developed by Hanson and Regge [25]. They suggested to represent a relativistic spherical
top as a point on a world-line to which a body-fixed frame is attached. The frame is identified
with the Lorentz-group element, so the trajectory (xμ(τ),Λμν(τ )) of the top represents a line
of the Poincare-group manifold. The antisymmetric tensor Λ−1Λ̇ has been chosen as the basic
quantity to describe the rotational degrees of freedom. They asked on the most general form
of Lagrangian which yields only three physical rotational degrees of freedom. The Lagrangian
gives generalized mass-shell constraint which relates mass with spin, so in quantum mechanics
they obtained a string-like spectrum composed by a family of particles with varying mass and
spin. They also analyzed whether their spin-tensor couples directly with electromagnetic fields,
and concluded on impossibility to construct the interaction in a closed form. As we show below,
this can be achieved in closed form for the vector that constitutes our spin-tensor.

Since the commutator (1) represents the angular-momentum algebra, it is natural to rep-
resent the spin in classical theory as the composed quantity, �S = �ω × �π , constructed from
spacial components of some inner-space coordinate ωμ and its conjugated momentum πμ. As
in the Hanson–Regge approach, the main problem here is to construct the Poincare-invariant La-
grangian which has the right number of degrees of freedom and admits an interaction in closed
and relatively simple form. We need a variational problem which yields the appropriate con-
straints. In turn, this implies the use of Dirac’s machinery for analysis of constrained systems.
Though a number of models [31–35,39] with vector variables yield Frenkel and BMT equations,
they also contain extra degrees of freedom. At the classical level one can simply ignore them.
However, they should be taken into account during quantization procedure, this leads to quantum
models essentially different from the Dirac electron.

In this work we continue detailed analysis of the Frenkel and BMT equations started in
[41,42], and construct the Lagrangian which yields generalization of these equations to the case
of arbitrary electromagnetic background. Even for non-interacting theory search for Lagrangian
represents rather non-trivial problem [22,25]. In [42] we have solved this problem, considering
spin as angular momentum of inner four-dimensional vector space attached to the point of a
world-line.

In Hamiltonian formulation the model represents a non-trivial example of a constrained sys-
tem. Phase space of the model turns out to be curved manifold equipped, in a natural way, with
the structure of fiber bundle. Detailed analysis of the underlying geometry has been presented in
[41]. This allowed us to develop the proper quantization scheme. In [42] we have performed both
canonical (in physical-time parametrization) and manifestly covariant (in arbitrary parametriza-
tion) quantization of the free model, and established the relation with one-particle sector of Dirac
equation as well as with quantum theory of two-component Klein–Gordon equation developed
by Feynman and Gell-Mann [43]. It has been demonstrated that various known in the literature
non-covariant, covariant and manifestly-covariant operators of position and spin acquire clear
meaning and interpretation in the Lagrangian model of Frenkel electron. In particular, we have
found the manifestly covariant form of position and spin operators in the space of positive-energy
Dirac spinors.

In the Hamiltonian formulation two second-class constraints appeared which, at the end, sup-
ply the Frenkel condition on spin-tensor. They depend on both position and spin-sector variables.
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This leads to new properties as compared with non-relativistic spin [41]. The constraints must
be taken into account by transition from Poisson to Dirac bracket, this leads to non-vanishing
classical brackets for the position variables. In the result, the position space is endowed, in
a natural way, with non-commutative structure which originates from accounting of spin de-
grees of freedom. Our model represents an example of a situation, when physically interesting
non-commutative relativistic particle emerges in a natural way. For the case, the “parameter of
non-commutativity” is proportional to spin-tensor. As a consequence, operators corresponding
to position of the electron are non-commutative (they can be identified [42] with Pryce (d) oper-
ators). This implies that effects of non-commutativity could be presented at the Compton wave
length, in contrast to conventional expectations of non-commutativity at Planck length.

There are a lot of candidates for spin and position operators of the relativistic electron [1–3,
44,24]. Different position observables coincide when we consider standard quasi-classical limit.
So, in absence of a systematically constructed classical model of an electron it is difficult to
understand the difference between these operators. Our approach allows us to do this, after real-
izing all them at the classical level. Besides, all the candidates obey the same equations in free
theory, so the question of which of them are the true position and spin is a matter of convention.
The situation changes in the interacting theory considered below, where we can distinguish the
variables according their classical dynamics in an external field.

In the present work we construct and study an interacting theory. In Section 2 we show that
our Lagrangian admits interaction with an arbitrary electromagnetic background.1 The model
contains two coupling constants – charge e and the interaction constant μ of basic spin variables
with Fμν . Provisionally, we call this magnetic moment. The theory is consistent for arbitrary
values of μ. For the position variable we have the minimal interaction term e

c
Aμẋμ. As for spin,

when the particle has non-vanishing magnetic moment, this interacts with electromagnetic field
in a highly nonlinear way. This turns out to be necessary for preservation of the number and
algebraic structure of constraints in the passage from free to interacting theory. In Section 3
we present and analyze equations of motion in Hamiltonian and Lagrangian formulations. We
show that they follow from simple and expected Hamiltonian (36), when we deal with the Dirac
bracket. We compare our equations with those of Frenkel [21,22]. Frekel considered the case
μ = 1, and found his equations in the quadratic approximation on spin–tensor. We show that
our exact equations coincide with those of Frenkel in these limits. Hence our Lagrangian gives
complete Frenkel equations for arbitrary field and magnetic moment.

Frenkel tensor can be used to construct BMT-type four-vector. We write the corresponding
equations of motion. While Hamiltonian equations can be rewritten in closed form in terms of
BMT vector, see Eqs. (60)–(62), we do not achieved this for Lagrangian equations in our theory.
In the Lagrangian form, the equation for BMT vector contains Frenkel tensor, see Eq. (63). It
seems that Frenkel spin in our theory represents more fundamental object as compared with
BMT spin.

While equations of motion have a rather complicated structure, in the case of uniform mag-
netic field there are a lot of symmetries and hence integrals of motions providing complete
analytical solution. In Section 4 we find exact solution to our equations for this case. As compared
with Frenkel and BMT equations, our model takes into account two effects. First, magnetic mo-
ment interacted with a magnetic field results in additional mass of electron. Second, in the case of
anomalous magnetic moment the velocity and the momentum are not collinear, this modifies the

1 Interaction with an arbitrary curved background is presented in [45].
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Lorentz force. Our model naturally incorporates both these effects and leads to small corrections
of the trajectory and spin precession.

2. Lagrangian and Hamiltonian of interacting theory

To start with, we shortly describe the structure of free theory [41,42]. Configuration space of
the model consist of the position xμ(τ) = (ct,x) and the vector-like variable of spin ωμ(τ) =
(ω0,ω), ω = (ω1,ω2,ω3) in an arbitrary parametrization τ . pμ and πμ are conjugate momenta

for xμ and ωμ. The variables in the free theory are subject to the constraints (we set a3 = 3h̄2

4a4
)

T1 = p2 + (mc)2 = 0, (3)

T3 = π2 − a3 = 0, T4 = ω2 − a4 = 0, T5 = ωπ = 0, (4)

T6 = pω = 0, T7 = pπ = 0, (5)

where ωπ = −ω0π0 + ωπ and so on. As the Hamiltonian action functional, we simply take
LH = pẋ + πω̇ − H , with the Hamiltonian H = giTi in the form of linear combination the
constraints Ti multiplied by auxiliary variables gi , i = 1,3,4,5,6,7. The constraint T3 belongs
to first-class and is related with local spin-plane symmetry presented in the theory [41]. The
basic spin-sector variables change under the symmetry, so they do not represent an observables
quantities. As the observable quantity we take the Frenkel spin-tensor Jμν

Jμν = 2
(
ωμπν − ωνπμ

)
. (6)

The constraints (4) and (5) imply the following restrictions (in the free theory the conjugated
momentum is proportional to four-velocity, pμ ∼ uμ)

Jμνpν = 0, J 2 = 6h̄2. (7)

Spacial components of the Frenkel tensor can be used to construct the quantity

Si = 1

4
εijkJjk, (8)

which we identify with non-relativistic spin of Pauli theory. In the interacting theory pμ turns into
canonical momentum Pμ, which for non-uniform fields or/and μ �= 1 does not proportional to
four-velocity. Hence in this case the Frenkel condition Jμνuν = 0 turns into the Pirani condition
[46,48,47] JμνPν = 0.

Frenkel tensor can be used to construct four-vector

sμ(τ ) ≡ 1

4
√−p2

εμναβpνJαβ, then sμpμ = 0, s2 = 3h̄2

4
. (9)

In our theory, even in the case of interaction, the condition sμPμ = 0 implies sμuμ = 0, see
Eq. (58) below. So we can identify sμ with BMT vector [23]. In the rest frame, spacial compo-
nents si of BMT vector coincide with Si . In an arbitrary frame, they are related as follows:

Si = p0√−p2

(
δij − pipj

(p0)2

)
sj . (10)

In the free theory Eq. (9) can be inverted, Jμν = − 2√−p2
εμναβpαsβ , so the two quantities are

mathematically equivalent. In the interacting theory, we have p → P =P(u, J,F ), see Eqs. (30)
and (31), so (9) becomes non-linear equation.
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In [42] we developed Lagrangian formulation of the theory. Excluding conjugate momenta
from LH , we obtained the Lagrangian action. Further, excluding the auxiliary variables, one
after another, we obtained various equivalent formulations of the model. In the end, we got the
“minimal” formulation without auxiliary variables. This reads2

S =
∫

dτ − mc
√−ẋNẋ + √

a3
√

ω̇Nω̇ − 1

2
g4

(
ω2 − a4

)
, (11)

where Nμν ≡ ημν − ωμων

ω2 is projector on the plane transverse to the direction of ωμ. The action

is written in a parametrization τ which obeys dt
dτ

> 0.
Interaction with an external background should not spoil the number and algebraic properties

of constraints (3)–(5). We do not know how to achieve this for the minimal action.3 For instance,
the natural reparametrization-invariant interaction e

c
Aμẋμ + μFμνω

μω̇ν , even for vanishing
magnetic moment, leads to the theory with the number and algebraic structure of constraints
different from those of free theory. So we start with the equivalent Lagrangian with four aux-
iliary variables, g1, g3, g4 and g7, this turns out to be appropriate to our aims. Of course, the
auxiliary variables will be excluded from final equations of motion, see Eqs. (46)–(52).

To introduce coupling of the position variable with an electro-magnetic field, we add the
minimal interaction term Aμẋμ. As for spin, we propose to modify derivative of ω as follows

ω̇μ → Dωμ = ω̇μ − g1
eμ

c
(Fω)μ. (12)

This is the only term which we have found to be consistent with the constraints Ti . Lagrangian
reads

L = 1

2 det G̃

[
g3(ẋNẋ) − 2g7(ẋNDω) + g1(DωNDω)

]

+ e

c
Aμẋμ − g4

2

(
ω2 − a4

) − g1

2
m2c2 + g3

2
a3, (13)

where det G̃ = g1g3 − g2
7 . Since L contains auxiliary variables, even for μ = 0 we have highly

nonlinear interaction. As a consequence, motion of spin influences motion of the particle and
vice versa.

We first establish whether our Lagrangian gives the desired constraints. The momenta read

pμ = ∂L

∂ẋμ
= 1

det G̃

(
g3Nẋμ − g7NDωμ

) + e

c
Aμ,

πμ = ∂L

∂ω̇μ
= 1

det G̃

(−g7Nẋμ + g1NDωμ
)
, (14)

πgi
= ∂L

∂ġi

= 0. (15)

2 The last term in (11) represents kinematic (velocity-independent) constraint which is well known from classical
mechanics. So, we might follow the classical-mechanics prescription to exclude g4 as well. But this would lead to lose
of manifest covariance of the formalism.

3 Hanson and Regge [25] have found highly non-linear interaction for the case of their relativistic top. It would be
interesting to apply their formalism to our minimal action.
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According to (15), the momenta πgi represent primary constraints, πgi = 0. Using the property
Nω = 0 of the projector N , from Eq. (14) more primary constraints follow, T5 = πω = 0 and
T6 =Pω = 0. It has been denoted

Pμ = pμ − e

c
Aμ. (16)

To write Hamiltonian, we solve the system (14) with respect to projected velocities

Nẋμ = g1Pμ + g7π
μ, NDωμ = g3π

μ + g7Pμ. (17)

Using these expressions as well as the identities P ẋ =PNẋ, πω̇ = πNω̇ we obtain Hamiltonian
H = pẋ + πω̇ − L + λaΦa in the form

H = g1

2

(
P2 − μe

2c
(JF ) + m2c2

)
+ g3

2

(
π2 − a3

) + g4

2

(
ω2 − a4

)
+ λ5(ωπ) + λ6(Pω) + g7(Pπ) + λgi

πgi
, (18)

where λ5 and λ6 appear as Lagrangian multipliers for primary constraints T5 and T6. We denote
(JF ) = JμνFμν and so on. From (18) we conclude that T1, T3, T4 and T7 appear as secondary
constraints when we impose the compatibility conditions π̇gi

= {πgi,H } = 0. The second, third
and fourth stages of the Dirac–Bergmann algorithm can be resumed as follows

T1 = 0 ⇒ λ6C + g7D = 0, (19)

T3 = 0 ⇒ λ5 = 0, (20)

T4 = 0 ⇒ λ5 = 0, (21)

T5 = 0 ⇒ g4 = a3

a4
g3, ⇒ λg4 = a3

a4
λg3, (22)

T6 = 0 ⇒ g1C − g7M
2c2 = 0, ⇒ λg7 = f (λg1), (23)

T7 = 0 ⇒ g1D + λ6M
2c2 = 0. (24)

We have denoted

M2 = m2 − e(2μ + 1)

4c3
FμνJ

μν, (25)

C = −e

c
(μ − 1)(ωFP) + eμ

4c
(ω∂)(JF ),

D = −e

c
(μ − 1)(πFP) + eμ

4c
(π∂)(JF ). (26)

Eq. (19) turns out to be a consequence of (23) and (24), λ6(23) + g7(24) = g1(19), and can
be omitted. Eq. (23) determines g7 = C

M2c2 g1 while (24) gives the lagrangian multiplier λ6 =
− D

M2c2 g1. The Dirac–Bergmann algorithm stops at the fourth stage. This yields all the desired
constraints Ta , a = 1,3,4,5,6,7. Two auxiliary variables, g1 and g3, and the corresponding
Lagrange multipliers λg1 , λg3 have not been determined.

It is useful to summarize the algebra of Poisson brackets between constraints in a compact
form, see Table 1. We note that Poisson brackets of T1 and T̃3 = T3 + a3

a4
T4 vanish on the con-

straint surface, so they form the first-class subset. The presence of two first-class constraints is
in a correspondence with the fact that two lagrangian multipliers remain undetermined within
the Dirac procedure. Matrix of Poisson brackets of the remaining constraints, T4, T5, T6 and T7,
is non-degenerate, so this is a set of second-class constraints. All this is in correspondence with
free theory [42].

In resume, the interaction does not spoil the structure and algebraic properties of Hamiltonian
constraints of the free theory.
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Table 1
Algebra of constraints.

T1 T3 T4 T5 T6 T7

T1 =P2 − μe
2c

FμνJμν

+ m2c2
0 0 0 0 −2C −2D

T3 = π2 − a3 0 0 −4T5 −2(a3 + T3) −2T7 0

T4 = ω2 − a4 0 4T5 0 2(T4 + a4) 0 2T6

T5 = ωπ 0 2(T3 + a3) −2(a4 + T4) 0 −T6 T7

T6 =Pω 2C 2T7 0 T6 0 T1 − M2c2

T7 =Pπ 2D 0 −2T6 −T7 −T1 + M2c2 0

3. Exact Frenkel equations on arbitrary background

3.1. Hamiltonian equations of motion

The Hamiltonian (18) determines evolution of the basic variables through the Poisson bracket
q̇ = {q,H }. Equivalently, we can pass from Poisson to Dirac bracket constructed on the base of
the second-class constraints T4, T5, T6, T7. The list of Dirac brackets is presented in Appendix A.
After that, our highly nonlinear interaction turns out to be hidden in the Dirac bracket: the con-
straints can be used in the Hamiltonian (18), this gives the expression

H1 = g1

2

(
P2 − μe

2c
(JF ) + m2c2

)
+ g3

2

(
J 2 − 8a3a4

)
. (27)

Equations of motion now can be obtained with help of H1 and the Dirac bracket, q̇ = {q,H1}DB.
They read

ẋμ = g1u
μ, Ṗμ = g1

e

c
(Fu)μ + g1

μe

4c
∂μ(JF ), (28)

ω̇μ = g1
eμ

c
(Fω)μ + g3π

μ + g7Pμ,

π̇μ = g1
eμ

c
(Fπ)μ − a3

a4
g3ω

μ − g6Pμ, (29)

where ∂μ(JF ) = Jαβ∂μFαβ . According to (23) and (24), the four-velocity uμ is not proportional
to canonical momentum Pμ

uμ =Pμ + g7

g1
πμ + λ6

g1
ωμ = T μ

νPν + Yμ. (30)

We have denoted

T μν = ημν − (μ − 1)a(JF )μν, Yμ = μa

4
Jμα∂α(JF ),

a = − e

2M2c3
≡ −2e

4m2c3 − e(2μ + 1)(JF )
. (31)

Matrix T is invertible, the inverse matrix T̃ has the same structure (we used the identity
(JFJ )μν = − 1 (JF )Jμν which implied by (6))
2
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T̃ μν = ημν + (μ − 1)b(JF )μν,

b = 2a

2 + (μ − 1)a(JF )
≡ −2e

4m2c3 − 3eμ(JF)
. (32)

All the basic variables have ambiguous evolution. xμ and Pμ have one-parametric ambiguity
due to g1 (they change under reparametrizations) while ω and π have two-parametric ambiguity
due to g1 and g3 (they change under reparametrizations and spin-plane symmetry). The quantities
xμ, Pμ and the spin-tensor Jμν are spin-plane invariants. Their equations of motion form a
closed system

ẋμ = g1

[
Pμ − aJμα

(
(μ − 1)(FP)α − μ

4
∂α(JF )

)]
, (33)

Ṗμ = e

c
(F ẋ)μ + g1

μe

4c
∂μ(JF ), (34)

J̇ μν = g1

[
eμ

c
F [μ

αJαν] − 2aP [μJ ν]α
(

(μ − 1)(FP)α − μ

4
∂α(JF )

)]
. (35)

The last term in (27) does not contributes to the equations of motion for x,P and J , and can be
omitted. Then the Hamiltonian for these variables acquires a simple and expected form

H = g1

2

(
P2 − μe

2c
(JF ) + m2c2

)
. (36)

The interaction yields two essential structural modifications of the theory. Free theory im-
plies the Frenkel condition, Jμνẋν = 0, and pμ ∼ ẋμ. Interaction modifies not only dynamical
equations but also the Frenkel condition, the latter necessarily turns into the Pirani condition

JμνPν = 0, (37)

where, due to (30), Pμ is not proportional to ẋμ. Then Eqs. (33) and (34) imply that the interac-
tion leads to a modification of the Lorentz-force equation even for uniform fields. Only for the
non-anomalous value of magnetic moment, μ = 1, and uniform electromagnetic field Eqs. (23)
and (24) would be the same as in free theory, λ6 = g7 = 0. Then T μν = ημν , Yμ = 0, and four-
velocity becomes proportional to Pμ. Contribution of anomalous magnetic moment μ �= 1 to the
difference between u and P is proportional to J

c3 ∼ h̄

c3 , while the term with a gradient of field is

proportional to J 2

c3 ∼ h̄2

c3 .
The remaining ambiguity due to g1 in Eqs. (33)–(35) reflects the reparametrization symme-

try of the theory. Assuming that the functions xμ(τ), pμ(τ) and Jμν(τ ) represent the physical
variables xi(t), pμ(t) and Jμν(t) in the parametric form, their equations read

dxi

dt
= c

ui

u0
,

dx0

dt
= c, (38)

dPμ

dt
= e

u0
Fμνuν + μe

4u0
∂μ(JF ), (39)

dJμν

dt
= c

g1u0
J̇ μν. (40)

As it should be, they have unambiguous dynamics. Eqs. (33)–(35) are written in an arbitrary
parametrization of the world-line. In the next subsection we exclude Pμ and g1, and then analyze
the resulting equations in the proper-time parameterizations. This allow us to compare them with
original Frenkel equations.
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3.2. Lagrangian form of equations

Hamiltonian equations from the previous section can be rewritten in the Lagrangian form for
the set x,J . Let us analyze the relation between velocity and momentum given by the Hamilto-
nian equation (33). This can be written in the form

ẋμ = g1
(
T μ

νPν + Yμ
)
. (41)

From this equation we express P through ẋ

Pμ = 1

g1
T̃ μ

νẋ
ν − T̃ μ

νY
ν. (42)

We can find g1 calculating square of the following expression

Pμ + T̃ μ
νY

ν = 1

g1
T̃ μ

ν ẋ
ν,

which yields

P2 + (T̃ Y )μ(T̃ Y )μ = 1

g2
1

(T̃ ẋ)μ(T̃ ẋ)μ.

We used that PμT̃ μ
ν =Pμ and PμYμ = 0. Using the last equation and T1 -constraint we find g1

g1 =
√√√√ (T̃ ẋ)2

(T̃ Y )2 − m2c2 + μe(JF )
2c

≡
√−gẋẋ

mrc
, (43)

where we have introduced the symmetric matrix

gμν = (
T̃ T T̃

)
μν

, (44)

and the radiation mass

m2
r = m2 − μe

2c3
(JF ) − gYY

c2
. (45)

In the natural parametrization
√−gẋẋ = c, we have g1 = m−1

r , that is the auxiliary variable,
which appeared in front of mass-shell constraint T1 = 0, is the inverse radiation mass. Due to the

identity (T̃ Y )μ = b
a
Yμ we also can write gYY = b2

a2 Y 2. Using (42) and (43) in (34) and (35) we
write closed system of equations for xμ and Jμν in the form

d

dτ

[
mrc

(T̃ ẋ)μ√−gẋẋ
− (T̃ Y )μ

]
= e

c
(F ẋ)μ + μe

√−gẋẋ

4mrc2
∂μ(JF ), (46)

J̇ μν = eμ

mrc2

√−gẋẋF [μ
αJαν] − 2b(μ − 1)mrc√−gẋẋ

ẋ[μ(JF ẋ)ν] + 2b

a
ẋ[μY ν], (47)

JμνT̃να

(
mrcẋ

α − √−gẋẋY α
) = 0. (48)

Let us compare them with Frenkel equations. Frenkel found equations of motion consistent with
the condition Jμνuν = 0 up to order O3(J,F, ∂F ). Besides, he considered the case μ = 1.
Taking these approximations in our equations in the proper-time parametrization

√−(ẋ)2 = c,
we arrive at those of Frenkel (our J is 2mc of Frenkel J )
e
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d

dτ

[(
m − e

4mc3
(JF )

)
ẋμ + e

8m2c3
Jμα∂α(JF )

]
= e

c
(F ẋ)μ + e

4mc
∂μ(JF), (49)

J̇ μν = e

mc

[
F [μ

αJαν] − 1

4mc2
ẋ[μJ ν]α∂α(JF )

]
, Jμνẋν = 0. (50)

In general case, our equations (46)–(48) involve two types of corrections as compared with
those of Frenkel. First, the energy of magnetic moment in non-uniform field leads to the con-
tribution − gYY

c2 into the Frenkel radiation mass, see (44). Second, when μ �= 0, a contribution
arises because the Frenkel condition which has been satisfied for the free particle, turns into Pi-
rani condition in the interacting theory. Its Lagrangian form is written in (48). In the result, the
components J 0i vanish in the frame Pμ = (P0, �0) instead of the rest frame. Hence our model
predicts small dipole electric moment of the particle.

The structure of our equations simplified significantly for the stationary homogeneous field
∂αFμν = 0. In this case (46) and (47) read[

mr(T̃ ẋ)μ√−(gẋẋ)

]
˙ = e

c2
(F ẋ)μ, (51)

J̇ μν = eμ

mrc2

√−gẋẋF [μ
αJαν] − 2b

(μ − 1)mrc√−gẋẋ
ẋ[μ(JF ẋ)ν], (52)

(J T̃ ẋ)μ = 0. (53)

Eq. (52) implies J̇ μνFμν = 0. Hence JF and mr are conserved quantities. Then T1 = 0 implies
that P2 is a conserved quantity as well. The equation ṁr = 0 can also be obtained contracting
(51) with (T̃ ẋ)μ and using the identity vμ[ vμ√

−v2
]˙ ≡ 0.

Contracting (51) with T we can further simplify this equation

d

dτ

[
mrẋ

μ

√−gẋẋ

]
= e

c2

(
F ′ẋ

)μ
, F ′ = T F − mrc

2

e
√−gẋẋ

T
˙̃
T . (54)

Let us choose a parametrization which implies

gμνẋ
μẋν = −c2. (55)

Since gẋẋ = ẋ2 + O(J 2), in the linear approximation on J this is just the proper-time
parametrization. Then Eqs. (52) and (54) read

d(T̃ ẋ)μ

dτ
= e

mrc
(F ẋ)μ, or, ẍμ = e

mrc

(
F ′ẋ

)μ
, F ′ = T F − mrc

e
T

˙̃
T , (56)

J̇ μν = eμ

mrc
F [μ

αJαν] − 2b(μ − 1)mr ẋ
[μ(JF ẋ)ν]. (57)

So, when μ �= 0, the exact equations differ from the approximate equations (49) and (50) even
for uniform fields.

3.3. BMT vector in Frenkel theory

Since JμνPν = 0, the spin-tensor is equivalent to the four-vector (9) where we replace
pμ →Pμ. Then sμPμ = 0. Due to Eqs. (30) and (31) together with (6), sμ also obeys the
condition

sμuμ = sμẋμ = 0. (58)
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The physical dynamics can be described using sμ instead of Jμν . Eq. (58) suggests that sμ could
be candidate for BMT-vector in our model. Using the identities

Jμν = 2√−P2
εμναβsαPβ, εμναβJαβ = 4√−P2

P [μsν], (59)

to represent Jμν through sμ in Eqs. (33)–(35), we obtain the closed system of equations for
spin-plane invariant quantities

ẋμ = g1

[
Pμ − 2(μ − 1)a√−P2

εμναβ(FP)νsαPβ − μa

P2
εμαγ δερβγ ′δ′

sγPδsγ ′Pδ′∂αFρβ

]
, (60)

Ṗμ = e

c
(F ẋ)μ + g1

μe

2c
√−P2

εαβγρsγPρ∂μFαβ, (61)

ṡμ = g1
eμ

c

[
(F s)μ + 1

P2
(sFP)Pμ

]
− 1

P2
(Ṗs)Pμ. (62)

These equations valid for arbitrary electro-magnetic fields. Let us consider the case of uniform
field discussed by Bargmann Michel and Telegdi. Then we can compare these equations with
BMT equations. First, we should exclude P and g1 from Eqs. (61) and (62) using (60). In contrast
to (41), where ẋμ is a linear function of Pμ and Jμν , in (60) ẋμ is a non-linear function of Pμ

and sμ. Inverse function which express Pμ as a function of ẋμ, sμ exists, though we can’t find
its explicit form even in the case of uniform fields. Formally using (42) and (43) in the case of
uniform fields, ∂αFμν = 0, we get

ṡμ = √−gẋẋ
eμ

mrc2
(F s)μ

− e

mrc2
√−gẋẋ

[
(μ − 1)(sF ẋ) + μb(sFJF ẋ)

]
(T̃ ẋ)μ, sẋ = 0. (63)

Eq. (63) contains J but for weak fields the corresponding contribution can be neglected. In the
uniform field and in the parametrization (55) we have Eq. (56) for x and

ṡμ = eμ

mrc
(F s)μ − e

mrc3

[
(μ − 1)(sF ẋ) + μb(sFJF ẋ)

]
(T̃ ẋ)μ. (64)

This can be compared with BMT-equations

ẍμ = e

mc
(F ẋ)μ, (65)

ṡμ = eμ

mc
(Fs)μ − e

mc3
(μ − 1)(sF ẋ)ẋμ. (66)

We can also introduce BMT-tensor dual to sμ

J
μν
BMT = 2

c
εμναβsαẋβ .

Due to (66) this obeys the equation

J̇
μν
BMT = e

mc

[
μF [μ

αJ
αν]
BMT − (μ − 1)

c2
(JBMTF ẋ)[μẋν]

]
. (67)

This can be compared with (57).
Obtaining their equation (66) in uniform field, Bargmann, Michel and Telegdi supposed that

the motion of particle (65) is independent from the motion of spin. Besides they looked for the
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equation for sμ linear on s and F . Obtaining Eqs. (56) and (64) we have not made any supposi-
tion of such a kind. Our approach is based on the variational formulation which satisfies all the
necessary symmetries. The exact equations (56) and (64) involve two types of essential correc-
tions as compared with BMT equations. First, an energy of magnetic moment in electromagnetic
fields leads to the radiation mass mr . Second, anomalous magnetic moment affects trajectory of
a particle.

Neglecting non-linear on F and s terms in our equations (56), (64), we obtain those of
Bargmann, Michel and Telegdi. The same holds if we take the proper-time parametrization,
ẋμẋμ = −c2, instead of (55).

4. Exact solution in uniform magnetic field

We take BMT vector of our model as the basic quantity for description of spin, and compare
dynamics of our and BMT models in the case of uniform magnetic fields. We already established
that P2 and (FJ ) are integrals of motion for uniform fields. The quantity a given in Eq. (31) is
also a constant, which practically (for the magnetic fields smaller than Schwinger field) can be
taken as a ≈ − e

2m2c3 . In the case of uniform magnetic field we have

(FJ ) = 4γ
[
(Bs) − (Bβ)(βs)

]
.

Here and through the rest of this section we use following notations

γ = P0

√−P2
, β = P

P0
,

in accordance with our construction of Lorentz invariant SO(3) spin fiber bundle [41], where γ

plays a role of relativistic factor which in the limit of free electron reads γ = (1 − v2/c2)−1/2.
Denote by β module of vector β .

Consider a particle with initial momentum P(0) moving in the uniform magnetic field di-
rected along z-axis, B = Bez, of a laboratory Cartesian coordinate system defined by an or-
thonormal basis (ex, ey, ez). Let sy(0) = γ −1s(0) cosφ and sx(0) = s(0) cosφ be initial y and x

components of BMT spin sμ, respectively. From the system of the following algebraic equations
P2 − μe

2c
(JF ) + m2c2 = 0, s2 = 3h̄2/4, Ps = 0, one can define initial values of P0(0), sz(0),

s0(0).
The Hamiltonian equations of motions (60)–(62) written in the parametrization of physical

time read

dx
dt

= cβ[1 + 2a(μ − 1)γ ((Bs) − (Bβ)(βs))] − 2ac(μ−1)
γ

B(βs)

[1 + 2a(μ − 1)γ (β2(Bs) − (Bβ)(βs))] , (68)

dP
dt

= e(1 + 2a(μ − 1)γ ((Bs) − (Bβ)(βs)))[β,B]
c[1 + 2a(μ − 1)γ (β2(Bs) − (Bβ)(βs))] ,

dP0

dt
= 0, (69)

ds
dt

= eμ[s,B]
P0[1 + 2a(μ − 1)γ (β2(Bs) − (Bβ)(βs))]
+ e(μ − 1)(s,P,B)P[1 − 2aγ ((Bs) − (Bβ)(βs))]

P2P0[1 + 2a(μ − 1)γ (β2(Bs) − (Bβ)(βs))] , (70)

where [s,B] and (s,P,B) mean the vector and mixed product of 3-dimensional vectors.
From (69) follows the following set of integrals of motion: P0 = const, P2 = const, γ =

const, β2 = const and (PB) = const. To simplify our calculations we assume without loosing
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Fig. 1. Momentum, velocity, spin and trajectory of a charged spinning particle in the uniform magnetic field.

generality that the initial vector of momentum is orthogonal to magnetic field, (PB) = 0. Indeed,
other values of (PB) can be obtained by boosts along B which do not modify electromagnetic
tensor (B′ = B, E′ = E = 0). Choice (PB) = 0 implies (Bs) = const. It is convenient to introduce
the following constants (frequencies)

Ωp = eB(1 + 2a(μ − 1)γ (Bs))
P0(1 + 2a(μ − 1)γβ2(Bs))

, (71)

Ω ′
s = eB(μ − 1)P0(1 − 2aγ (Bs))

P2(1 + 2a(μ − 1)γβ2(Bs))
. (72)

Then, solution of equations of motion reads

P(t) = ∣∣P(0)
∣∣(ex cos(Ωpt) + ey sin(Ωpt)

)
, (73)

s(t) = exs
(0)

[
cos

(
Ω ′

s

γ
t + φ

)
cos(Ωpt) − 1

γ
sin

(
Ω ′

s

γ
t + φ

)
sin(Ωpt)

]

+ eys
(0)

[
cos

(
Ω ′

s

γ
t + φ

)
sin(Ωpt) + 1

γ
sin

(
Ω ′

s

γ
t + φ

)
cos(Ωpt)

]

+ ezsz(0), (74)

x(t) = xc + cP(t)

eB
− 2ac|P(0)|s(0)

eγ 2(1 − 2aγ (Bs))
ez sin

(
Ω ′

s

γ
t + φ

)
, (75)

where vector xc defines the center of circle. Note that the angular velocity of precession of vector
s around B is time-dependent. Nevertheless, the helicity (Ps) changes with the constant rate,

Ω ′
s/γ . Indeed, (Ps) = s(0)|P (0)| cos(Ω ′

s

γ
t + φ).

Trajectory x(t) represents sum of two motions: circular motion in the plane orthogonal to B
and oscillations along B. These oscillations accompany variations of the helicity. The amplitude
of oscillations along B, �z = |P(0)|s(0)/[eγ 2(1 − 2aγ (Bs))] � βλC , less than the Compton
wave-length. The trajectory of the particle is shown schematically in Fig. 1. In the case of usual
magnetic moment μ = 1, helicity is an integral of motion, additional oscillations vanish and the
particle moves along circular trajectory in the plane orthogonal to the magnetic field (dotted line
in Fig. 1).

Oscillations of the trajectory along B with the amplitude of Compton wavelength, appearing
in our model in the case of anomalous magnetic moment, μ �= 1, can be called magnetic Zitter-
bewegung. When μ �= 1, the velocity and canonical momentum are non-collinear [24]. As we
have started from Lagrangian variational problem, we have explicit relation between velocity
and canonical momentum. This allows us to exclude the canonical momentum from our equa-
tions, see Eq. (56). The result is an additional spin–orbit interaction, F ′ẋ, instead of F ẋ. Hence
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the magnetic Zitterbewegung appears due to the modification of Lorentz force for the spinning
particle.

Magnetic Zitterbewegung leads also to the corrections of the angular velocity of orbital motion
Ωp given by

Ωp ≈ eB

γmc

(
1 + eγ (μ − 1)

m2c3
(sB) + o(h̄,μ − 1,B)

)
, (76)

where eB/(γmc) is the angular velocity of spinless or BMT particle. Frequency of helicity vari-
ations also corrected by high-order terms

Ω ′
s

γ
= (μ − 1)

eB

mc

(
1 − eγ

m2c3

(
1 + (μ − 1)β2)(sB) + o(h̄,μ − 1,B)

)
, (77)

from the value (μ − 1) eB
mc

= (
g
2 − 1) eB

mc
computed by Bargmann, Michel and Telegdi [23]. The

corrections are small, and for the experiments discussed by them, our equations give practically
the same results. Therefore our model is compatible with these experiments. Probably, other
artificial physical situations may be realized, where the corrections could become notable. For
instance, this may be the case of quasiparticles with large magnetic moment [20].

5. Conclusions

In this work we have presented solution to the problem which has been posed by Frenkel in
1926. He noticed that search for variational formulation which takes into account the spin-tensor
constraint Jμνẋν = 0 represents rather non-trivial problem. He found equations of motion con-
sistent with this condition in the approximation O3(J,F, ∂F ), and when anomalous magnetic
moment vanishes, μ = 1. We have found Lagrangian action (13) for charged spinning particle
which implies all the desired constraints and equations of motion without approximations. They
remain consistent for any value of magnetic moment and for an arbitrary electromagnetic back-
ground. Besides, due to the constraints (3)–(5), our action guarantees the right number of both
spacial and spin degrees of freedom. In the above mentioned approximations, our equations co-
incide with those of Frenkel. In the recent work [45], we also demonstrated that the classical
spinning particle has an expected behavior in arbitrary curved background.

With the Lagrangian and Hamiltonian formulations at hands, we can unambiguously construct
quantum mechanics of the spinning particle and establish its relation with the Dirac equation. For
the free theory, this has been done in the work [42]. We showed that this gives one-particle sector
of the Dirac equation. Due to the second-class constraints (5), the positions xi obey to classical
brackets with non-vanishing right hand side, see (A.1). So, in the Dirac theory they realized by
non-commutative operators which we identified with Pryce (d) center-of-mass [1]. Since namely
xi has an expected behavior (56) as the position of spinning particle in classical interacting
theory, our model argue in favor of covariant Pryce (d) operator as the position operator of Dirac
theory.

In resume, we have constructed variational formulation for relativistic spin one-half particle
which is self consistent and has reasonable behavior on both classical and quantum level.

As we have seen, interaction necessarily modifies some basic relations of the model. In the free
theory the conjugated momentum is proportional to velocity, pμ ∼ ẋμ and the Frenkel condition
holds. This is no more true in interacting theory. The Frenkel condition turns into the Pirani
condition, JμνPν = 0, where the canonical momentum is not collinear to velocity. The advantage
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of Lagrangian formulation is that this gives exact relation between them (see also Eqs. (41)
and (43))

ẋμ = g1
(
T μ

νPν + Yμ
)
, T μν = ημν + O(μ − 1, J ), Yμ = O(∂F,J ). (78)

Only when μ = 1 and ∂αFμν = 0, the interacting and free theory have the same structure. To
resume, what happens in general case, let us consider our Hamiltonian equations with Yμ = 0:
ẋμ = g1T

μ
νPν , Ṗμ = g1e

c
(FP)μ, and compare them with the standard expressions ẋμ = g1Pμ,

Ṗμ = g1e
c

(FP)μ. Due to T μ
ν , excluding P from our equations, we obtain extra contributions to

the standard expression for the Lorentz force, ẍμ = g1e
c

(F ẋ)μ + O(J ). So the modification (78)
mean that complete theory yields an extra spin–orbit interaction as compared with the approxi-
mate Frenkel and BMT equations.

We studied possible effects of this spin–orbit interaction in the case of uniform magnetic
fields. The exact analytical solution was obtained. We have found 4 independent integrals of
motion P0, P2, (PB) sz. These integrals commute with respect to Dirac brackets, and hence,
form a complete set of integrals in involution, providing integrability of our Hamiltonian system
with 8 degrees of freedom. Analytical solution shows that besides oscillations of the helicity first
calculated by Bargmann, Michel and Telegdi, the particle with anomalous magnetic moment
experiences an effect of magnetic Zitterbewegung of the trajectory. Usual circular motion in the
plane orthogonal to B is perturbed by slow oscillations along B with the amplitude of order
of Compton wavelength. The Larmor frequency (76) and the frequency of helicity oscillations
(77) are also shifted by small corrections. It would be interesting to construct an experiment
which could detect these possible corrections, for instance due to resonance effects. Another
possibility is an artificial simulation of a point-like system with spin and a large anomalous
magnetic moment. This could be inspired by simulations of Zitterbewegung itself with a trapped
ions [15].
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Appendix A. Dirac brackets

We construct Dirac brackets that take into account the second-class pairs T3, T4, T5 and T6.
We will calculate them iteratively in the case of arbitrary electromagnetic background. Then
Dirac brackets of the free theory can be obtained by substitution Fμν = 0. We start from the pair
of second class constraints is T6 and T7,

�67 = {T6, T7} =P2 + e

4c
FμνJ

μν.

At the constraint surface �67 = −M2c2. The Poisson brackets of initial variables with constraints
T6 and T7 are given in Table 2. Using Table 2 we calculate the Dirac brackets of basic variables
with respect to constraints T6 and T7

{Q1,Q2}67 = {Q1,Q2} + 1 ({Q1, T6}{T7,Q2} − {Q1, T7}{T6,Q2}
)
.
�67
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Table 2
Constraints vs. variables.

{,} xμ Pμ πμ ωμ Jμν

T6 = Pω −ωμ − e
c Fμνων Pμ 0 2(ωμPν − ωνPμ)

T7 = Pπ −πμ − e
c Fμνπν 0 −Pμ 2(πμPν − πνPμ)

The brackets read

{
xμ, xν

}
67 = −Jμν

2�67
, (A.1)

{
xμ,Pν

}
67 = ημν + e

2c�67
JμαFα

ν ≡ T
μν

(0) , (A.2)

{
xμ,ων

}
67 = −ωμPν

�67
, (A.3)

{
xμ,πν

}
67 = −πμPν

�67
, (A.4)

{
xμ,J αβ

}
67 = 1

�67

(
JμαPβ − JμβPα

)
, (A.5)

{
ωμ,ων

}
67 = 0, (A.6){

πμ,πν
}

67 = 0, (A.7)

{
ωμ,πν

}
67 = ημν − PμPν

�67
≡ Gμν, (A.8)

{
ωμ,J αβ

}
67 = 2

(
ωαGμβ − ωβGμα

)
, (A.9){

πμ,J αβ
}

67 = 2
(
παGμβ − πβGμα

)
, (A.10){

Jμν, J αβ
}

67 = 2
(
GμαJ νβ − GμβJ να − GναJμβ + GνβJμα

)
, (A.11)

{
Pμ,Pν

}
67 = e

c
Fμν + e2

2�67c2
(FJF)μν = e

c
Fμ

αT αν
(0) , (A.12)

{
Pμ,ων

}
67 = − e

�67c
FμαωαPν, (A.13)

{
Pμ,πν

}
67 = − e

�67c
FμαπαPν, (A.14)

{
Pμ,J αβ

}
67 = − e

�67c
Fμν

(
PαJν

β −PβJν
α
)
. (A.15)

We have defined define tensor Gμν as the Dirac bracket of spin variables ωμ and πν . Besides,
T

μν

(0) = T μν(μ = 0), where T μν = ημν − e(μ−1)
2c�67

(JF )μν .
On the next step we calculate Dirac brackets for the pair {T4, T5}67 = 2(T4 + a4),

{Q1,Q2}4567 = {Q1,Q2}67 + 1

2ω2

({Q1, T4}67{T5,Q2}67 − {Q1, T5}67{T4,Q2}67
)
.

The Dirac brackets {,}67 of initial variables with T4 and T5 are given in Table 3.
From Table 3 it is seen that variables xμ,Pμ,Jμν have vanishing Dirac brackets {,}67 with

constraints T4 and T5. Therefore, new Dirac brackets {,}4567 coincide with old Dirac brackets
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Table 3
Constraints vs. variables.

{,}67 xμ Pμ πμ ωμ Jμν

T4 = ω2 − a4 0 0 2ωμ 0 0
T5 = ωπ 0 0 πμ −ωμ 0

{,}67 when at least one of arguments is a function Z(xμ,Pμ,Jμν) of variables xμ,Pμ and Jμν

only,

{Z,Q}4567 = {Z,Q}67, Z = Z
(
xμ,Pμ,Jμν

)
. (A.16)

We omit subscripts of brackets, so that {,} means {,}4567. The only modification in the Dirac
brackets comes from the basic variables in the spin sector{

ωμ,ων
} = 0, (A.17)

{
ωμ,πν

} = ημν − PμPν

�67
− ωμων

ω2
, (A.18)

{
πμ,πν

} = −Jμν

2ω2
. (A.19)

Thus the complete list of Dirac brackets {,} consist of expressions (A.1)–(A.5), (A.17)–(A.19)
and (A.9)–(A.15).

Now the second class constraints can be put equal to zero, therefore we can rewrite the Hamil-
tonian as follows

H = g1

2

(
P2 − eμ

2c
(FJ ) + m2c2

)
. (A.20)

The constraint T3 can also be excluded since it has zero Dirac brackets with T1 and with all
spin-plane invariant variables of the theory. This Hamiltonian generates evolution

ẋμ = {
xμ,H

}
, Ṗμ = {

Pμ,H
}
, J̇ μν = {

Jμν,H
}
.

To check consistency of our calculations, let us obtain equations of motion using the Dirac
brackets {,} (and taking into account that at the constrained surface �67 = −M2c2 = −m2c2 −
e(2μ+1)

4c3 (FJ )).
Equation for coordinate reads

ẋμ = g1

2

{
xμ,P2 − eμ

2c
(FJ )

}

= g1
{
xμ,Pν

}
Pν − g1

eμ

4c

{
xμ,J αβ

}
Fαβ − g1

eμ

4c

{
xμ,Fαβ

}
Jαβ

= g1

(
ημν − e

2M2c3
JμαFα

ν

)
Pν − g1eμ

4M2c3

(
PαJμβ −PβJμα

)
Fαβ

− g1eμ

8M2c3
Jμρ∂ρ(FJ )

= g1

(
ημν − e

2M2c3
JμαFα

ν

)
Pν + g1

eμ

2M2c3
JμβFβαPα − g1

eμ

8M2c3
Jμρ∂ρ(FJ )

= g1

(
ημν + e(μ − 1)

2 3
JμαFα

ν

)
Pν − g1

eμ

2 3
Jμρ∂ρ(FJ ) = g1u

μ.

2M c 8M c
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Equation for momentum reads

Ṗμ = g1

2

{
Pμ,P2 − eμ

2c
(FJ )

}

= g1
{
Pμ,Pν

}
Pν − g1

eμ

4c

{
Pμ,J αβ

}
Fαβ − g1

eμ

4c

{
Pμ,xρ

}
∂ρFαβJαβ

= g1

(
e

c
Fμν + e2

2M2c4
FμαF νβJαβ

)
Pν + g1

e2μ

2M2c4
FμνPαJ β

νFαβ

+ g1
eμ

4c

(
ημρ − e

2M2c3
JραFα

μ

)
∂ρ(FJ )

= g1
e

c
Fμα

((
ηα

ν + e(μ − 1)

2M2c3
JαβFβν

)
Pν − eμ

8M2c3
Jαρ∂ρ(FJ )

)
+ g1

eμ

4c
∂μ(FJ )

= g1
e

c
Fμαuα + g1

eμ

4c
∂μ(FJ ).

Equation for spin-tensor reads

J̇ αβ = g1

2

{
Jαβ,P2 − eμ

2c
(FJ )

}

= g1
{
Jαβ,Pμ

}
Pμ − g1

eμ

4c

{
Jαβ, Jμν

}
Fμν − g1

eμ

4c

{
Jαβ, xμ

}
∂μ(FJ )

= g1
e

M2c3
Fμν

(
PαJ β

ν −PβJ α
ν

)
Pμ + g1

eμ

c

(
GμαJ νβ − GμβJ να

)
Fμν

+ g1
eμ

4c

1

M2c2

(
PαJμβ −PβJμα

)
∂μ(FJ )

= −g1
e

M2c3
P [αJ β]

νF
νμPμ + g1

eμ

c

(
Fα

νJ
νβ − Fβ

νJ
να

)

+ g1
eμ

M2c3
P [αJ β]

νF
νμPμ + g1

eμ

4c

1

M2c2

(
PαJμβ −PβJμα

)
∂μ(FJ )

= g1
e

c

(
μ

(
Fα

νJ
νβ − Fβ

νJ
να

) + (μ − 1)

M2c2
P [αJ β]

νF
νμPμ

− 1

4M2c2
P [αJ β]

μ∂μ(FJ )

)
.

The Hamiltonian is proportional to the first class constraint T1. Therefore equations of motion
contain arbitrary function g1(τ ) which is related with reparametrization invariance of the model.
To obtain unambiguous equations of evolution we can impose the gauge x0 = cτ . The gauge is
often called canonical gauge. Constraint T1 together with this condition form a pair of second
class constraints. We have{

x0 − cτ,T1
} = 2u0,

and Dirac brackets in the canonical gauge read

{Q1,Q2}τ = {Q1,Q2} + 1

2u0

({Q1,G1}{T1,Q2} − {Q1, T1}{G1,Q2}
)
.

The Dirac brackets of constraint T1 and canonical gauge G1 with physical variables are given
in Table 4. There compact notations
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Table 4
Constraints vs. variables (canonical gauge).

{,}4567 xμ Pμ ωμ πμ Jμν

T1 =P2 − eμ
2c

(FJ ) −2uμ −2
g1

Ṗμ 2CPμ

�67
− 2eμ

c (Fω)μ 2DPμ

�67
− 2eμ

c (Fπ)μ −2
g1

J̇ μν

G1 = x0 − cτ −1
2�67

J 0μ T
0μ
(0)

−ω0Pμ

�67
−π0Pμ

�67
−1
�67

J 0[νPμ]

Ṗμ ≡ g1

2

{
Pμ,T1

}
,

J̇ μν ≡ g1

2

{
Jμν, T1

}
,

uμ ≡
(

ημν + e(μ − 1)

2M2c3
JμαFα

ν

)
Pν − eμ

8M2c3
Jμρ∂ρ(FJ ).

C = −e

c
(μ − 1)(ωFP) + eμ

4c
(ω∂)(JF ),

D = −e

c
(μ − 1)(πFP) + eμ

4c
(π∂)(JF ),

were used.
The Dirac brackets which take into account the canonical gauge are as follow.

Spacial sector:

{
xμ, xν

}
τ

= −1

2u0�67

(
u0Jμν − uμJ 0ν + uνJ 0μ

)
,

{
xμ,Pν

}
τ

= ημν − uμ

u0
η0ν + e

2u0c�67

(
u0Jμα − uμJ 0α + uαJ 0μ

)
Fα

ν

− eμ

8u0c�67
J 0μ∂ν(FJ ),

{
Pμ,Pν

}
τ

= e

u0c

(
u0Fμ

αT αν
(0) − c

eg1
ṖμT 0ν

(0) + c

eg1
ṖμT 0ν

(0)

)
. (A.21)

Frenkel sector:

{
Jμν, J αβ

}
τ

= {
Jμν, J αβ

} − 1

g1u0�67

(
J̇ μνJ 0[βPα] − J̇ αβJ 0[νPμ]),

{
xμ,J αβ

}
τ

= −1

u0�67

(
uμJ 0[αPβ] − u0Jμ[αPβ]) − 1

2u0�67g1
J 0μJ̇ αβ,

{
Pμ,J αβ

}
τ

= e

u0c�67
Fμ

ν

(
u0P [αJ β]ν − uνP [βJ α]0) − 1

u0g1
T

0μ

(0) J̇
αβ

− eμ

4u0c�67
∂μ(FJ )P [βJ α]0. (A.22)

Basic spin variables:

{
ωμ,ων

}
τ

= − eμω0

2u0c�67

(
FμαPν − FναPμ

)
ωα,

{
ωμ,πν

}
τ

= ημν − PμPν
(

1 + (π0C + ω0D)

0

)
− ωμων

2
�67 u c�67 ω
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− eμω0

u0c�67

(
π0FμαωαPν − ω0FναπαPμ

)
,

{
πμ,πν

}
τ

= −Jμν

2ω2
− eμπ0

2u0c�67

(
FμαPν − FναPμ

)
πα. (A.23)

Other mixed brackets:

{
xμ,ων

}
τ

= −ωμPν

�67
+ 1

u0

(
J 0μ

2�67

(
CPν

�67
− eμ

c
(Fω)ν

)
+ uμω0Pν

�67

)
,

{
xμ,πν

}
τ

= −πμPν

�67
+ 1

u0

(
J 0μ

2�67

(
DPν

�67
− eμ

c
(Fπ)ν

)
+ uμπ0Pν

�67

)
,

{
ωμ,J αβ

}
τ

= 2
(
ωαGμβ − ωβGμα

)

− 1

u0�67

(
ω0Pμ J̇ αβ

g1
+

(
CPμ

�67
− eμ

c
(Fω)μ

)
J 0[βPα]

)
,

{
πμ,J αβ

}
τ

= 2
(
παGμβ − πβGμα

)

− 1

u0�67

(
π0Pμ J̇ αβ

g1
+

(
DPμ

�67
− eμ

c
(Fπ)μ

)
J 0[βPα]

)
,

{
Pμ,ων

}
τ

= − e

�67c
FμαωαPν − 1

u0

(
T

0μ

(0)

(
CPν

�67
− eμ

c
(Fω)ν

)
− Ṗμ

g1

ω0Pν

�67

)
,

{
Pμ,πν

}
τ

= − e

�67c
FμαπαPν

− 1

u0

(
T

0μ

(0)

(
DPν

�67
− eμ

c
(Fπ)ν

)
− Ṗμ

g1

π0Pν

�67

)
. (A.24)

In the free theory the algebra of Dirac brackets simplifies significantly. In this case Pμ = pμ,
uμ = pμ, J̇ μν = Ṗμ = 0, �67 = p2, and in an arbitrary parametrization τ , we have the following
brackets:
Basic variables of spin:

{
ωμ,ων

} = 0,
{
ωμ,πν

} = gμν − ωμων

ω2
,

{
πμ,πν

} = − 1

2ω2
Jμν; (A.25)

{
xμ,ων

} = −ωμpν

p2
,

{
xμ,πν

} = −πμpν

p2
; (A.26)

Spacial sector:

{
xμ, xν

} = − 1

2p2
Jμν,

{
xμ,pν

} = ημν,
{
pμ,pν

} = 0. (A.27)

Frenkel sector:{
Jμν, J αβ

} = 2
(
gμαJ νβ − gμβJ να − gναJμβ + gνβJμα

)
, (A.28)

{
xμ,J αβ

} = 1

p2

(
Jμαpβ − Jμβpα

)
, (A.29)

BMT-sector: take sμ = 1√
2
εμναβpνJαβ , then
4 −p
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{
sμ, sν

} = − 1√−p2
εμναβpαsβ = 1

2
Jμν, (A.30)

{
xμ, sν

} = − sμpν

p2
= − 1

4
√−p2

εμναβJαβ − pμsν

p2
. (A.31)

Other Dirac brackets vanish. In Eqs. (A.25) and (A.28) it has been denoted

gμ
ν ≡ δμ

ν − pμpν

p2
. (A.32)

Together with g̃μ
ν ≡ pμpν

p2 , this forms a pair of projectors

g + g̃ = 1, g2 = g, g̃2 = g̃, gg̃ = 0. (A.33)

The free Dirac brackets which take into account the canonical gauge are as follows.
Basic variables of spin:

{
ωμ,ων

}
τ

= 0,
{
ωμ,πν

}
τ

= gμν − ωμων

ω2
,

{
πμ,πν

}
τ

= − 1

2ω2
Jμν, (A.34)

{
xμ,ων

}
τ

= −ωμpν

p2
+ ω0pμpν

p0p2
, (A.35)

{
xμ,πν

}
τ

= −πμpν

p2
+ π0pμpν

p0p2
. (A.36)

Spacial sector:

{
xμ, xν

}
τ

= −1

2p0p2

(
p0Jμν − pμJ 0ν + pνJ 0μ

)
, (A.37)

{
xμ,pν

}
τ

= ημν − pμ

p0
η0ν,

{
pμ,pν

} = 0. (A.38)

Frenkel sector:{
Jμν, J αβ

}
τ

= 2
(
gμαJ νβ − gμβJ να − gναJμβ + gνβJμα

)
, (A.39)

{
xμ,J αβ

}
τ

= −1

p0p2

(
pμJ 0[αpβ] − p0Jμ[αpβ]), (A.40)

BMT-sector:

{
sμ, sν

}
τ

= − 1√−p2
εμναβpαsβ = 1

2
Jμν, (A.41)

{
xμ, sν

}
τ

= − 1

4
√−p2

εμναβJαβ + pμ

4p0
√−p2

ε0ναβJαβ = (s0pμpν − sμpνp0)

p0p2
. (A.42)

Other Dirac brackets vanish.
Here we define Dirac brackets for all phase space variables. After transition to the Dirac

brackets the second-class constraints can be used as strong equalities, therefore it is enough to
consider Dirac brackets at the constraint surface only. Then, explicit form of the Dirac brackets
depends on the choice of independent variables. For instance, in the free theory considered in the
gauge of physical time we can present s0 and p0 in terms of independent variables sBMT , p, x
BMT
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s0 = (s p)√
p2 + (mc)2

, p0 =
√

p2 + (mc)2. (A.43)

The non-vanishing Dirac brackets are

{
xi, xj

}
τ

= εijksk

mcp0
,

{
xi,pj

}
τ

= δij ,
{
pi,pj

}
τ

= 0, (A.44)

{
si , sj

}
τ

= p0

mc
εijk

(
sk − (s p)pk

p2
0

)
, (A.45)

{
xi, sj

}
D

=
(

si − (s p)pi

p2
0

)
pj

(mc)2
. (A.46)
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