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1. INTRODUCTION

Let a� b denote the lengths of the semimajor and -minor axes of an
ellipse with eccentricity e = �1/a�

√
a2 − b2 and whose perimeter is L�a� b�.

The problem of approximating L�a� b� is an ancient one. An excellent
account of this problem is found in an article by Almkvist and Berndt [1].
In the article [1], several approximations that have been proposed over
a period of nearly 4 centuries are presented. The approximation for
L�a� b�/�π�a+ b��,

A�a� b� = 2
a+ b

(
a3/2 + b3/2

2

)2/3

�

was given by Muir in 1883. In 1996, Vuorinen in the paper “Hypergeometric
Functions in Geometric Function Theory” [6] raised the question

(Q1) Question. Is it true that A�a� b� is an approximation to L�a� b�/
�π�a+ b�� from below throughout the entire range of eccentricity e?

As is often the case for a mathematical conjecture, the insights gained
in the course of its resolution and extended ramifications of the result
supersede the original question. In this paper we develop a technique to
answer Question (Q1) that readily extends to a broader class of inequalities,
all of which are motivated by the problem of approximating the elliptical
perimeter. The verification of each inequality is accomplished by showing
the positivity of an infinite series. The proof of the positivity of the infi-
nite series is achieved by utilizing a computer algebra system to execute a
Sturm sequence argument.
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In verifying (Q1) it will be shown that A�a� b� exhibits a monotonic
dependence on eccentricity. As a consequence of this property, bounds on
the error, E = L�a� b�/�π�a+ b�� −A�a� b�, are readily established.

2. APPROXIMATIONS OF ELLIPTIC PERIMETER

Recall that if an ellipse is described by the parametric equations x =
a cosφ and y = b sinφ� 0 ≤ φ ≤ 2π, then the perimeter L of the ellipse
is given by

L = L�a� b� =
∫ 2π

0

√
�a2 sin2 φ+ b2 cos2 φ�dφ�

The perimeter of the ellipse can be expressed exactly in terms of Gauss’s
ordinary hypergeometric series

F�a� b� c 	 x� =
∞∑
k=0

�a�k�b�k
�c�kk!

xk� �x� < 1�

where a� b� and c denote arbitrary complex numbers and �α�k is defined by

�α�k = α�α+ 1��α+ 2� · · · �α+ k− 1��

The following expressions for the elliptical perimeter are due, respectively,
to Maclaurin (1742), Euler (1773), and Ivory (1796) (see [1] and the refer-
ences therein) and illustrate the connection between the elliptical perimeter
and the hypergeometric functions.

Proposition 1. Let x = a cosφ and y = b sinφ� 0 ≤ φ ≤ 2π, and let
e = �1/a�

√
a2 − b2 be the eccentricity of the ellipse. Then

L�a� b� = 2πaF
( 1

2 �− 1
2 � 1 	 e2

)
= π

√
2�a2 + b2� F

(− 1
4 �

1
4 � 1 	 ( a2−b2

a2+b2

)2)
= π�a+ b�F(− 1

2 �− 1
2 � 1 	 λ2

)
�

where

λ = a− b

a+ b
�

The approximations presented in [1] are reproduced in Table I. In the
second column of the table the approximation A�λ� to the “normalized”
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length L�a� b�/π�a + b�� is given. The third column provides the first
nonzero term in the power series for the difference L�a� b�/π�a + b�� −
A�λ�.

Let us now reconsider the question (Q1). If we utilize Maclaurin’s exact
expression for the elliptical perimeter given in the proposition, then Muir’s
approximation amounts to the statement that

2πaF
( 1

2 �− 1
2 � 1 	 e2) ≈ 2π

(
a3/2 + b3/2

2

)2/3

�

Without loss of generality we may assume that the semimajor axis a = 1 and
then set x = 1 − b2, so that the entire range of eccentricity is represented
by 0 < x < 1. The explicit statement of (Q1) as posed by Vuorinen is given
by the problem

Problem. Is it true for 0 < x < 1 that we have

F
( 1

2 �− 1
2 � 1 	 x)− (

1 + �1 − x�3/4

2

)2/3

> 0?

Let us denote the error between the normalized elliptical perimeter and
the algebraic approximation by

��x� = F
( 1

2 �− 1
2 � 1 	 x)−A�x�� (1)

where for Muir’s approximation

A�x� =
(

1 + �1 − x� 3
4

2

)2/3

�

In the course of answering (Q1) we will in fact show the stronger result
that

�00006 <
��x�
x4 < ��1� < �00666� 0 < x < 1� (2)

This bound on the error illustrates the surprising accuracy of Muir’s
approximation.

It is natural to ask whether an estimate of this type can be obtained
for each of the approximations in Table I. The positivity of the first term
in the Taylor expansion of L�a� b�/�π�a + b�� − A�λ� is consistent with
the conjecture that Muir’s approximation to L�a� b� could indeed be an
approximation from below. Furthermore, the power of the first nonzero
term in the Taylor expansion suggests that one consider ��x�/x4 in proving
the result in (2). For those approximations in Table I for which the first
term in the Taylor expansion is positive, i.e., for the approximations of
Kepler, Lindner, Ramanujan(a,b), Bronshtein, Selmer(a,b), and Jacobsen,
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TABLE I

Sources (see [1]) A�λ� L�a�b�
π�a+b� −A�λ�

Kepler (1609) 2
√
ab

a+b
=

√
1 − λ2 3

4λ
2

Euler (1773)
√

2�a2+b2�
a+b

=
√

1 + λ2 − 1
4λ

2

Sipos (1792) 2�a+b�
�√a+√

b�2 = 2
1+

√
1−λ2 − 7

64λ
4

Peano (1889) 3
2 −

√
ab

a+b
= 3

2 − 1
2

√
1 − λ2 − 3

64λ
4

Muir (1883) 2
a+b

(
a3/2+b3/2

2

)2/3
1
64λ

4

= 1
22/3 ��1 + λ� 3

2 + �1 − λ� 3
2 � 2

3

Lindner (1904)
{

1 + 1
8

(
a−b
a+b

)2}2
=

(
1 + 1

8λ
2
)2

1
28 λ

6

Ramanujan (1914a) 3−
√

�a+3b��3a+b�
a+b

= 3 −
√

4 − λ2 1
29 λ

6

Ramanujan (1914b) 1 + 3��a−b��a+b��2

10+
√

4−3��a−b�/�a+b��2

3
217 λ

10

= 1 + 3λ2

10+
√

4−3λ2

= 2 �1+
√

1−λ2�2+λ2
√

1−λ2

�1+
√

1−λ2��1+ 4√1−λ2�2

Bronshtein (1964) 1
16

64�a+b�4−3�a−b�4

�a+b�2�3a+b��a+3b� = 64−3λ4

64−16λ2
9

214 λ
8

Selmer (1975,a) 1 + 4�a−b�2

�5a+3b��3a+5b� = 1 + λ2

4
16

16−λ2
3

210 λ
6

Selmer (1975,b) 1
8

(
12 +

(
a−b
a+b

)2
− 2

√
2�a2+6ab+b2�

a+b

)
5

214 λ
8

= 3
2 + 1

8λ
2 − 1

2

√
1 − 1

2λ
2

Almkvist (1978) 2 2�a+b�2−�√a−√
b�4

�a+b��√a+√
b�2+2

√
2
√
a+b

4√
ab� − 15

214 λ
8

Jacobsen (1985) 256−48λ2−21λ4

256−112λ2+3λ4
33
218 λ

10
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it is natural to ask whether they are approximations from below and if a
result analogous to (2) can be obtained. What we will show in this article
is that this is indeed the case.

An obvious analogy would suggest that the results due to Euler, Sipos,
Peano, and Almkvist are approximations from above. Somewhat surpris-
ingly, the techniques developed in this article are not directly applicable to
these approximations. However, using deeper methods, it has been shown
by Barnard et al. [4], that even stronger results can be obtained which imply
that inequalities analogous to (2) hold, and hence the approximations of
Euler, Sipos, Peano, and Almkvist are indeed from above.

The verification of (2) is obtained by showing the positivity of an infinite
series in the form

��x� =
∞∑
n=0

bn�x��

We first verify that exists an N for which bn�x� > 0� n ≥ N . Consequently,
the proof of (2), and hence the resolution of (Q1), is reduced to examining
the positivity of the polynomial

p�x� =
N∑

n=0

bn�x��

Because the coefficients of the polynomial p are integers, the positivity of
p may be verified by a Sturm sequence argument that involves only exact
arithmetic. In a subsequent section, we will elaborate on the details of this
approach but it should be emphasized at this point that these calculations,
though computationally formidable, are readily carried out using a com-
puter algebra system. Nevertheless, care must be exercised to ensure that
only exact arithmetic and algebra are performed.

3. MUIR’S APPROXIMATION AND VERIFICATION OF
VUORINEN’S CONJECTURE

In this section we will verify (2) and hence answer (Q1). The arguments
needed for Muir’s approximation turn out to be exceptional among the list
of approximations in Table I. Nevertheless, the arguments used in this case
suggest a more general approach to the verification of inequalities of the
type (2) that are relevant to the other approximations.

In order to avoid the complications associated with a choice of a branch
cut, we first make the substitution x → 1 − x4 and define

G�x� = ��1 − x4�
�1 − x4�4 � (3)
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The result is established by showing that G′�x� does not change sign and so
G is monotone. More precisely, we will show that G′�x� < 0� 0 < x < 1. It
is convenient to calculate G′ using a computer algebra system (CAS) such
as Mathematica or Maple. Using Maple, we obtain

G′�x� = N1 +N2 + P

D
�

where

N1 = −4x 3

√
1
2
+ 1

2
x3 K

(√
1 − x4

)

N2 = −28x 3

√
1
2
+ 1

2
x3 E

(√
1 − x4

)
P = π�1 + 7x4 + 8x�

D =
π �−1 + x4�5 3

√
1
2 + 1

2x
3

x2 �

and K�E denote elliptical integrals of the first and second kind respectively.
It should be noted that the above expression for �′�x� can be checked by
recalling the definitions of F

( 1
2 �− 1

2 � 1 	 x)�K� and E.
Since D < 0, to verify that �′�x� < 0 it suffices to show that

��x� = −N1 −N2
P

≤ 1�

Since ��1� = 1, we need only verify that � ′�x� ≥ 0. After converting the
elliptical integrals to hypergeometric functions and simplifying, the problem
is reduced to showing that

p1�x�F
( 1

2 �
1
2 � 1 	 1 − x4)+ p2�x�F

(− 1
2 �

1
2 � 1 	 1 − x4) ≥ 0� (4)

where

p1�x� = 252x9 − 504x8 + 756x7 − 502x6 + 248x5 + 6x4 − 4x3

+ 6x2 − 4x+ 2�

p2�x� = −238x6 + 196x5 − 154x4 − 112x3 + 94x2 − 52x+ 10�

A crucial manipulation involves the conversion of the above expression to
series form. One may then express the left-hand side of (4) as

p1�x�
∞∑
k=0

(( 1
2

)
k

k!

)2

�1 − x4�k + p2�x�
∞∑
k=0

(− 1
2

)
k

( 1
2

)
k

k!k!
�1 − x4�k�
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These series may be combined as

p1�x� + p2�x� +
∞∑
k=1

(( 1
2

)
k

k!

)2

p1�x� − p2�x�/�2k− 1�� �1 − x4�k� (5)

It is at this point that a Sturm sequence argument is applied in order
to verify the needed positivity. More precisely, we shall use this termi-
nology to refer to a generalized form of Descartes’ rule of signs which
gives the precise number of zeros of a polynomial in an interval. This
is achieved by utilizing the Euclidean algorithm and a notion of Sturm
sequences [5, 7]. In particular, given a polynomial P�x� and a real number
a, define the function V �a� as the number of sign variations in the num-
bers �p0�a�� p1�a�� � � � � pn�a��. The Sturm polynomials �p0� p1� � � � � pn�
are defined by

p0�x� = p�x��
p1�x� = p′�x�

and, for each k ≥ 2� pk�x� is the unique polynomial of degree less than
that of pk−1�x� such that

pk−2�x� = qk�x�pk−1�x� − pk�x��

where qk�x� is a polynomial. The Sturm Theorem states that if P�a� �= 0
and P�b� �= 0, then the number of distinct roots of P�x� = 0 in the interval
[a, b] is exactly V �a� − V �b�. In applying Strum’s theorem to an arbitrary
polynomial, a rounding error may affect the signs of pi�a� and pi�b� and
hence may limit the usefulness of the procedure. However, for our pur-
poses, the polynomials to which the method is always applied have integer
coefficients and with the exact arithmetic provided by a computer algebra
system accuracy is never compromised. The method is implemented by call-
ing on the procedure sturm within Maple. This procedure uses Strum’s
theorem to return the number of real roots in the interval (a, b] of a
polynomial P�x�.

For the series given in (5), a Strum sequence argument applied to
p1�x� − p2�x�/�2k − 1� shows that when k = 4 this polynomial has no
zeros. It then follows that

p1�x� −
p2�x�
2k− 1

> 0� k > 4� (6)
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The positivity of the infinite series will be confirmed if the 61st degree
polynomial with rational coefficients

P1�x� + p2�x� +
13∑
k=1

(( 1
2

)
k

k!

)2[
p1�x� −

p2�x�
2k− 1

]
�1 − x4�k (7)

is positive. This is readily verified by another Sturm sequence argument.
Because of the topic in Vuorinen’s article [6], the question he posed

regarding Muir’s approximation was expressed in terms of the eccentricity
and hence inequality (2) was given as a function of e. If the notation of [1]
is adopted, it is more natural to express the error in terms of λ = �a− b�/
�a + b�. What we shall show in the next section is that the methods that
have been utilized in verifying (2) can be generalized to obtain analogous
results. As argued above, the proof will ultimately be reduced to verifying
the positivity of an infinite series as in (5) and, subsequently, the positivity
of a polynomial analogous to (7).

4. APPROXIMATIONS OF ELLIPTICAL
PERIMETER FROM BELOW

With the exception of Muir’s, the algebraic approximations from below
given in Table I may be denoted as A�λ2�. There is a polynomial φ�x� so
that with the change of variable λ2 = φ�x� we obtain a rational function
f �x� = A�φ�x��. In particular, for the approximation of Kepler, φ�x� =
1 − x2; for those of Lindner, Selmer(a), Bronshstein, and Jacobsen, φ�x� =
x; for Ramanujan�a� b�� φ�x� = �4 − x2� and φ�x� = �4 − x2�/3 respec-
tively; while for Selmer�b�� φ�x� = 2�1 − x2�. Let N denote the power
of the first nonzero term in the Taylor series for the difference L�a� b�/
�π�a+ b�� −A�λ2�.

The result, analogous to (3), that will be verified is

d

dx

(
F
(− 1

2 �− 1
2 � 1 	 φ�x�)− f �x�
φ�x��M

)
�= 0� (8)

Here M = N/2, and the interval on which (8) will hold is determined by
the change of variable λ2 = φ�x�.
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We begin by computing

d

dx

(
F
(− 1

2 �− 1
2 � 1 	 φ�x�)− f �x�
φ�x��M

)

= 1
φ�x��M+1 Mf �x�φ′�x� −φ�x�f ′�x��

+ 1
φ�x��M+1

[
φ�x�φ′�x�

4

∞∑
k=0

(( 1
2

)
k

)2

�2�k
φk�x�
k!

−Mφ′�x�
∞∑
k=0

( �− 1
2 �k
k!

)2

φk�x�
]

= D1 +D2�

For D2 we have

D2 = 1
φ�x��M+1

[
φ�x�φ′�x�

4
−Mφ′�x�

]

+ 1
φ�x��M+1

∞∑
k=1

( � 1
2 �k
k!

)2[φ�x�φ′�x�
4�k+ 1� − Mφ′�x�

�2k− 1�2

]
φ�x�k

= D21 +D22�

A further computation shows that

D22 = φ′�x�
φ�x��M+1

[
φ�x�

4

(
− 1 +

∞∑
k=0

( � 1
2 �k
k!

)2 φk�x�
�k+ 1�

)

−
∞∑
k=1

( � 1
2 �k
k!

)2 Mφk�x�
�2k− 1�2

]

= φ′�x�
φ�x��M+1

[
φ�x�

4

(
− 1 +

∞∑
k=1

( � 1
2 �k−1

�k− 1�!
)2 φ�k−1��x�

k

)

−
∞∑
k=1

( � 1
2 �k
k!

)2 Mφk�x�
�2k− 1�2

]

= φ′�x�
φ�x��M+1

[−φ�x�
4

+
∞∑
k=1

( � 1
2 �k
k!

)2 kφ�x��k
�2k− 1�2

−
∞∑
k=1

( � 1
2 �k
k!

)2 Mφk�x�
�2k− 1�2

]
�
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Combining these results gives us

d

dx

(
F
(− 1

2 �− 1
2 � 1 	 φ�x�)− f �x�
φ�x��M

)

= 1
φ�x��M+1

[
Mφ′�x��f �x� − 1� − f ′�x�φ�x�

+φ′�x�
∞∑
k=1

( � 1
2 �k
k!

)2 �k−M�φk�x�
�2k− 1�2

]
�

The necessary inequality that is analogous to (6) is trivially met if k > M .
To verify (8), one need only determine K ≥ M and apply a sturm sequence
argument to show that the polynomial

Mf �x�φ′�x� − f ′�x�φ�x� −Mφ′�x� +φ′�x�
∞∑
k=1

( � 1
2 �k
k!

)2 �k−M�φk�x�
�2k− 1�2

has the same sign as

φ′�x�
∞∑
k=1

( � 1
2 �k
k!

)2 �k−M�φk�x�
�2k− 1�2

From the monotonicity of F( − 1
2 �− 1

2 � 1 	 φ�x�) − A�φ�x���/φ�x��M ,
one readily obtains, analogous to inequality (2), the bounds �α�β� on

��λ�
λN

= F
(− 1

2 �− 1
2 � 1 	 λ2

)−A�λ2�
λN

�

In particular, α is obtained as the limit of ��λ�/λN as λ → 0, while β is
determined by evaluation at λ = 1. Table II illustrates the accuracy of the
approximations from below by specifying α�β, where

α <
��λ�
λN

< ��1� < β� 0 < λ < 1� (9)

To illustrate the use of these bounds in obtaining error approximations
first note that

a− b

a+ b
= 1 −

√
1 − e2

1 +
√

1 − e2
= λ�e��

It follows that the error in elliptical perimeter approximation

Ẽ�λ� 	= L�a� b� − π�a+ b�F
(−1

2
�
−1
2

� 1 	 λ2
)

satisfies

aπα
(
1 +

√
1 − e2

)λ�e��N < Ẽ�λ� < aπβ
(
1 +

√
1 − e2

)λ�e��N� (10)
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TABLE II

Sources (see [1]) �α�β�
Kepler (1609) (.75, 1.2732)
Lindner (1904) (.003906, .007614)
Ramanujan (1914a) (.001953, .005290)
Ramanujan (1914b) (.000022, .000512)
Bronshtein (1964) (.002929, .006572)
Selmer (1975a) (.000549, .002406)
Selmer (1975b) (.000305, .001792)
Jacobsen (1978) (.000125, .001130)

5. IMPLICATIONS AND FURTHER DIRECTIONS

It can be shown that the remaining approximations in Table I are from
above. To verify this requires considerably more sophisticated methods. In
fact, what has been shown by Barnard et al. [4] is that, with the exception
of Euler’s, the coefficients of the Taylor expansions of ��x� are all of the
same sign. As a consequence of their results one can deduce not only that
(8) holds, but more generally, for every integer n ≥ 0, that

dn��x�
dxn �= 0�

Of course, the results of this paper are trivial consequences of this more
general result, but the methods that are presented here are of interest in
their own right. For instance, the results presented here, and in particular
Eq. (10), provide a relatively simple derivation of estimates that historically
appeared in the context of astronomical considerations and the application
of Landen’s transformation [1].

In addition, there is an obvious intriguing issue associated with the
study of these inequalities. Is there a geometrical significance to these
algebraic approximations that accounts for the monotone properties that
these approximations possess? It has been suggested by Berndt [2] that
Ramanujan’s formulas have their origins in the representation of analytic
functions as continued fractions. As for the other approximations, little is
known as to their motivation.
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