ALGORITHMS FOR CONSTRUCTING GRAPHS AND DIGRAPHS WITH GIVEN VALENCES AND FACTORS*

D.J. KLEITMAN and D.L. WANG
Department of Mathematics, Massachusetts Institut: of Technology, Cambridge, Mass. 02139, USA

Received 11 August 1972**

Abstract

Given a set of valences $\left\{v_{i}\right\}$ such that $\left\{\dot{v}_{j}\right\}$ and $\left\{v_{i}-k\right\}$ are both realizable as valences of graphs without loops or multiple edges, an explicit construction method is described for obtaining a graph with valences $\left\{v_{i}\right\}$ having a k-factor. A number of extensions of the result are obtained. Similar results are obtained for directed graphs.

1. Introduction

In this note we obtain a short proof of a result of Kundu [3] (also obtained by Chungphaison in certain cases) that if the sequences $\left\{v_{i}\right\}$ and $\left\{v_{i}-k\right\}$ are both realizable as the valences of the vertices of a graph without loops or multiple edges, then there is a realization of the former which has the one of the latter as a subgraph. This proof gives rise to some simple extensions of the result.

The argument, like that of Kundu, applies when k above is replaced by k_{i} with k_{i} either k or $k+1$ for each i; it applies as well if $0<k_{i}=k$ or $k+1$ for each i except i_{0} with $0 \leq k_{i_{0}} \leq v_{i}$. This and other extensions are described in the final section.

It leads as well to a simple algorithm for constructing the graph G described above. An algorithm for the case of directed graphs is also presented in Section 4.

In Section 2 we describe the construction method for realization of a simple sequence, and finally the method as modified to realize $\left\{v_{i}\right\}$ and $\left\{v_{i}-k_{i}\right\}$ simultaneously. The simple sequence realization method has been known and has appeared in the literature [1,2].

[^0]
2. The simple sequence realization method

Theorem 2.1. Suppose the sequence of natural numbers (in non-increasing order) $\left\{v_{j}\right\}$ can be realized as the valences of the vertices $\left(V_{j}\right)$ of graph G. Then they can be realized as the valences of a graph in which vertex V_{k} is adjacent to the first v_{k} vertices other than itself.

Proof. If otherwise, let G be a realization chosen to maximize the number of vertices adjacent to V_{k} among the first v_{k}. Let V_{m} be a vertex not adjacent to V_{k} in G with $m \leq v_{k}$ or, if $k \leq v_{k}$, with $m \leq v_{k}+1$, i.e., with V_{m} among the first v_{k} vertices. Let V_{q} be a vertex not among the first v_{k} that is adjacert to V_{k} in G. Then $v_{m}>v_{q}$ (if $v_{m}=v_{q}$, names could be interohanged), and hence V_{m} is adjacent to some vertex V_{p}, with $p \neq q$, such that $\left(V_{q} V_{p}\right)$ is not in G. If we alter G by removing edges $\left(V_{m} V_{p}\right)$ and $\left(V_{k} V_{q}\right)$ and replacing them by $\left(V_{m} V_{k}\right),\left(V_{p} V_{q}\right)$, we obtain a grapin G^{\prime} with one more vertex adjacent to V_{k} among the first v_{k}, violating the definition of G. This theorem leads to the following algorithm.

Algorithm 2.2. For constructing a graph realizing a set of vertex valences. Choose any vertex V_{k}. "Lay it off" by connecting it by edges to the first v_{k} (other) vertices on a list of vertices arranged in non-increasing valence order, removing V_{k} from the list, and reducing the residual valences of vertices to which it is attached by one. Reorder the vertices if necessary. Repeat with another vertex until there are none.

3. Realizing valences with a factor

Suppose now we are given two sequences $\left\{v_{k}\right\}$ and $\left\{v_{k}-p_{k}\right\}$, with $p_{k}=p$ or $p+1$ for each k, both of which are realizable by graph valences without loops or multiple edges. We define two steps for conitructing a realization G_{T} of $\left\{v_{k}\right\}$ which contains a realization G_{S} of $\left\{v_{k}-p_{k}\right\}$ as a subgraph. These are:

Step 1. A "laying off" step, in which a vertex V_{k} is connected by edges in G_{T} to the first $a_{\dot{\gamma}}$ vertices (excluding itself) with the vertices arranged in non-increasing order of residual a-valence, and to the first b_{k} vertices (excluding itself) in G_{S} with the vertices ordered by residual b-valence. Again residual valences are then recomputed for each vertex
and they are reordered for the purpose of future "laying off". The difference between this step and the step in Algorithm 2.2 above is that here, if any vertex V_{k} has $a_{k}-b_{k}=0$, it must be "laid off" before any vertex V_{p} with $a_{p}-b_{p}>0$, whereas the order of laying off is arbitrary in Algorithm 2.2.

Step 2. A "switching" step, which is to be used after each laying off step that attempts to connect V_{k} by an edge in G_{S} which is not in G_{T}.

After such counections are eliminated by switching steps, each vertex laid off will be connected to vertices in G_{S} only if they are so connected in G_{T}. If the layoff vertex V_{k} had $a_{k}-b_{k}=0$, the values of $a_{p} \cdots h_{p}$ for remaining vertices will be unchanged after the layoff and switching. Otherwise, they will be decreased by one, by the procedure, for any vertex which is connected to V_{k} in G_{T} and not in G_{S}. It follows that if we always lay off vertices in Step 1 which have $a_{k}-b_{k}=0$ first, $a_{p}-b_{p}$ can never become negative for residual vertices.

Let, at the beginning, the vertices be arranged in non-increasing order of a-valence and b-valence simultaneously. A vertex V_{k}, being laid off in G_{T} and G_{S}, can then get connected to a vertex V_{q} in G_{S} and not in G_{T} when $a_{k}-b_{k} \geq 0$ only if non-increasing order of the remaining vertices becomes altered in G_{S} or in G_{T} so that V_{q} appears closer to the beginning for G_{S} than it does for G_{T}. Since $a_{k}-b_{k} \geq 0$ when V_{k} is laid off, for each V_{q} so connected we can find a V_{m} such that V_{k} lays off against V_{m} in G_{T} and not in G_{S}.

If $a_{q}-a_{m}=0$ when V_{k} is laid off, then the order of V_{q} and V_{m} in G_{T} is immaterial - so we can reverse it by inserting ($V_{q} V_{k}$) rather than $\left(V_{m} V_{k}\right)$ in G_{T}. Similarly, if $b_{q}-b_{m}=0$, we can replace $\left(V_{q} V_{k}\right)$ in G_{S} by ($V_{m} V_{k}$) since the ordering of V_{q} and V_{m}, when laying out V_{k} in G_{S}, was immaterial.

We need therefore only consider cases in which $a_{q}-a_{m n}<0$ and $b_{q}-b_{m}>0$, so that $a_{q}-b_{q} \leq\left(a_{m}-b_{m}\right)-2$. Since at the beginning we had $\left(a_{q}-b_{q}\right) \geq\left(a_{m}-b_{m}\right)-1$, we must have laid off at least one vertex (V_{s} below) which diminished $\left(a_{q}-b_{q}\right.$) without changing ($a_{m}-b_{m}$).

There remain two significant subcases; if V_{s} is adjacent to V_{m} in both G_{T} and G_{S} as constructed so far, we have the following edges present.
$\left(V_{m} V_{s}\right)$ in G_{T} and G_{S},
$\left(V_{q} V_{s}\right)$ in G_{T} only,
$\left(V_{q} V_{k}\right)$ in G_{S} only,
($V_{m} V_{\dot{k}}$) in G_{T} only,
which we switch by replacing ($V_{m} V_{s}$) and ($V_{q} V_{k}$) in G_{S} by $\left(V_{m} V_{k}\right)$ and $\left(V_{q} V_{s}\right)$. This switch preserves all valences achieved so far.

If V_{s} is adjacent to V_{m} neither in G_{T} nor G_{S}, the following edges are present:
$\left(V_{q} V_{s}\right)$ in G_{T} only,
$\left(V_{q}^{-} V_{k}^{\prime}\right)$ in G_{S} only,
$\left(V_{m} V_{k}\right)$ in G_{T} only,
and we replace the two edges in G_{T} by $\left(V_{q} V_{k}\right)$ and ($V_{m} V_{s}$). Again all valences are preserved.

By successive application of laying off, and switching when necessary, one can construct the entire graph.

The algorithm for same can be summarized as follows.
Algorithm 3.1. If there are no two residual vertices, stop. If there are, then:

Step 1. Compute the residual valences a_{k} and b_{k} of vertex V_{k} for rach k, in G_{S} and G_{T}. Proceed to Step 2.

Step 2. If there are residual vertices with $a_{k}-b_{k}=0$, choose one otherwise choose any residual vertex V_{k}. Remove V_{k} from the list of residual vertices. Go to Step 3.

Step 3. Connect V_{k} (tentatively) to the a_{k} vertices other than V_{k} having largest a value in G_{T} and to the b_{k} vertices having largest b value in G_{S}. Proceed to Step 4.

Step 4. If $G_{S} \subset G_{T}$ so far, go to Step 1. If an edge $\left(V_{k} V_{q}\right)$ is in G_{S} and not in G_{T}, find an edge $\left(V_{k} V_{r n}\right)$ in G_{T} and not in G_{S}. If $a_{q}-a_{m}=$ 0 . remove $\left(V_{k} V_{m}\right)$ from G_{T} and insert $\left(V_{k} V_{q}\right)$. If $b_{q}-b_{m}=0$, remove $\left(V_{k} V_{q}\right)$ from G_{S} and insert $\left(V_{k} V_{m}\right)$. If $a_{q}-a_{m}<0$ and $b_{q}-b_{m}>0$, find a vertex V_{s} such that $\left(V_{s} V_{q}\right)$ is carrently assigned to $G_{T}-G_{S}$, and ($V_{s} V_{m}$) is currently in neither or both G_{S} and G_{T}. Go to Step 5.

Step 5. If $\left(V_{s} V_{m}\right)$ is in both G_{S} and G_{T}, replace edges $\left(V_{m} V_{s}\right)$ and $\left(V_{q} V_{k}\right)$ in G_{S} by $\left(V_{m} V_{k}\right)$ and $\left(V_{q} V_{s}\right)$. If $\left(V_{m} V_{s}\right)$ is in neither, replace edges $\left(V_{q} V_{s}\right)$ and $\left(V_{m} V_{k}\right)$ in G_{T} by $\left(V_{q} V_{k}\right)$ and $\left(V_{m} V_{s}\right)$. Go to Step 4.

This procedure constructs G_{r} and G_{S} simultaneously, so long as $\left\{v_{k}\right\},\left\{v_{k}-p_{k}\right\}$ and $\left\{p_{k}\right\}$ were all realizable as valence sequences and $p_{k}=p$ or $p+1$. It extends however to many other cases. Thus if, for some particular $m, v_{m} \geq p_{m} \geq 0$ and we omit the restriction $p_{m}=p$
or $p+1$, we can lay off V_{m} first, and the procedure will work as above so long as there are no other vertices having $p_{k}=0$. Thus if $p \geq 1$, one p_{m} may be chosen arbitrarily. Another extension is that if $b_{m}=0$, then whenever the switching procedure is needed at V_{m}, we can only encounter the situation that $a_{m}-a_{q}>0, b_{q}-b_{m}>0$ (since $b_{m}=0, b_{m}$ $-b_{q}>0$ is impossible for any q). So all we need is $p_{m} \leq p+1$ at V_{m} to make the switching step possibile. We state all these in the followirg theorem.

Theorem 3.2. Suppose that the sequences $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}, i=1, \ldots, n$, are all graphical (i.e., realizable as the valences of a graph without loops or multiple edges), and $a_{i} \geq b_{i}$. Assume that there exists a non-negative integer p such that
(i) if $b_{i} \neq 0$, then $a_{i}-b_{i}=p$ or $p+1$;
(ii) if $b_{i}=0$, then $a_{i}-b_{i}=a_{i} \leq p+1$;
(iii) if $p>0$, then conditions (i) and (ii) are not required at vertex 1 , i.e. $a_{1}-b_{1}$ may be arbitrary.

Then there exists a graph with valences $\left\{a_{i}\right\}$ which has a subgraph with valences $\left\{b_{i}\right\}$.

4. Directed graphs

We shall allow only digraphs having no multiple arcs and no loops and all digraphs are to be drawn on vertices $V_{1}, V_{2}, \ldots, V_{n}$. However, a pair of arcs $\overrightarrow{V_{i}} \vec{V}_{j}, \overrightarrow{V_{j} V_{i}}$ is allowed. (An arc from V_{i} to V_{j} is written as $\overrightarrow{V_{i} V_{j}}$.) Given a sequence of ordered pairs of non-negative integers $\left\langle\left(a_{i}^{+}, a_{i}^{-}\right)\right\rangle$, we say that it is graphical if there exists a digraph G with the outdegree and indegree of vertex V_{i} being equal respectively to a_{i}^{+}and a_{i}^{-}. We say that G has degree sequence $\left\langle\left(a_{i}^{+}, a_{i}^{-}\right)\right.$. W/ \because / e shall identify G with the set of arcs in G.

Kundu proved the following theorem.
Theorem 4.1. Assume that the degree sequences $\left\langle\left(a_{i}^{+}, a_{i}^{-}\right)\right\rangle,\left\langle\left(b_{i}^{+}, b_{i}^{-}\right)\right\rangle$are all graphical. Also, assume that $a_{i}^{+}-b_{i}^{+}=c, c$ a non-negative constant, and that $a_{-}^{-} \geq b_{i}^{-}$. Then there exists a digraph G_{T} with degree sequence. $\left\langle\left(a_{i}^{+}, a_{i}^{-}\right)\right\rangle$containing a subgraph G_{S} with degree sequence $\left\langle\left(b_{i}^{+}, b_{i}^{-}\right)\right\rangle$.

We first give a constructive proof of the same result by using a similar
laying-off and switching procedure to that used above in the case of graphs.

First, we need two algorithms for constructing a digraph with a given graphical sequence.

We define $(x, y) \geq_{\ell}\left(x^{\prime}, y^{\prime}\right)$ if $x>x^{\prime}$, or $x=x^{\prime}$ and $y \geq y^{\prime}$ (i.e., the ordinary lexicographic order), and we also define (x, y) $\geq_{\mathrm{r}}\left(x^{\prime}, y^{\prime}\right)$ if $y>y^{\prime}$, or $y=y^{\prime}$ and $x \geq x^{\prime}$ (i.e., lexicographic order from right to left).

Algerithm 4.2. Let the sequence $\left(\left(a_{i}^{+}, a_{i}^{-}\right)\right.$) be graphical. Then we can construct a digraph G with the given degree sequence $\left\langle\left(a_{i}^{+}, a_{i}^{-}\right\rangle\right.$as follows:
Step 1. Set $L=\emptyset, G=\emptyset$.
Step 2. If all the residual indegrees of L^{c} are 0 , stop. G is then the re. quired digraph. Otherwise, choose a vertex V_{i} from $L^{c}=\left\{V_{1}, \ldots, V_{n}\right\}-L$ such that $a_{i}^{-}>0$. Cnoose a_{i}^{-}vertices $V_{l_{1}}, \ldots, V_{l_{a_{i}}}$ other than V_{i} with the biggest degree with respect to the lexicographic order \geq_{ℓ}. I.e., for any vertex V_{q} other than $V_{i}, V_{l_{1}}, \ldots, V_{l_{a_{i}^{-}}}$, we always have ($a_{l_{j}}^{+}, a_{l_{j}}^{-}$) $\geq_{\ell}\left(a_{q}^{+}, a_{q}^{-}\right)$for all $j=1, \ldots, a_{i}^{-}$.

Step 3. Replace G by $G \cup\left\{\vec{V}_{l_{j}} \vec{V}_{i}: j=1, \ldots, a_{i}^{-}\right\}$. Replace L by $L \cup\left\{V_{i}\right\}$.

Step 4. If $L^{c}=\emptyset$, stop. Now G is the required digraph. If $L^{c} \neq \emptyset$, replace $\left(a_{i}^{+}, a_{i}^{-}\right)$by $\left(a_{i}^{+}, 0\right)$ and replace $\left(a_{l_{i}}^{+}, a_{i}^{-}\right)$by $\left(a_{l_{j}}^{+}-1, a_{l_{j}}^{-}\right), j=1, \ldots, a_{i}^{-}$. Other degrees remain unchanged. Go to Step 2.

That Algorithm 4.2 works follows from the followi.2g theorem.
Theorem 4.3. Let the sequence $\left\langle\left(a_{i}^{+}, a_{i}^{-}\right)\right\rangle$be graphical, and let V_{k} be a fixed vertex. Let $S\left(V_{k}\right)=\left\{V_{i}, \ldots, V_{l_{a}-\frac{1}{k}}\right\}$ be a fixed set of vertices other than V_{k} such that the degree of each vertex in $S\left(V_{k}\right)$ is bigger $\left(\geq_{\ell}\right.$ in the lexicographic order) than the degree of sach vertex in $\left\{V_{1}, \ldots, V_{n}\right\}$ $\left\{V_{\hat{k}}, V_{l_{1}}, \ldots, V_{l_{-}}\right\}$. Then there exists a digraph G witit the given $\left\langle\left(a_{i}^{+}, a_{i}^{-}\right)\right\rangle$and with the property that $\overrightarrow{V_{l_{i}}} V_{k} \in G$ for al $i=1, \ldots, a_{k}^{-}$.

Proof. If otherwise, let C be chosen to maximize the number of vertices V in $\vec{S}\left(V_{k}\right)$ such that $\overrightarrow{V V}{ }_{\dot{k}}$ is 组 G. Then there exists a vertex. $V_{m} \in S\left(V_{k}\right)$ and a vertex $V_{q} \notin S\left(V_{k}\right)$ such that $\overrightarrow{V_{m}} V_{k} \notin G$ and $\overrightarrow{V_{q} V_{k}} \in G$. By assumption, we have $\left(a_{m}^{+}, a_{m}^{-}\right) \geq_{q}\left(a_{q}^{+}, a_{q}^{-}\right)$.

Case 1 . There exists a vertex $V_{p}, p \neq k, q, m$, such that $\overrightarrow{V_{m}} V_{p} \in G$,
$\overrightarrow{V_{q}} V_{p} \notin G$. By removing $\overrightarrow{V_{m}} V_{p}, \overrightarrow{V_{q}} V_{k}$ and replacing them by $\overrightarrow{V_{m}} V_{k}$, $V_{q}^{A} V_{p}$, we get a new digraph G^{\prime} with the given graphical sequence $\left\langle\left(a_{i}^{+}, a_{i}^{-}\right)\right\rangle$.

Case 2. If Case 1 does not hold, then we must have $a_{m}^{+}=a_{q}^{+}, a_{m}^{-} \geq a_{q}^{-}$ and $V_{m}^{\vec{\prime}} V_{q} \in G, \overrightarrow{V_{q}} V_{m} \notin G$. Since $a_{m}^{-} \geq a_{q}^{-}$, there exists a vertex V_{f}, $r \neq m, q$, such that $\overrightarrow{V_{r}} V_{m} \in G, \overrightarrow{V_{r} V_{q}} \notin G$. By removing $\overrightarrow{V_{r} V_{m}}, \overrightarrow{V_{m}} V_{q}$, $\overrightarrow{V_{q} V_{k}}$ and replacing them by $\overrightarrow{V_{r}} V_{q}, \overrightarrow{V_{q}} V_{m}, \overrightarrow{V_{m}} \vec{k}$, we get a new digraph $G^{\prime \prime}$ with the given $\left\langle\left(a_{i}^{+}, a_{i}^{-}\right)\right\rangle$.

The new digraphs $G^{\prime}, G^{\prime \prime}$ all have one more vertex in $S\left(V_{k}\right)$, namely V_{m}, such that $\overrightarrow{V_{m}} V_{k}$ is the new digraph, a contradiction to the assumption on G.

The other aigorithm for constructing a digraph with a given graphical sequence is:

Algorithm 4.4. All steps except Step 2 are the same as those in Agorithm 4.2, so we need state Step 2 only.

Step 2. If all the residual indegrees of L^{c} aie 0 , stop. G is then the required digraph. Otherwise, choose a vertex V_{i} from L^{c} such that $a_{i}^{-}>0$ and such that $\left(a_{i}^{+}, a_{i}^{-}\right) \geq_{\mathrm{r}}\left(a_{j}^{+}, a_{j}^{-}\right)$for all $j=1, \ldots, n$. (Here we use the lexicographic order from right to left).

Choose a_{i}^{-}vertices $V_{l_{1}}, \ldots, V_{l_{a_{i}}}$ other than V_{i} with the biggest outward degree. (I.e., for any $V_{j} \in\left\{V_{1}, \ldots, V_{n}\right\}-\left\{V_{i}, V_{l_{1}}, \ldots, V_{l_{a_{i}}}\right\}$, we have $a_{m}^{+} \geq a_{j}^{+}$for all $m=l_{1}, \ldots, l_{a_{i}^{-}}$.)

Algorithm 4.4 is justified by the following theorem.

Theorem 4.5. Let the sequence $\left\langle\left(a_{i}^{+}, a_{i}^{-}\right\rangle\right\rangle$be graphical, and let V_{k} be a vertex such thai $\left(a_{k}^{+}, a_{k}^{-}\right) \geq_{r}\left(a_{j}^{+}, a_{j}^{-}\right)$for all $j=1, \ldots, n$. Let $S\left(V_{k}\right)=$ $\left\{V_{l_{1}}, \ldots, V_{l_{-}^{-}}\right\}$be a fixed set of a_{k}^{-}vertices other than V_{k} such that the cutward degree of each vertex in $S\left(V_{k}\right)$ is bigger than the outward degree of each vertex in $\left\{V_{1}, \ldots, V_{n}\right\} \cdots\left\{V_{k}, V_{l_{1}}, \ldots, V_{l_{a_{k}}}\right\}$. Then there exists a graph G with the given $\left\langle\left(a_{i}^{+}, a_{i}^{-}\right)\right\rangle$and with the property that $\overrightarrow{V_{l_{i}}} V_{k}$ $\in G$ for ail $i=1, \ldots, a_{k}^{-}$.

Proof. If otherwise, let G be chosen to maximize the number of vertices V in $S\left(V_{k}\right)$ such that $\vec{V} V_{k}$ is in G. Then there exists a vertex $V_{m} \in S\left(V_{k}\right)$ and a vertex $V_{q} \notin S\left(V_{k}\right)$ such that $\overrightarrow{V_{m}} V_{k} \notin G$ and $\overrightarrow{V_{q}} V_{k} \in G$. Also, by assumption $a_{m}^{+} \geq a_{q}^{+}$.

Case 1. There exists a vertex $V_{p}, p \neq m, q, k$, such that $\overrightarrow{V_{m}} V_{p} \in G$ and $\overrightarrow{V_{q}} V_{p}{ }^{\neq}$. By removing $V_{m}^{\vec{p}} V_{p}, \overrightarrow{V_{q}} V_{k}$ and replacing them by $V_{m}^{\rightarrow} V_{k}^{q}, V_{q}^{p} V_{p}$, we get a new digraph G^{\prime} with $\left\langle\left(a_{i}^{+}, a_{i}^{-}\right)\right\rangle$.

Case 2. If Case 1 does not hold, we must have $a_{m}^{+}=a_{q}^{+}, \overrightarrow{V_{m}} V_{q} \in G$ and $\overrightarrow{V_{q}} \vec{V}_{m} \notin G$. Since $\left(a_{k}^{+}, a_{\dot{k}}^{-}\right) \geq_{\mathrm{r}}\left(a_{q}^{+}, a_{q}^{-}\right)$, we still have two subcases to consider.

Case 2.1. There exists a vertex $\underset{\rightarrow r}{ } V_{r}$ such that $\overrightarrow{V_{r}} V_{k} \in G$ and $\overrightarrow{V_{r}} V_{q} \notin G$. If we replace $V_{m}^{\overrightarrow{ }} V_{q}, \overrightarrow{V_{r}} V_{k}$ by $V_{m} V_{k}, \overrightarrow{V_{r}} V_{q}$, we get a new digraph $G^{\prime \prime}$ having degree sequence $\left\langle\left(a_{i}^{+}, a_{i}^{-}\right)\right\rangle$.

C'ase 2.2. If no such V_{r} exists as in Case 2.1, we must have $a_{k}^{-}=a_{q}^{-}$ and $a_{k}^{+} \geq a_{q}^{+}$, and also $\overrightarrow{V_{k}} V_{q} \notin G$. Since $a_{k}^{+} \geq a_{q}^{+}$, there must exist a vertex V_{s} such that $s \neq q, \stackrel{k}{k}$ and $V_{k} V_{s} \in G, V_{q}^{q} V_{s} \notin G$. By removing $\overrightarrow{V_{m}} V_{q}, \overrightarrow{V_{q}} V_{k}, \overrightarrow{V_{k} V_{s}}$ and replacing them by $V_{m} V_{k}, \overrightarrow{V_{k} V_{q}}, \overrightarrow{V_{q}} V_{s}$, we get a new digraph $G^{\prime \prime \prime}$ with degree sequence $\left\langle\left(a_{i}^{+}, a_{i}^{-}\right)\right\rangle$.

The new digraphs $G^{\prime}, G^{\prime \prime}, G^{\prime \prime \prime}$ all have one more vertex in $S\left(V_{k}\right)$, namely V_{m}, such that $\overrightarrow{V_{n}} V_{k}$ is in the new graph. This is a contradiction.

Now, we can prove Theorem 4.1 by the following algorithm.

Algorithm 4.6. With the assumptions of Theorem 4.1, we construct G_{T}, G_{S} via the following steps:

Step 1. Set $G_{T}=\emptyset, G_{S}=\emptyset, L=\emptyset$.
Step 2. If for all vurtices V_{k} in $L^{c},\left(a_{k}^{+}, a_{k}^{-}\right)=(0,0)$, stop. Then G_{T}, G_{S} are the required digraphs. Otherwise, choose à vertex V_{k} in L^{c} such that $\left(b_{k}^{+}, b_{k}^{-}\right) \geq_{\mathrm{r}}\left(b_{j}^{+}, b_{j}^{-}\right)$for all $j=1, \ldots, n$.

Choose b_{k}^{-}vertices $V_{n_{1}}, \ldots, V_{n_{b}^{-}}=S\left(V_{k}\right)$ such that $V_{k} \notin S\left(V_{k}\right)$ and such that for all $V_{i} \notin S\left(V_{k}\right) \cup\left\{V_{k}\right\}$, we have $a_{j}^{+} \geq a_{i}^{+}$for all $j=n_{1}, \ldots$, $n_{b}{ }_{\bar{k}}$.

Choose a_{k}^{-}vertices $\left\{V_{l_{1}}, \ldots, V_{l_{a}}\right\}=T\left(V_{k}\right)$ such that $V_{k} \notin T\left(V_{k}\right)$ and such that for all $V_{i} \notin T\left(V_{k}\right) \cup\left\{V_{k}\right\}$, we have $\left(a_{j}^{+}, a_{j}^{-}\right) \geq_{\ell}\left(a_{i}^{+}, a_{i}^{-}\right)$ for all $j=l_{1}, \ldots, l_{a_{k}}$.

Replace G_{S} by $G_{S} \cup\left\{\overrightarrow{V_{n_{i}}} V_{k}: i=1, . ., b_{k}^{-}\right\}$.
Replace G_{T} by $G_{T} \cup\left\{V_{l_{i}}^{-} V_{k}: i=i, \ldots, a_{k}^{-}\right\}$.
Step 3. (i) If $G_{S} \subset G_{T}$, remove flag on next line. $G 0$ to Step 6.
(ii) If $G_{S} \not \subset G_{T}$, go to Step 4 if no flag here; to Ster 5 if flag.

Step 4. Choose vertex $V_{m} \in T\left(V_{k}\right), V_{q} \in S\left(V_{k}\right)$ such that $\overrightarrow{V_{m}} V_{k}$ $\in G_{T}-G_{S}, \overrightarrow{V_{\underline{G}}} V_{k} \in G_{S}-G_{T}$.
(i) If $\left(a_{m}^{+}, a_{m}^{-}\right)=\left(a_{q}^{+}, a_{q}^{-}\right)$, go to Step 3 with $T\left(V_{k}\right)$ replaced by $T\left(V_{k}\right) \cup\left\{V_{q}\right\}-\left\{V_{m}\right\}$.
(ii) If $b_{q}^{+}=b_{m}^{+}$, go to Step 3 with $S\left(V_{k}\right)$ replaced by $S\left(V_{k}\right) \cup\left\{V_{m l}\right\}-$ $\left\{V_{q}\right\}$.
(iii) If for all choices of $V_{m} \in T\left(V_{k}\right), V_{q} \in S\left(V_{k}\right)$ such that $\overrightarrow{V_{m}} V_{k}$ $\in G_{T}^{-} G_{S}, \overrightarrow{V_{q}} V_{k} \in G_{S}-G_{T}$, we have neither $\left(a_{m}^{+}, a_{m}^{-}\right)=\left(a_{q}^{+}, a_{q}^{-}\right)$nor $b_{q}^{+}=b_{m}^{+}$, insert flag on second line of Step 3, go to Step 5 .

Step 5. Choose a vertex $V_{p}, p \neq m, k, q$, such that $\overrightarrow{V_{q}} V_{p} \in G_{T}$ and such that $V_{m} V_{p}$ lies either in both G_{T} and G_{S} or in neither of them.
(i) If $V_{m}^{\overrightarrow{ }} V_{p}$ is in both G_{T} and G_{S}, replace G_{S} by $G_{S} \cup\left\{V_{m}^{\overrightarrow{ }} V_{k}, \overrightarrow{V_{q}} V_{p}\right\}$ $-\left\{V_{m}^{\rightarrow} V_{p}, V_{q}^{-} V_{k}\right\}$.
(ii) If $V_{m}^{\rightarrow} V_{p}$ is neither of G_{T} and G_{S}, replace G_{T} by ${\boldsymbol{r}_{T}}_{T} \cup\left\{\overrightarrow{V_{q}} V_{k}\right.$, $\left.V_{m}^{\vec{\prime}} V_{p}\right\}-\left\{\overrightarrow{V_{m}} V_{k}, \overrightarrow{V_{q}} V_{p}\right\}$.

Go to Step 3.
Step 6. Replar - I by $L \cup\left\{V_{k}\right\}$.
(i) If $L^{c}=\emptyset, \mathrm{s}, \mathrm{p}$. Then G_{T}, G_{S} are the required digraphs.
(ii) If $L^{c} \neq \emptyset$, replace $\left(a_{k}^{+}, a_{k}^{-}\right)$by $\left(a_{k}^{+}, 0\right)$ and $\left(b_{k}^{+}, b_{k}^{-}\right)$by $\left(b_{k}^{+}, 0\right)$, and replace $\left(a_{l_{i}}^{+}, a_{l_{i}}^{-}\right)$by $\left(a_{l_{i}}^{+}-1, a_{l_{i}}^{-}\right), i=1 \ldots, a_{k}^{-}$and $\left(b_{n_{i}}^{+}, b_{n_{i}}^{-}\right)$by $\left(b_{n_{i}}^{+}-1, b_{n_{i}}^{-}\right)$, $i=1, \ldots, b_{k}^{-}$.

Go to Step 2.
Justification of Algorithm 4.6. We need only justify Step 5. Suppose that there exist $V_{m} \in T\left(V_{k}\right), V_{q} \in S\left(V_{k}\right)$ such that $V_{m} V_{k} \in G_{T}-G_{S}$, $\overrightarrow{V_{q}} V_{k} \in G_{S}-G_{T}$, and $\left(a_{m}^{+}, a_{m}^{-}\right) \neq\left(a_{q}^{+}, a_{q}^{-}\right), b_{q}^{+} \neq b_{m}^{+}$. We must then have $\left(a_{m}^{+}, a_{m}^{-}\right) \geq_{\ell}\left(a_{q}^{+}, a_{q}^{-}\right)$and $b_{q}^{+}>b_{m}^{+}$.
(i) $a_{m}^{+}>a_{q}^{+}, b_{q}^{+}>b_{m}^{+}$. Then $a_{m}^{+}-b_{m}^{+} \geq a_{q}^{+}-b_{q}^{+}+2$. Since $a_{m}^{+}-b_{m}^{+}=$ $a_{q}^{+}-b_{q}^{+}=$constant c in the beginning, there must exist a vertex $V_{p} \in L$, $p \neq k, m, q$, such that $\overrightarrow{V_{q}} V_{p} \in G_{T}$ and $\overrightarrow{V_{m}} V_{p}$ is in both G_{T} and G_{S} or in neither of them.
(ii) $a_{m}^{+}=a_{q}^{+}, a_{m}^{-}>a_{q}^{-}, b_{q}^{+}>b_{m}^{+}$. In this case, we have $a_{m}^{+}-b_{m}^{+} \geq a_{q}^{+}$ $b_{q}^{+}+1$ and $a_{m}^{q}>0$. The latter implies that $V_{m} \notin U$, so that $V_{q}^{-} V_{m} \notin G_{T}$ Thus $a_{m}^{+}-b_{m}^{+} \geq a_{q}^{+}-b_{q}^{-}+1$ implies the existence of V_{p} as in (i). The existence of such a V_{p} justifies Step 5.

From the justifications of Algorithm 4.6, we see that Kundu's result for digraph can be extended to the following situation. If for some i, $b_{i}^{+}=0$, then V_{i} can only take the role of V_{m} and never of V_{q} in (i) and (ii). The argument thus remains intact if we relax the condition $a_{i}^{+}-b_{i}^{+}=$ c to $a_{i}^{+}-b_{i}^{+} \leq c$ at this vertex. We therefore have the folloving theorem.

Theorem 4.7. Assume that the degree sequences $\left\langle\left(a_{i}^{+}, a_{i}^{-}\right)\right\rangle,\left\langle\left(b_{i}^{+}, b_{i}^{-}\right)\right\rangle$ are all graphical; $a_{i}^{+} \geq b_{i}^{+}, a_{i}^{-} \geq b_{i}^{-}$. Also, assume that there is a nonnegative integer c such that $a_{i}^{+}-b_{i}^{+}=c$ if $b_{i}^{+} \neq 0, a_{i}^{+}-b_{i}^{+} \leq c$ if $b_{i}^{+}=0$. Then there exists a graph G_{T} with degree sequence $\left\langle\left(a_{i}^{+}, a_{i}^{-}\right)\right\rangle$and containing a subgraph G_{S} with degree sequence $\left\langle\left(b_{i}^{+}, b_{i}^{-}\right)\right\rangle$.

Added in proof. Kundu has raised the question: "What similar results hold for more general k_{i}, in particular if all k_{i} but two are equal to k or $k+1$, and two, k_{1} and k_{2}, are different?" The method of section 3 above can easily be shown to apply for $k \geqslant 2$, whenever it is possible to lay off the two odd vertices first so that s is a subgraph of T on arcs containing them and so that the remaining residual degree sequences are both realizable. This will be so if and only if either of

$$
\left(v_{i}-\delta_{i 1}-\delta_{i 2}\right)
$$

or

$$
\left(v_{i}-k_{\mathrm{i}}+\delta_{i 1}+\delta_{i 2}\right)
$$

(Kronecker δ 's) are realizable given that $\left\{v_{i}\right\}$ and $\left\{v_{i}-\bar{k}_{i}\right\}$ are realizable. In other words, the sequence $\left\{v_{i}\right\}$ will be realizable by a graph possessing a subgraph with degrees $\left\{v_{i}-k_{i}\right\}$ when both these sequences are realizable and there is a realization of the former containing an arc joining the first two vertices, or one of the latter not containing that arc.

Refererces

[1] S.L. Hakimi, On realizability of a set of integers as degrees oif the vertices of a linear graph I, II, J. Soc. Indust. Appl. Math. 10 (1962) 496-506, 11 (1963) 135-147.
[2] D.J. Kleitman, Minimal number of multiple edges in realization of an incidence sequence without loops, SIAM J. Appl. Math. 18 (1970) 25-28.
[3] S. Kundu, The K factor conjecture is true, to be published.

[^0]: * Presented in part at the Monterey Conference on Algorithms, January 1972. Supported in part by ONR Contract N00014-67-A-0204-0016.
 ** Original version received 6 April 1972.

