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SUMMARY

In mammals, a cell’s decision to divide is thought
to be under the control of the Rb/E2F pathway. We
previously found that inactivation of the Rb family
of cell cycle inhibitors (Rb, p107, and p130) in quies-
cent liver progenitors leads to uncontrolled division
and cancer initiation. Here, we show that, in contrast,
deletion of the entire Rb gene family in mature hepa-
tocytes is not sufficient for their long-term prolifera-
tion. The cell cycle block in Rb family mutant hepato-
cytes is independent of the Arf/p53/p21 checkpoint
but can be abrogated upon decreasing liver size. At
themolecular level, we identify YAP, a transcriptional
regulator involved in organ size control, as a factor
required for the sustained expression of cell cycle
genes in hepatocytes. These experiments identify a
higher level of regulation of the cell cycle in vivo in
which signals regulating organ size are dominant
regulators of the core cell cycle machinery.
INTRODUCTION

A cell’s decision to continue cycling, exit the cell cycle, or start

proliferating is paramount to embryonic development, homeo-

stasis in the adult organism, and cancer development. Extra-

and intracellular signals that govern the cell cycle are integrated

and relayed by the Rb pathway. Under cytostatic conditions,

Rb and its family members p107 and p130 block cell cycle

progression in G0/G1, in large part by interacting with E2F tran-

scription factors to repress the expression of cell cycle genes.

Phosphorylation by Cyclin/Cdk complexes in response to mito-

gens functionally inactivates Rb family members and results in

increased E2F activity and cell cycle progression. Rb pathway

members have also been involved in many other biological pro-

cesses, including differentiation, survival, chromosomal stability,

metabolism, and senescence. Alterations in members of the Rb
pathway are found in the vast majority of human tumors, under-

scoring the central role of this pathway in the biology of mam-

malian cells and the maintenance of homeostasis (reviewed in

Dick and Rubin, 2013; Manning and Dyson, 2012; Nicolay and

Dyson, 2013).

A notable feature of the cell cycle machinery in mammals is a

high level of functional redundancy. Accordingly, while overex-

pression of one Rb family member is often sufficient to promote

cell cycle arrest (or cell death), inactivation of only one family

protein often results in limited long-term cell cycle defects.

For instance, acute loss of Rb function can only partly abrogate

quiescence, in part because of a compensatory transcriptional

upregulation of p107 (Sage et al., 2003). In contrast, combined

inactivation of Rb family members leads to increased prolife-

ration and, eventually, complete loss of the G1 checkpoint in

culture (see for example Dannenberg et al., 2000; Sage et al.,

2000). Similarly, while Rb mutant mice have a limited tumor

spectrum, inactivation of the Rb family results in long-term

ectopic proliferation and is often followed by neoplastic trans-

formation in mice (see for example Dannenberg et al., 2004;

McEvoy et al., 2011; Robanus-Maandag et al., 1998; Viatour

et al., 2011).

The liver of mammals has a remarkable regenerative ability

compared to other adult organs and tissues. Hepatocytes

are capable of proliferation and growth in response to liver

damage, including partial hepatectomy. Under certain condi-

tions, liver progenitor cells with the capacity of generating

both hepatocytes and bile duct cells are believed to contribute

to regeneration in the adult liver (reviewed in Duncan et al.,

2009). Thus, with a large number of cells having retained the

capacity to divide, the adult liver is a system of choice to

explore the mechanisms regulating cell cycle progression

in vivo.

Here, we investigated the consequences of in vivo abrogation

of the Rb pathway in the liver of adult mice. We found that the

control of cell cycle is different in hepatocytes and their progen-

itors and identified interactions between the Rb/E2F pathway

and organ size sensing mechanisms that are critical for the

long-term proliferative potential of hepatocytes in vivo.
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Figure 1. Rb Pathway Inactivation Leads to Transient Cell Cycle Entry in Hepatocytes

(A) Schematic representation of the Sleeping Beauty (SB) transposon-CreER system. ApoE.HCR.hAAT drives the expression of CreERT2 specifically in hepa-

tocytes.

(B and C) Acute Cre-mediated Rb gene family deletion in adult hepatocytes leads to cell cycle entry followed by cell cycle arrest. Quantification (B) and

representative images (C) of Ki67+ cells (red) after Cre activation in transfected hepatocytes (YFP+, green) in cTKO;RosaLSL-YFPmice. Nuclei are visualized by DNA

staining (DAPI, blue). *p < 0.05; n.s., not significant.

(D and E) Quantification of single (yellow arrow) and adjacent (white arrows) YFP+ (red) hepatocytes in transposon-CreER-injected RosaLSL-YFP (control) or

cTKO;RosaLSL-YFP (TKO) mice at different time points after Tam. Cell membranes are visualized by immunostaining for b-catenin (green). Significances are shown

between control and TKO cells 1 week after Tam. *p < 0.05; **p < 0.01.

(F) Representative example of enlarged nuclei (DAPI, blue) in TKO hepatocytes (GFP+, green) in transposon-CreER-injected cTKO;RosamTmG mice.

Data in (B) and (E) are presented as mean ± SD.
RESULTS

Acute Loss of the Rb Family Results in Transient
Proliferation in Mature Hepatocytes
To delete Rb family genes in mature hepatocytes, we con-

structed a Sleeping Beauty transposon that harbors a tamoxifen

(Tam)-inducible Cre recombinase (CreER) under the control of

a hepatocyte-specific promoter (Figure 1A). This transposon

stably integrates into a low percentage of liver cells following
372 Cell Reports 8, 371–381, July 24, 2014 ª2014 The Authors
hydrodynamic tail vein injection. We transfected Rb family con-

ditional triple-knockout hepatocytes (cTKO, Rblox/lox;p130lox/lox;

p107�/�) with this transposon-CreER vector. After 2 weeks of

recovery, mice were injected with Tam and triple-knockout

(TKO) hepatocytes were tracked using a Cre-inducible fluores-

cent reporter. Deletion of Rb family genes initially resulted in

cell cycle entry, but TKO hepatocytes rapidly and stably exited

the cell cycle (Figures 1B and 1C). cTKO hepatocytes remained

quiescent after Tam injection (YFP� cells in Figure 1C).



We developed three other systems to delete the Rb gene fam-

ily in adult hepatocytes: intrasplenic injections of Ad-CMV-Cre

(Ad-Cre) in cTKO mice and Tam injections in Rosa26CreER/+

cTKO mice or AlbCreERT2/+ cTKO mice. Figure S1A summarizes

the advantages and limitations of the four approaches. Impor-

tantly, cell cycle re-entry (7–10 days after Cre induction) and

exit (2–4 weeks after Cre induction) were similarly observed

in all systems tested (Figures S1B–S1E and data not shown),

indicating that these phenotypes are independent of the

approach used to delete Rb family genes.

Strikingly, less than one-third of TKO hepatocytes underwent

one or two cell divisions (Figures 1D and 1E). In all the systems

used, a number of TKO hepatocytes had abnormally high

ploidy (Figures 1F and S1F and data not shown). We did not

observe apoptotic cell death (data not shown). These experi-

ments indicate that, in response to loss of Rb family function,

adult hepatocytes divide once or twice and/or undergo endor-

eduplication, as has been shown for Rb-only mutant hepato-

cytes (Mayhew et al., 2005) and is commonly observed in

wild-type hepatocytes (Duncan, 2013). Thus, the Rb family is

required to maintain the cell cycle arrest of adult hepatocytes,

but loss of Rb family function is not sufficient for their pro-

longed proliferation.

The Cell Cycle Arrest in Rb Family Mutant Hepatocytes
Is Independent of the p53 Pathway
The Rb/E2F and p53 pathways intersect at many levels,

including shared targets between E2F and p53, such as the

p21Cdkn1a and E2F7 cell cycle inhibitors (Aksoy et al., 2012;

Hiyama et al., 1998). Activation of the p53 pathway can serve

as a tumor-suppressive mechanism in Rb-deficient cells,

including in the liver (McClendon et al., 2011; Symonds et al.,

1994).We examined the expression of E2F targets andmembers

of the p53 pathway when TKO hepatocytes are exiting the cell

cycle 10 days after Cre induction. As expected, loss of Rb

family function led to increased expression of cell cycle genes

(Figure 2A and data not shown). We also observed induction

of a number of cell cycle inhibitors, including high levels of

p21Cdkn1a as well as other known p53 targets (Figures 2A and

S2A and data not shown).

To test whether activation of p53 and/or p21 may be in part

responsible for the cell cycle exit in TKO hepatocytes, we

crossed cTKO mice to p53lox/lox mice or p21�/� mice (and

to RosamTmG/+ reporter mice). In both cases, the kinetics of

cell cycle re-entry were similar in quadruple-mutant mice

compared to TKO mice (Figures 2B and 2C). We also observed

cell cycle exit in quadruple-mutant hepatocytes 2 weeks

after Cre (Figures 2D and 2E), despite efficient deletion of

p53 (Figure S2B). We detected slightly elevated mRNA levels

of the cell cycle inhibitor p19Arf in both TKO and TKO;p21�/�

mutant livers compared to controls (Figures 2A and S2C)

and generated cTKO;p19Arf�/� mice to investigate p53/p21-

independent functions of p19Arf. However, loss of p19Arf did

not prevent cell cycle exit (Figures 2G). Similarly, pentuple-

mutant hepatocytes in cTKO;p21�/�;p19Arf�/� mice still exited

the cell cycle (Figure 2H). Therefore, the cell cycle arrest in

Rb family mutant hepatocytes is independent of the p19Arf/

p53/p21 module.
The Cell Cycle Arrest in Rb Family Mutant Hepatocytes
Correlates with an Inhibition of E2F Transcriptional
Activity
To gain insight into the mechanisms underlying the cell cycle exit

in TKO hepatocytes, we extracted RNA and proteins from adult

cTKO livers (quiescent controls), cTKO liver 36 hr after partial

hepatectomy or 48 hr after treatment with CCl4 (both conditions

induce wild-type hepatocytes to cycle), cTKO;AlbCreERT2/+ mice

1 week after Tam (TKO cycling), and cTKO;AlbCreERT2/+ mice

2 weeks after Tam (TKO arrested). As expected, Rb/E2F cell

cycle targets were expressed at low levels in quiescent control

livers and at higher levels in cycling cells. These genes were

also downregulated in arrested TKO hepatocytes (Figures 3A,

3B, and 3C), which was confirmed in an RNA sequencing

(RNA-seq) analysis on two samples from each of the four groups

(Figures 3D, 3E, and S3A; Table S1). These data suggested that

mechanisms exist in adult hepatocytes to inhibit the prolonged

transcription of E2F target genes even in absence of the Rb

family.

Arrested Rb Family Mutant Hepatocytes Display Low
YAP/TEAD Levels and Activity
We reasoned that the mechanism enforcing cell cycle exit in

TKO hepatocytes may exist in both wild-type and mutant livers

but may be even more active in the TKO context to counteract

the propensity of the mutant cells to divide. Thus, we sought

to identify transcription factors that may regulate the genes

whose expression is specifically altered in arrested TKO cells

compared to quiescent wild-type cells. A computational analysis

of the RNA-seq data identified candidates with known roles in

proliferation and tumorigenesis (Figure S3B; Tables S2 and

S3), including enrichment for TEF1 binding sites in genes down-

regulated in arrested TKO cells. TEF1/TEAD1 is a major partner

of the transcriptional coactivators YAP and TAZ downstream

of Hippo signaling, one of the key regulators of hepatic growth,

liver size control, and liver cancer (Dong et al., 2007; Lu et al.,

2010; Zender et al., 2005). Hippo/YAP signaling has also

been shown to regulate Wnt pathway activity, another pathway

highly enriched in the analysis that plays a central role in

liver biology (Rosenbluh et al., 2012). Gene set enrichment

analysis (GSEA) showed a strong enrichment for hepatic YAP

targets (Dong et al., 2007) in genes significantly downregulated

in arrested TKO livers (Figure 4A), which was confirmed by

RT-PCR analysis of knownYAP targets (Figure 4B). Furthermore,

we observed increased YAP phosphorylation as well as reduced

YAP and TEAD1 protein levels in arrested TKO livers (Figures 4C

and S4A) suggestive of an active downregulation of YAP and

TEAD1 in TKO arrested cells.

Based on these observations, we wondered whether E2F and

YAP may regulate similar sets of genes. We used two inde-

pendent studieswhere YAP targets were defined in gene expres-

sion profiling analyses (Dong et al., 2007; Zhao et al., 2007). For

each study, we performed an enrichment analysis using tran-

scription factor target sites identified by ENCODE chromatin

immunoprecipitation sequencing (ChIP-seq) experiments (Auer-

bach et al., 2013). In both cases, we found a strong enrichment

for E2F binding in YAP targets, with the vast majority of YAP tar-

gets being also bound by E2F (Table S4; Figure S4C). ChIP-PCR
Cell Reports 8, 371–381, July 24, 2014 ª2014 The Authors 373
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assays confirmed binding of YAP to Mcm3 and Mcm6, two

canonical E2F targets (Figure S4D). Together, these experiments

suggested that decreased YAP/TEAD1 levels and transcriptional

activity may affect the long-term expression of key cell cycle

E2F targets (Table S5).

YAP was detectable by immunostaining in the nucleus of

cycling wild-type and TKO hepatocytes and absent in arrested

wild-type and TKO cells (Figure 4D). We recently reported

that loss of Rb family function in liver progenitor cells drives

these cells out of quiescence and leads to the development of

hepatocellular carcinoma (Figure S4E) (Viatour et al., 2011).

Cycling TKO progenitors also displayed nuclear YAP (Figure 4E),

which correlated with increased expression of YAP target genes

(Figure 4F). The expression of nuclear YAP and elevated expres-

sion of YAP target genes were conserved in TKO liver tumors

(Figures S4F and S4G). Thus, in the adult liver, hepatocyte

progenitors and hepatocytes respond differently to loss of Rb

family function and YAP/TEAD1 do not become inactivated in

progenitor populations.

Reduced Liver Size and Ectopic Activation of YAP
Are Sufficient to Revert the Cell Cycle Arrest
Observed in Rb Family Mutant Hepatocytes
These experiments revealed a striking correlation between E2F

activity, proliferation, and YAP activity in liver cells in the hepato-

cytic lineage, which led us to test the hypothesis that downregu-

lation of YAP/TEAD activity in TKO hepatocytes was limiting for

proliferation. YAP activity has been linked to the regulation of

organ size (reviewed in Avruch et al., 2011). To test if changes

in liver size may affect the proliferation of TKO hepatocytes, we

performed partial hepatectomy (PH) assays. PH was associated

with nuclear translocation of endogenous YAP, expression of

E2F targets such as MCM6, and proliferation in both quiescent

wild-type and arrested TKO hepatocytes (Figures 5A–5C, and

S5A). Remarkably, once the livers reached their normal size

5 days after PH, YAP molecules were again excluded from the

nucleus (Figure S5B) and TKO hepatocytes re-exited the cell

cycle (Figures 5D). Thus, the cell cycle potential of both wild-

type and TKO hepatocytes is under the control of the signals

involved in PH response.

To directly test if low YAP activity was a limiting factor specif-

ically in TKO hepatocytes, we transfected hepatocytes with

transposon vectors expressing wild-type or constitutively active

forms of YAP in which phosphorylation sites are mutated to

inhibit YAP nuclear exclusion and degradation (YAPS127A,

YAP3SA, or YAP5SA) (Dong et al., 2007). Wild-type YAP and

the partially active S127A mutant were primarily cytoplasmic in

both control and TKO cells, which correlated with low cell cycle

activity (Figures 5E and 5F). Strong activation of YAP has been

shown to force hepatocytes out of quiescence (Dong et al.,

2007; Lu et al., 2010; Zhou et al., 2009). Accordingly, expression
(B) Quantification of cell cycle entry in triple- and quadruple-knockout hepatocyt

significant).

(C) Quantification of cell proliferation in triple- and quadruple-knockout hepatocy

Data in (A)–(C) are presented as mean ± SD.

(D–G) Immunofluorescence analysis of Ki67 (red) expression in mutant (GFP+, gre

injected mice.
of the nuclear YAP5SA mutant led to proliferation of both control

and TKO hepatocytes (Figure 5E). We also observed the recruit-

ment of immune cells around the transfected cells with this YAP

isoform and the elimination of the transfected cells after a few

weeks, although the basis for this observation remains unclear

(data not shown). Importantly, expression of YAP3SA, a form

of YAP with presumed intermediate potency, led to a higher

cell cycle activity specifically in TKO cells compared to control

cells (Figures 5E and 5F). Additionally, the E2F target MCM6

was significantly expressed only in TKO cells transfected with

YAP3SA and not in TKO cells with a control transposon or

wild-type hepatocytes transfected with YAP3SA (Figures 5G

and S5C). Thus, Rb family mutant hepatocytes are more sensi-

tive to YAP activation than control hepatocytes, indicating that

YAP activity is a key limiting factor in the capacity of TKO hepa-

tocytes to proliferate.

DISCUSSION

Experiments in the past three decades have identified the Rb/

E2F pathway as an essential regulator of a cell’s decision to enter

or exit the cell cycle. Here, we show that even in the absence of

the Rb family, hepatocytes in the liver of adult mice possess a

mechanism that can enforce quiescence in vivo.

Loss of Rb family function in adult stem/progenitor cells often

results in the development of preneoplastic or neoplastic growth,

as was shown for example in the hematopoietic system (Viatour

et al., 2008), the mammary gland (Jiang et al., 2010), and the

liver (Viatour et al., 2011). In postmitotic differentiated cells,

loss of the Rb family has either no effect or often leads to cell

death, which can be triggered by p53 (Symonds et al., 1994;

Viatour et al., 2008). Loss of Rb family function can also lead

to dedifferentiation, proliferation, and tumor formation (Ajioka

et al., 2007) or to prolonged noncancerous growth (Garfin

et al., 2013). In hepatocytes, however, the transient proliferative

state triggered by inactivation of the Rb family is followed by a

stable cell cycle arrest. Together, these observations indicate

that the Rb family is a primary regulator of the cell cycle in

stem/progenitor cell populations. In contrast, additional mecha-

nisms may regulate the cell cycle of differentiated cells, even

within the same organ or tissue.

The cell cycle entry observed in TKO hepatocytes occurs in

the context of a liver of normal size. We propose that this initial

proliferative phase, which is associated with an increase in liver

size (Figure S5D), triggers a compensatory mechanism con-

nected to organ size sensing in the liver, instructing TKO hepato-

cytes to stop cycling. At the molecular level, loss of Rb family

function initially results in activation of E2F and transcription of

cell cycle genes. As this ectopic proliferative phase takes place,

compensatory signals eventually lead to the downregulation of

YAP/TEAD transcriptional activity, in part through cytoplasmic
es 1 week after induction of Cre in transposon-CreER-injected mice. (n.s., not

tes 10 days after Cre induction (n.s., not significant; *p < 0.05; **p < 0.01).

en) hepatocytes 2 weeks after Cre induction in the liver of transposon-CreER-
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(A) RT-PCR analysis of E2F target genes in control and TKO livers (cycling control, 48 hr after CCl4 treatment or 36 hr after partial hepatectomy; quiescent control,
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**p < 0.01; ***p < 0.001). Data are presented as mean ± SD.

(B) Immunoblot analysis of control and TKO livers (samples as in A).

(C) Immunofluorescence analysis of bromodeoxyuridine (BrdU, green) and the replication factor MCM6 (red), 1 (cycling) and 2 (arrested) weeks after Cre acti-

vation in cTKO;AlbCreER/+ mice.

(D) CummeRbund heatmap showing differential expression of curated canonical E2F target genes in cycling and noncycling TKO and control livers (RNA-seq;

n = 2).

(E) Gene set enrichment analysis of genes significantly downregulated in arrested versus cycling TKO livers using a gene set generated from top E2F targets

(Xu et al., 2007).
relocalization of YAP. While low YAP levels suggest that kinases

in the Hippo pathway may be involved in this response, the

lower levels of TEAD, which is not currently known to be regu-

lated by phosphorylation, suggest that additional mechanisms

may be at play. One intriguing possibility would be if inhibitors

of YAP and TEAD were E2F targets, creating a negative feed-

back loop. The molecular basis for the differential response to
376 Cell Reports 8, 371–381, July 24, 2014 ª2014 The Authors
loss of the Rb family in progenitors andmature liver cells remains

unknown.

YAP/TEAD complexes bind to many key cell cycle genes, and

we propose that the long-term transcription of these E2F targets

requires YAP/TEAD as cofactors. In support of this idea, evi-

dence in Drosophila has linked E2F and YAP activity at the pro-

moter of target genes. For instance, E2F activity is important for
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Figure 4. YAP Inactivation in Arrested TKO Livers

(A) Gene set enrichment analysis of genes upregulated upon hepatic YAP overexpression (Dong et al., 2007) in a gene set of significantly downregulated genes in

arrested TKO livers.

(B) mRNA analysis of E2F- (Mcm6, Birc5) and YAP-regulated genes in noncycling TKO and control livers (n = 3; *p < 0.05; ***p < 0.001).

(C) Immunoblot analysis of YAP and TEAD1 in livers of control and cTKO;AlbCreER/+ mice.

(D) Immunohistochemistry for YAP (brown, counterstain: hematoxylin, blue) in cycling control (36 hr after partial hepatectomy) and TKO (cTKO;AlbCreERT2/+ 1week

after Tam) livers (top) and noncycling control and TKO (cTKO;AlbCreERT2/+ 2 weeks after Tam) livers (bottom).

(E) YAP staining of early progenitor lesions 4 weeks after intrasplenic injection of Ad-Cre in cTKO mice.

(F) mRNA analysis of YAP-regulated genes in TKO progenitor cells (cTKO;AlbCreERT2/+ 4 weeks after Tam) and control livers (n = 3; *p < 0.05; **p < 0.01).

Data in (B) and (F) are presented as mean ± SD.
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Figure 5. YAP Activation Is Sufficient to Revert the Cell Cycle Arrest in TKO Livers

(A–C) Immunofluorescence analysis of YFP (green) together with endogenous YAP (A), MCM6 (B), or Ki67 (C), respectively, after two-third partial hepatectomy

(PH), 2 weeks after Tam in CreER transposon-injected cTKO;RosaLSL-YFP mice.

(D) Immunofluorescence staining of GFP (green) and Ki67 (red) 5 days after two-third PH, 2 weeks after Tam in CreER transposon-injected cTKO;RosamTmG

mice.

(E) Immunofluorescence analysis of YAP (Flag, green) and Ki67 (red) following hydrodynamic tail vein injection of a transposon expressing either wild-type YAP

or constitutively active variants of YAP (YAPS127A, YAP3SA, or YAP5SA) into control or arrested TKO livers (transposon injection 1 week after 50 mg Tam, livers

analyzed 2 weeks after Tam).

(legend continued on next page)

378 Cell Reports 8, 371–381, July 24, 2014 ª2014 The Authors



the proliferation of Hippo mutant cells in flies, and the concomi-

tant loss of Rb and Hippo signaling leads to proliferation and

dedifferentiation in flies (Nicolay et al., 2010, 2011). Finally,

consensus E2F binding sites are enriched close to YAP binding

sites in fly cells (Oh et al., 2013) and human cells (this work and

Kapoor et al., 2014; Shao et al., 2014). Thus, a decrease in tran-

scriptional YAP activity in response to the ectopic proliferation

induced by loss of Rb family function might prevent the acti-

vation of cell cycle genes despite initial high E2F activity in

TKO hepatocytes. The molecular basis of the functional interac-

tion between E2F and YAP/TEADmay include direct interactions

between transcriptional complexes containing these transcrip-

tion factors at promoters. In addition, our experiments do not

rule out the possibility that other proproliferative factors may

be limiting in TKO cells exiting the cell cycle or may be cooperat-

ing with low YAP activity. In particular, we found that Myc levels,

but not levels of other putative oncogenes such as activated ERK

or AKT, rapidly decreased in TKO hepatocytes entering quies-

cence (Figure S4B and data not shown). Future experiments

will further dissect the regulatory networks implicated in cell

cycle decisions in adult hepatocytes.

Recent experiments in mammalian cells indicate that low

levels of the LATS2 kinase in the Hippo pathway may weaken

the ability of Rb to induce cell cycle arrest in tumor cells (Tschöp

et al., 2011). Furthermore, in breast cancer, loss of RB may

replace amplification of YAP, further connecting these two path-

ways (Cheng et al., 2010). The dominant effect of organ size

control mechanisms and YAP activity in cells with abrogation

of the G1/S checkpoint identifies a hierarchy in the regulation

of the cell cycle andmay have important consequences in regen-

erative medicine and the development of anticancer strategies.

EXPERIMENTAL PROCEDURES

Mice

Rb family cTKOmice (Viatour et al., 2011) weremaintained in amixed 129Sv/J;

C57/BL6 background. p53lox/lox and p19Arf�/�mice were generous gifts of Drs.

Anton Berns and Chuck Sherr, respectively. p21�/�, Rosa26LSL-YFP, and

Rosa26mTmG mice were purchased from The Jackson Laboratory. For Ad-Cre

injections, 10- to 12-week-old mice were anesthetized and surgically opened

on the upper left quadrant of the abdomen, followed by injection of adenovirus

into the spleen. In cTKO;RosaCreERT2/+ mice, Cre was induced by three

consecutive injections of 1 mg Tam (T-5648; Sigma-Aldrich). In cTKO;

AlbCreERT2/+ mice (a kind gift of Pierre Chambon) (Schuler et al., 2004), Cre

was activated by injection of 20 mg to 1 mg Tam. CreER was cloned in the

transposon vector (Yant et al., 2000) from the MB80 plasmid (Addgene

#12168); YAP, YAPS127A, and YAP5SA were cloned from Addgene plasmids

#19045, #17794, and #27371, respectively. YAP3SA (S61A, S109A, S127A) is

a swap mutant of YAP and YAP5SA. Samples were 36 hr (for RNA and protein

analysis) or 48 hr (for immunostaining and ChIP experiments) after PH. All

experiments with mice were approved by the Stanford Institutional Animal

Care and Use Committee.

Histology, Immunostaining, and Immunoblot Analysis

Antigen retrieval on paraffin sections was performed using Trilogy (Cell

Marque). After blocking, sections were incubated with primary antibodies
(F) Quantification of Ki67-positive YAP-transfected hepatocytes. Data are presen

(G) Quantification of MCM6-positive hepatocytes following YAP3SA expression i

livers analyzed 2 weeks after Tam). Controls, Flag-negative cells in control livers;

control livers; YAP3SA TKO, Flag-positive cells in arrested TKO livers. Data are p
overnight at 4�C, washed in PBS plus 0.1% Tween 20, and then incubated

with secondary antibodies. Quantification was performed using ImageJ

software. Primary antibodies used were anti-GFP (Invitrogen), anti-Ki67 (BD

Pharmingen), anti-Flag (Sigma), anti-bromodeoxyuridine (BD Pharmingen),

anti-YAP, anti-PH3, anti-CC3 (Cell Signaling Technology; data not shown),

anti-MCM6, and anti-p21 (Santa Cruz Biotechnology). For immunoblotting,

primary antibodies used were anti-YAP, anti-P-ERK, anti-ERK (Cell Signaling),

anti-TEF1 (BD Biosciences), anti-p21, anti-E2F1, anti-Cyclin A, anti-PCNA,

anti-MCM6 (Santa Cruz Biotechnology), and anti-Cyclin E (eBiosciences).

Flow Cytometry

Hepatic nuclei were isolated from frozen liver tissue (Mayhew et al., 2005), and

ploidy was analyzed by flow cytometry using staining for propidium iodide.

RT-PCR, RNA-Seq, and Bioinformatics Analysis

RNAs were processed and quantitative PCR reactions were prepared as

previously described (Viatour et al., 2011). RNA-seq, TopHat, and Cufflinks

analysis were performed by Centrillion Biosciences. CummeRbund was

used for heatmap visualization and clustering of RNA-seq data. E2F1/YAP

cotarget genes were defined as genes with a significant ChIP-seq peak

for E2F1 (ENCODE data) with direct overlap or within ±2.5 kb from the tran-

scription site of YAP-regulated genes (Dong et al., 2007; Zhao et al., 2007).

Curated gene sets for GSEA (version 3.1) (Subramanian et al., 2005)

were obtained from http://www.broadinstitute.org/gsea/msigdb/index.jsp.

Enrichment was considered significant when the p value was <0.05 and

the FDR was <0.25. Gene Ontology analysis was performed using DAVID

(GOTERM_BP_FAT, DAVID Bioinformatics Resources 6.7) and transcription

factor target analysis using WebGestalt Gene Set Analysis Toolkit V2 (Zhang

et al., 2005).

ChIP Analysis

ChIP was performed as described previously (O’Geen et al., 2006). In brief,

mouse livers were perfused 5 min with 2% formaldehyde, before homogeni-

zation with a Potter-Elvehjem tissue grinder, followed by 10 min crosslinking

in 2% formaldehyde. Antibodies used for immunoprecipitation were YAP

(Cell Signaling) and p16 (sc-467). Promoter binding was assessed by quantita-

tive PCR using SYBR green (Quanta Biosciences).

Statistical Analysis

Statistical significance was assayed by two-tailed Student’s t test (*p < 0.05;

**p < 0.01;***p < 0.005). Data are presented as mean ± SD if not stated

otherwise.
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Tschöp, K., Conery, A.R., Litovchick, L., Decaprio, J.A., Settleman, J., Harlow,

E., and Dyson, N. (2011). A kinase shRNA screen links LATS2 and the pRB

tumor suppressor. Genes Dev. 25, 814–830.

Viatour, P., Somervaille, T.C., Venkatasubrahmanyam, S., Kogan, S.,

McLaughlin, M.E., Weissman, I.L., Butte, A.J., Passegué, E., and Sage, J.
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