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Abstract. Given a set of valences {v;} such that {u ;} and {v;—k} are both realizable as valences
of graphs without loops or multiple edges, an expllcn construction method is described for ob-
taining a graph with valences {u, ) having a k-factor. A number of extensions of the resuit are
obtained. Similar results are obtained for directed graphs.

1. Introduction

In this note we obtain a short proof of a result of Kundu [3] (also
obtained by Chungphaison in certain cases) that if the sequences {v;}
and {v;—k} are both realizable as the valences of the vertices of a graph
without loops or multiple edges, then there is a realization of the for-
mer which has the one of the latter as a subgraph. This proof gives rise
to some simple extensions of the result.

The argument, like that of Kundu, applies when k above is replaced
by k; with k; either k or k + 1 for each i; it applies as well if 0 < k; = k
or k + 1 for each i except iy with 0 < k; < v;. This and other extensions
are described in the final section.

It leads as well to a simple algorithm for constructing the graph G
described above. An algorithm for the case of Girected graphs is also
presented in Section 4.

In Section 2 we describe the construction method for realization of
a simple sequence, and finally the method as modified to realize {v;}
and {v;—k;} simultaneously. The simple sequence realization method has
been known and has appeared in the literature [1, 2].

* Presented in part at the Monterey Conference on Algorithms, January 1972. Supported in
part by ONR Contract N00014-67-A-0204-0016.
** Qriginal version received 6 April 1972.
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2. The simple sequence realization method

Theorem 2.1. Suppose the sequence of natural numbers (in non-in-
creasing order) {vj} can be realized as the valences of the vertices (V)
of graph G. Then they can be realized as the valences of a graph in
which vertex V, is adjacent to the first v, vertices other than itself.

Proof. If otherwise, let G be a realization chosen to maximize the num-
ber of vertices adjacent to ¥, among the first v;. Let V,, be a vertex
not adjacent to ¥V in 5 withm < v or,if k< v, withm <y +1,
i.e., with V,, among the first v, vertices. Let V, be a vertex not among
the first v, that is adjacert to V in G. Thenv,, > v, (if v,, =v,,
names could be inteichanged), and hence ¥, is adjacent to some vertex
Vp, with p # q, such that (V, V) is not in G. If we alter G by removing
edges (V,, Vp) and (V Vq) and replacing them by (V,, V), (Vp .Vq ),

we obtain a graph G’ with one more vertex adjacent to ¥, among the
first vy, violating the definition of G. This theorem leads to the follow-
ing algorithm.

Algorithm 2.2. For constructing a graph realizing a set of vertex valences.
Choose any vertex V. “Lay it off”” by connecting it by edges to the

first v, (other) vertices on a list of vertices arranged in non-increasing
valence order, removing V;, from the list, and reducing the residual val-
ences of vertices to which it is attached by one. Reorder the vertices if
necessary. Repeat with another vertex until there are none.

3. Realizing valences with a factor

Suppose now we are given two sequences {U; } and {v, —p, }, with
Py =p orp + 1 for each k, both of which are realizable by graph val-
ences without loops or multiple edges. We define two steps for con-
structing a realization G of {v; } which contains a realization Gg of
{vp—py } as a subgraph. These are:

Step 1. A “laying off” step, in which a vertex ¥, is connected by
edges in G to the first a, vertices (excluding itseli) with the vertices
arranged in non-increasing crder of residual a-valence, and to the first
by vertices (excluding itself) in G¢ with the vertices ordered by residual
b-valence. Again residual valences are then recomputed for each vertex



3. Realizing valences with a factor 81

and they are reordered for the purpose of future “laying off”. The dif-
ference between this step and the step in Algorithm 2.2 above is that
here, if any vertex ¥} hasa; —b; = 0, it must be “laid off”” before any
vertex Vp witha,—b, > 0, whereas the order of laying off is arbitrary
in Algorithm 2.2.

Step 2. A “switching” step, which is to be used after each laying off
step that attempts to connect ¥ by an edge in Gg which is not in G.

After such counections are eliminated by switching steps, each ver-
tex laid off will be connected to vertices in Gg only if they are so con-
nected in G . If the layoff vertex ¥ had g, — 5,= 0, the values of a,,--b),
for remaining vertices will be unchanged after the layoff and switching.
Otherwise, they will be decreased by one, by the procedure, for any vertex
which is connected to V, in G and not in G¢. It follows that if we
always lay off vertices in Step 1 which have a;, —by =0 first, a, — b, can
never become negative for residual vertices.

Let, at the beginning, the vertices be arranged in non-increasing order
of a-valence and b-valence simultazeously. A vertex V., being laid off
in Gr and G, can then get connected to a vertex V, in Gg and not in
Gr whena; —b; > 0 only if non-increasing order of the remaining ver-
tices becomes altered in Gg or in G so that ¥, appears closer to the
beginning for Gg than it does for G7. Since a; —b; = 0 when V} is laid
off, for each Vq so connected we can find a V,,, such that V; lays off
against ¥, in Gy and not in Gg.

Ifa,—a,, =0 when V} is laid off, then the order of ¥, and V,, in Gy
is immaterial — so we can reverse it by inserting (Vq V) rather than
(Viu Vi) in Gp. Similarly, if bq —b,, =0, we can replace ( Vq Vi) in Gg
by (V,, Vi) since the ordering of ¥, and V), , when lzying out ¥ in
Gg, was immaterial.

We need therefore only consider cases in whicha,—a,, < 0 and
bq —bp, > 0, so that a, —bq < (a,, —b,,)—2. Since at the beginning we
had (a,-b,) > (,, —b,, ) -1, we must have laid off at least one vertex
(Vs below) which diminished (a,—b, ) without changing (a,, —bpy ).

There remain two significant subcases; if ¥, is adjacent to V,,, in
both G and G as constructed so far, we have the following edges pre-
sent.

(Vi V5) in G and Gg,

(Vq V¢)in Gy only,
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(Vq Vi) in Gg only,

(Vyp Vi) in Gp only,
which we switch by replacing (V,, V) and (V, V) in Gg by (V,,, V)
and (Vq V;). This switch preserves all valences achieved so far.

If V is adjacent to V,, neither in G nor Gy, the following edges are
present:

(Vq Vs) in GT only,

(V‘; V,)in Gg only,

vV, Vy)in G only,
and we replace the two edges in G by (V, V;) and (V,, V). Again all
valences are preserved.

By successive application of laying off, and switching when necessary,
one can construct the entire graph.

The algorithm for same can be summarized as follows.

Algorithm 3.1. If there are no two residual vertices, stop. If there are,
then:

Step 1. Compute the residual valences a; and by of vertex ¥V, for
2ach k,in Gg and G . Proceed to Step 2.

Step 2. If there are residual vertices with a;—&, = 0, choose one
otherwise ciioose any residual vertex V. Remove V. from the list of
residual vertices. Go to Step 3.

Step 3. Connect V, (tentatively) to the a; vertices other than ¥
having largest a value in G and to the b, vertices having largest b
value in Gg. Proceed to Step 4.

Step 4. 1f Gg C G so far, go to Step 1. If an edge (V, V) isin Gg
and not ih G, find an edge (V. & Vi) in G, and not in G Ifa -a,, =

-remove (V, V,, ) from G and insert (Vk V ). If b b =0, remove
(V,(P ) from Gs and insert (V V). If a, a <0 and b -b,, >0,
find a vertex Vs such that (V, V) is c.1rrently a551gned to GT GS, and
(V ¥V, ) is currently in neither or both G¢ and G .. Go to Step 5.

Step 5. If (V,V,,) is in both Gg and GT, replace edges (V,, V) and
4 q Vi) in Gg by (V,, V) and (Va Vo). If (V,, V) is in neither, replace
edges (V,Vo)and (V,, V) in G by (V Vi) and (V,, V;). Go to Step 4.

This procedure constructs G and Gg simultaneously, so long as
{vr}, {v,—pi } and {p, } were all realizable as valence sequences and
Py =p orp + 1. It extends however to many other cases. Thus if, for
some particular m, v,, > p,, > 0 and we omit the resiriction p,, =p
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or p + 1, we can lay off V,, first, and the procedure will work as above
so long as there are no other vertices having p; = 0. Thus if p 21, one
P, may be chosen arbitrarily. Another extension is thatif 5, =0,

then whenever the switching procedure is needed at V,,, we can only en-
counter the situation that a,, —a, > 0, b,—b, >0 (smce b, =0,b,

~b_ > 0 is impossible for any q) So all we need isp, < <p+1at v, to
make the switching step possibie. We state all these in the followir:g the-
orem.

Theorem 3.2. Suppose that the sequences {a;} and b} i=1,..n
are all graphical (i.e., realizable as the valences of a graph without loops
or multiple edges), and a; > b;. Assume that there exists a non-negative
integer p such that

(i) ifb;#0,thena;—b;=porp+1;

(i) ifb; = 0,thena;~b;=a; <p+1;

(iii} if p > 0, then conditions (i) and (ii) are not required at vertex 1,

i.e. ay—b; may be arbitrary.

Then there exists a graph with valences {a;} which has a subgraph with
valences {b,}.

4. Directed graphs

We shall allow only digraphs having no multiple arcs and no ioops and
all digraphs are to be drawn on vertices V, V,,..., V,,. However, a palr
of arcs V,—)V], Vl_i/ is allowed. (An arc from V; to V is written as E )
Given a sequence of ordered pairs of non-negative 1ntegers ((a, » 4; )> we
say that it is graphical if there exists a digraph G with the outdegree
and indegree of vertex V; being equal respectively to a+ and a; . We say
that G has degree sequence <(a a; ji. We shall 1dent1fy w1th the set
of arcs in G.

Kundu proved the following theorem.

Theorem 4.1. Assume that the degree sequences ((a, ,a; », (b7, by M are
all graphical. Also, assume that a; —b* = ¢, ¢ a non-negative consta"t
and that a” 2 b . Then there exzsts a digraph G with degree sequeme
<(a a;y» contammg a subgraph Gg with degree sequence ((b ;M

We first give a constructive proof of the same result by using a similar
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. . Py 1 fao a0t 8 4 Al _h cannd alonern fan dlaiy mnan AF
laying-oil and switching procedure to inat uscd adove i1l tne Case Ol
mwnnlaa
grapiis.

First, we need two algorithms for constructing a digraph with a

given graphical sequence.

We define (x, y) >, (x,¥)if x> x',orx =x"andy 2 y' (i.e., the
ordinary lexicographic order), and we also define (x, y) =, (x', y') if
y>y' ory =y and x > x' (i.e., lexicographic order from right to left).

Aigerithm 4.2. Let the sequence ((g;, 4; )) be graphicai. Then we can
e mdiiind 2 Al il £ o2l dln alvan Aaaran cantinmnan At a2 A aa £l
consiruct a aigrapn U wiin e given acgrec sequence Wa; , ¢; y as 16r-

Step 2 If all the residu lmdegrves of L¢ are 0, stop. G is then the re-
quired digraph. Otherwise, choose a vertex V; from L® = {V},..., V,, }-L
such thata; > 0. Cnoose a; vertices V;,,..., ¥, - other than ¥; with the

biggest degree with respect to the lexicographic order 2y¢. Le., for any

vertex V other than V,, V11 R Vla,-‘ , we always have (af]., ai; )
!2(" a ~)forallj= a,.". )
Step 5 Replace G by Gu {VI Vii j=1,...a7 }. Replace L by

F «4 (770

L VY l} .
Cton A IFTC =0\ octnn Jawr (7 ic the rannirad digram IfFTC + M\ ra.
UFUH “Te AL Ay v.', DLUP- ANUVY W 210 iAW l\t\iuu\fu u.lsl‘l!.lll- AL Es T Wy iwv
place (at, a7 ) by (4}, 0) and replace (a}., a;;) by (a}.—1,a7), =1, ...,a7
4 At ] i 7 s NTf 5 ES - \‘]; ‘]I .v\;, J,IJJ: 5 bt |
Other degrees remain unchanged. Go to Step 2

heorem 4.3. Let the sequence (a; , a; ) be graphical, and let Vy be a
$fasn T 22 saetbnan T s OrY7 - Ir 'f AR A Lo T a4 L at o al __
jixea vertex. Lct o(Vg )= {1V, ..., y’a; 1 De a fixed set of vertices other
than V. such that the degree of each vertex in S(V'y) is bigger (=g in the
lexiconrnﬂ’znn nedowy thaw tho Adpovon ~F snpls voutoy i [ 17 V7 1_

STV UTUCT J LRI LFIC UCRICC Uy C20IL vVeriter Jri 171, wesy Vn J
{V., V; Vi - Y. Then there exists a disraph G wit1 the given
W Vi Vi ) d e exists a digraph G wit1 the given
({gf a” Wand with tho nyonorty that e fnvalii=1 -
AN I ’ l QP IR YV RIS BTV ‘letl\fl l'y SISUEL YV li' k S— NS JU, wi L3 14 ,uk

Proof. If otherwise, let C be chosen to maximize the number of vertices
Y in 5{¥; ) such that VV- igin C. Then there exists a vertex V,, € S(V},)
and a vertex Ve & S(V) such that V Vi € Gand Va Vk € G. By as-
sumption, we have (am Ja, )2 2! (a )

Case 1. There exists a vertex p D #= k, g, m, such that ¥ pEG,
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' v Vs ¢ G. By removing V Voo V V} and replacing them by V,, V,c,
V V we get a new digraph G w1th the given graphical sequence
((a a ».

Case 2. If Case 1 does not hold, then we must have a =q* '3 a, 2a; 7
and V V € G, V Vi €G. Smcea > a,, there ex1sts avenef V..
r#m,q, such that v, V € G, V V ¢. G. By removing V, Im, Vm /q,
V—Vk and replacing them by V, Vgr V V v Vi Vk, we get a new di-
graph G" with the given (q}, a; ).

The new digraphs G', G" all have one more vertex in S(V; ), namely
Vo » such that V"—,’Vk is the new digraph, a coniradiction to the as-

sumption on .

The other aigorithm for constructing a digraph with a given graphical
sequence is:

Algorithm 4.4. All steps except Step 2 are the same as those in .*lgorithm
4.2, so we need state Step 2 only.

Step 2. If all the residual indegrees of L aie 0, stop. G is then the
required digraph. Otherwise, choose a vertex V; from L€ such that
a; > 0 and such that (¢], a; ) 2, (4], a7 ) forallj = 1,...,n. (Here we
use the lexicographic order from right to left).

Choose a; vertices Vp,, ..., V) of other than ¥; with the biggest out-
ward degree. (l.e., for any V]. € {V1 seees Vi 3=1Vis Vi s Vla,-" 1, we
havea; > a]’.' forallm=1,...1;-.)

Algorithm 4.4 is justified by the following theorem.

Theorem 4.5. Let the sequence ((al , a; ) be graphical, and let V. be a
vertex sur‘h thai (ak, a, )2 (a a; Yforallj=1,..,n.Let S(V})=
Ny Vi - } be a fixed set of ak vertices other than Vy such that the

cutwgrd degree cf each vertex in S(V;) is bzgger than the outward degree
of each vertexin {Vy,..., V,}--{Vi, Vi, ... Vi~ } Then there exists

a graph G with the given ((a a; ) and with the property that V,l Vi
EGforaili=1, s A

Proof. If otherwise, let G be chosen to maximize the number of ver-
tices V in S(¥; ) such that VVk isin G. Then there exists a vertex
Vm) € S(V) and a vertex V, & S( Vk) such that V Ve & G and

Ve Vi € G. Also, by assumptlona > a
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Case 1. There exists a vertex V , D+ m,q,k, such that V,, l/ EG
and Vq ~V_ ¢ G. By removing Vm Vp, Ve Vk and replacing them by
V Vi, V V we get a new digraph G’ with ((a;, ai ))

Case 2. If ‘ase 1 does not hold, we must havea q |2 V G
and V;Vm ¢ G. Since (ak, a; K) 2 (aq a’), we stll! have two subcases
to consider.

Case 2.1. There exists a vertex ¥V, such that v, Vk € G and V,V ¢G.
If we replace V,,, V V.V, by v, Vk, A V4> we get a new dlgraph G’
having degree seque,nce ((a, . a; .

Case 2.2. If no such V exists as in Case 2.1, we must have ¢ =
anda; > a e , and also Vk Ve &G Smce a; 2 a;, there must exxst a
vertex ¥V such thats # g, k and Vk V., €G Q.V ¢G. By removmg
Vm Vq, V Vk, VkV and replacing tkem by Vo Vk, VkV V Vs, we
get a new dlgraph G" with degree sequence ((a] , a; ).

The new digraphs G, G"' G" ail have one more vertex in S(V),
namely V,, , such that v, Vk is in the new graph. This is a contradic-
tion.

Now, we can prove Theorem 4.1 by the following algorithm.

Algorithm 4.6. With the assumptions of Theorem 4.1, we construct G,
Gy via the following steps:
‘Step 1. Set G = 0, Ge=0,L=0.

Step 2. If for all vertices ¥V in L€, (a;, a;)= (0, 0), stop. Then G,
G are the required digraphs. Otherwise, choose a vartzx ¥y in L€ such
that (b}, b.)2 (b*, b7 )forallj=1,..,x

Choose b vert‘ces nyrer Vi by =S8(V) such that V; € S(V}) and
such that for all V; & S(V;) U {V} }, we have a]’f 2aj forallj=ny,..,
np ,; .

Choose a; vertices {V1,, ..., Vi~ } = T(V;)such that V; & T(V})
and such that for all V; ¢ T(Vk) v {Vk} we have (a ar ) >Q(“z ,a;)
forallj=1,,..,1

g
Replace G by G, U {V,,,Vk =1, ..,bg }.
Replace GT by GT U {V,, Vi i=1i, iy.,ap }.

Step 3. (i) If Gg C G, remove ﬂag on next line. Go to Step 6.

{it) if Gg ¢ G, go to Step 4 if no flag here; to Step 5 if ﬂag

Step 4. (‘hoose vertex V,, € T(V}), V, € S(V}) such that V Vi
€ Gy—Gy, V Vi, € Gg—Gy.



4. Directed graphs 87

i If (am, a )= (aq a p ), go to Step 3 with (V) replaced by
T(V) U (V3=V}

Gi) If b+ = b+ , 8o to Step 3 with 5(V; ) replaced by S(V)u {V,, }—
V. 1.

(111) If for all choices of V,, € T(V}), V, € S(V) such that V V
€ Gr—Gy, .I’")V,( € G5—Gr, we have nelther (a,,.a,)= (a a, ) nor
b’; b+ , insert flag on second line of Step 3, go to Step 5.

Step 5. Choose a vertex V ,p#m,k, q,such that ', V € Gy and
such that V V lies either i m both Gy and Gy orin ne 1ther of them.

(1) If Ve 1s in both G and Gg, replace Gg by Gg U {V Ve, V Vp}

- ﬁ'?/k}

(11) If V V is neither of G and Gg, replace Gy by G U {V Vi,

V1=V V,,, V¥, ).

(ro to Step 3.

Step 6. Replac - . by L U {V; }.

(i) If L =@, s.up. Then G, Gg are the required digraphs.

(ii) If L€ # 9, replace (a;, a; ) by (a;, 0) and (b}, by ) by (b*,0), and
replace (a,*i, a;.) by (a;“i——l,a,‘,.), i=1...,a; and (bf,z., by ;) by (by,—1,b5),

=1,..,b;.
Go to Step 2.

Jusiification of Algorithm 4.6. We need only justify Step 5. Suppose
that there exist V,,, € T(V}), V, € S(V}) such that V,, I/k €EGr—Gg, -
4 Vk € Gg—Gr,and (¢,,, a,, )=# (aq aq) b+ # b, . We must then
have (C )>Q(aq aq) and b; > b} .

() a;,> aq b+ > b, . Thenaj, b;'n :a‘; —b+ + 2. Since @}, —b;, =
a, —b; = constant ¢ in the begmmng, there must exist a vertex V € L
p # k,m, g, such that V, V € Grand V,, V, is in both G and G
or in neither of them.

(ii) a;, aq 4y >a,, b+ > b . In this case, we have @, —b; = a*—
l)+ +1anda,, > 0 The latter implies that V,, ¢ U, so that VeV ¢ GT
Thusa b+ > aq bq + 1 implies the f,x1stence of V as in (1) The

ex1stence of such a V, justifies Step 5.

From the justifications of Algorithm 4.6, we see that Kundu’s result
for digraph can be extended to the following situation. If for some i,
b} =0, then ¥; can only take the role of V,, and never of ¥, in (i) and
(n) The argument thus remains intact if we relax the condmon a; ——b*
ctoa; ——b:' < c at this vertex. We therefore have the following theorem
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Theorem 4.7. Assume that the degree sequences (a; , a; ), {(b], by »
are all graphical; ai+ 2 b;‘, a; 2 b . Also, assume that there is a non-
negative integer ¢ such that a; —b; =c if bj# 0,a;-b] < cif b} = 4.
Then there exists a graph G with degree sequence ((a;', a; ) and con-

taining a subgraph G with degree sequence (b}, b ).

Added in proof. Kundu has raised the question: “What similar results
hold for more general k;, in particular if all k; but two are equal to k or

k + 1. and two, k, and k,, are different?” The methcd of section 3 above
can easily be shown to apply for k = 2, whenever it is possible to lay off
the two odd vertices first so that s is a subgraph of T on arcs containing
them and so that the remaining residual degree sequences are both real-
izable. This will be so if and only if either of

(v;— 8z —812)
or
(v —k; +8;; +5;,)

(Kronecker §’s) are realizable given that {v;} and {v; - %;} are realizable.
In other words, the sequence {v;}will be realizable by a graph possessing
a subgraph with degrees {v; — k;} when both these sequences are realizable
and there is a realization of the former containing an arc joining the first
two vertices, or one of the latter not containing that arc.
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