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2-Joins are edge cutsets that naturally appear in the decomposition of several classes of
graphs closed under taking induced subgraphs, such as balanced bipartite graphs, even-
hole-free graphs, perfect graphs and claw-free graphs. Their detection is needed in several
algorithms, and is the slowest step for some of them. The classical method to detect
a 2-join takes O (n3m) time where n is the number of vertices of the input graph and m
is the number of its edges. To detect non-path 2-joins (special kinds of 2-joins that
are needed in all of the known algorithms that use 2-joins), the fastest known method
takes time O (n4m). Here, we give an O (n2m)-time algorithm for both of these problems.
A consequence is a speed-up of several known algorithms.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A partition (X1, X2) of the vertex-set of a graph G is a 2-join if for i = 1,2, there exist disjoint non-empty Ai, Bi ⊆ Xi
satisfying the following:

• every vertex of A1 is adjacent to every vertex of A2, every vertex of B1 is adjacent to every vertex of B2, and there are
no other edges between X1 and X2;

• for i = 1,2, |Xi| � 3.

Sets X1 and X2 are the two sides of the 2-join. We say that (X1, X2, A1, B1, A2, B2) is a split of a 2-join (X1, X2). For
i = 1,2, we will denote by Ci the set Xi \ (Ai ∪ Bi).

The 2-join was first introduced by Cornuéjols and Cunningham in [12] in the context of studying composition operations
that preserve perfection. It is a generalization of an edge cutset known as a 1-join (or join or split decomposition) introduced
by Cunningham and Edmonds in [13]. A partition (X1, X2) of the vertex-set of a graph G is a 1-join if for i = 1,2, there
exists non-empty Ai ⊆ Xi satisfying the following:

• every vertex of A1 is adjacent to every vertex of A2, and there are no other edges between X1 and X2;
• for i = 1,2, |Xi| � 2.
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1570-8667/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jda.2012.11.003

https://core.ac.uk/display/81983351?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jda.2012.11.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jda
mailto:pierre.charbit@liafa.jussieu.fr
mailto:michel.habib@liafa.jussieu.fr
mailto:nicolas.trotignon@ens-lyon.fr
mailto:k.vuskovic@leeds.ac.uk
http://dx.doi.org/10.1016/j.jda.2012.11.003


P. Charbit et al. / Journal of Discrete Algorithms 17 (2012) 60–66 61
Fig. 1. A graph G with no extreme 2-join.

2-Joins ended up playing a key role in structural characterizations of several complex classes of graphs closed under
taking induced subgraphs, and construction of polynomial time recognition and optimization algorithms associated with
these classes. 2-Joins are used in decomposition theorems for balanced bipartite graphs that correspond to balanced 0, 1
matrices [5] as well as balanced 0, ±1 matrices [6,7], even-hole-free graphs [8,15], odd-hole-free graphs [11], square-free
Berge graphs [10], Berge graphs in general [1,4,19] and claw-free graphs [2]. The decomposition theorem in [4] famously
proved the Strong Perfect Graph Conjecture.

Decomposition based polynomial time recognition algorithms, that use 2-joins, are constructed for balanced 0, ±1 ma-
trices [6,7], even-hole-free graphs [9,15] and Berge graphs with no balanced skew partition [19]. 2-Joins are also used
in [20] for solving the following combinatorial optimization problems in polynomial time: finding a maximum weighted
clique, a maximum weighted stable set and an optimal coloring for Berge graphs with no balanced skew partition and no
homogeneous pairs, and finding a maximum weighted stable set for even-hole-free graphs with no star cutset.

Detecting a 2-join in a graph obviously reduces to detecting a 2-join in a connected graph, so input graphs of our
algorithms may be assumed to be connected. We denote with n the number of vertices of an input graph G , and with m
the number of edges in G . In [12] an O (n3m) algorithm for finding a 2-join in a graph G (or detecting that the graph does
not have one) is given. The algorithm is based on a set of forcing rules that for a given pair of edges a1a2 and b1b2 decides,
in time O (n2), whether there exists a 2-join with split (X1, X2, A1, B1, A2, B2) such that for i = 1,2, ai ∈ Ai and bi ∈ Bi , and
finds it if it does. In Section 2, we describe a new method to achieve the same goal slightly faster, in time O (n + m).

It is observed in [12] that since for any spanning tree T of G , any 2-join (X1, X2) must contain an edge of T that is
between X1 and X2, then to find a 2-join in a graph, one needs to check O (nm) pairs of edges a1a2 and b1b2, giving the
total running time of O (n3m) for finding a 2-join. In Section 3, we show that actually one only needs to check O (n2) pairs
of edges, reducing the running time of finding a 2-join to O (n2m).

All the 2-joins whose detection is needed for the algorithms mentioned above in fact have an additional crucial property:
they are non-path 2-joins. A 2-join is said to be a path 2-join if it has a split (X1, X2, A1, B1, A2, B2) such that for some
i ∈ {1,2}, G[Xi] is a path with an end in Ai , an end in Bi and interior in Ci . In this case Xi is said to be a path-side of
this 2-join. A non-path 2-join is a 2-join that is not a path 2-join. In [9] it is observed that by applying the 2-join detection
algorithm O (n) times one can find a non-path 2-join if there is one. In Section 4 we show that in fact a constant number
of calls to the algorithm for 2-join is needed, so that non-path 2-joins can also be detected in O (n2m) time.

In inductive arguments or algorithms that use cutsets, i.e. decomposition theorems, one needs the concept of the blocks
of decomposition, by which a graph is decomposed into “simpler” graphs. Blocks of decomposition of a graph G with respect
to a 2-join with split (X1, X2, A1, B1, A2, B2) are graphs G1 and G2 usually constructed as follows: G1 is obtained from G
by replacing X2 by a marker path P2 that is a chordless path from a vertex a2 which is adjacent to all of A1 to a vertex b2
which is adjacent to all of B1, and whose interior vertices are all of degree two in G1. Block G2 is obtained similarly by
replacing X1 by a marker path P1. In all of the above mentioned papers, blocks of decomposition for 2-joins are constructed
this way, where marker paths are of some fixed small length. For example in [12] they are of length 1, and in the other
papers they are of length at most 6. It is now clear why non-path 2-joins are a more useful concept when using 2-joins in
algorithms.

In [12] it is claimed that at most n applications of the 2-join detection algorithm are needed to decompose a graph
into irreducible factors, i.e. graphs that have no 2-join. This is true, as shown in [9], but in [12] it is based on a wrong
observation that the 2-join detection algorithm given in [12] always finds an extreme 2-join, i.e. one whose both blocks
of decomposition are irreducible. First of all it is not true that every graph that has a 2-join, has an extreme 2-join. For
example graph G in Fig. 1 has exactly two 2-joins, one is represented with bold lines, and the other is equivalent to it. Both
of the blocks of decomposition are isomorphic to graph H (where dotted lines represent paths of arbitrary length, possibly
of length 0), and H has a 2-join whose edges are represented with bold lines. So G does not have an extreme 2-join. Even if
a graph had an extreme 2-join the algorithm in [12] would not necessarily find it. On the other hand, 1-joins have a much
nicer tree-like structure so that there exist fast (O (m)-time) algorithms to compute a representation of the whole family of
1-joins of a given graph, and in particular yield extremal ones. See for example [14,16,18].

For the optimization algorithms in [20], it is in fact essential that these extreme non-path 2-joins are used, which is
potentially a problem since as shown above, a graph with a 2-join may fail to have an extreme 2-join. Fortunately, graphs
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Table 1
Procedure used in Lemma 2.1.

Input: S0 a set of vertices of a graph G such that: |S0| � 3 and four
vertices a1, b1, a2, b2 pairwise distinct with: a1,b1 ∈ S0, a2,b2 /∈ S0,
a1a2,b1b2 ∈ E , and a1b2,b1a2 /∈ E .

Initialization:
S ← S0; T ← V (G) \ S0; A ← N(a1) ∩ T ; B ← N(b1) ∩ T ;
If A ∩ B �= ∅ then Move(A ∩ B);
Vertices a1, b1, a2, b2 are left unmarked. For the other vertices of G:

Mark(x) ← α.β for every vertex x ∈ N(a2) ∩ N(b2);
Mark(x) ← α for every vertex x ∈ N(a2) \ N(b2);
Mark(x) ← β for every vertex x ∈ N(b2) \ N(a2);
Every other vertex of G is marked by ε;
Note that a vertex can be unmarked, or marked by ε, α, β or α.β .

Main loop:
While there exists a vertex x ∈ S marked
Do Explore(x); unmark vertex x;

Function Explore(x):
Case on the value of Mark(x):

If Mark(x) = α.β then STOP;
OUTPUT: No 2-join (S, T ) with S0 ⊂ S is compatible with the 4-tuple.

If Mark(x) = α then Move(A�(N(x) ∩ T ));
If Mark(x) = β then Move(B�(N(x) ∩ T ));
If Mark(x) = ε then Move(N(x) ∩ T );

Function Move(Y):
This function just moves a subset Y ⊂ T from T to S.
S ← S ∪ Y ; A ← A \ Y ; B ← B \ Y ; T ← T \ Y ;

studied in [20] have no star cutset, where a star cutset is any set S ⊆ V (G) such that G \ S is disconnected and for some
x ∈ S , x is adjacent to all vertices of S \ {x}. And as shown in [20], if a graph with no star cutset has a non-path 2-join,
then it has an extreme non-path 2-join. In Section 5 we show how to find an extreme non-path 2-join in time O (n3m) in
graphs that have no star cutset. It is in fact interesting that for all known algorithms that use 2-join detection (see the list
in Section 6), one actually needs to look for a non-path 2-join in graphs that do not have star cutsets. This remark could
perhaps lead to further speed-ups.

In Section 6 we survey the consequences of our work for the running time of several algorithms that use 2-joins.

2. Finding a 2-join compatible with a 4-tuple

A 4-tuple (a1,a2,b1,b2) of vertices from a graph G = (V , E) is proper if:

• a1, b1, a2, b2 are pairwise distinct;
• a1a2,b1b2 ∈ E;
• a1b2,b1a2 /∈ E .

It is compatible with a 2-join (X1, X2) of G if a1,b1 ∈ X1 and a2,b2 ∈ X2. Note that when (X1, X2) has split
(X1, X2, A1, B1, A2, B2) then for any a1 ∈ A1, a2 ∈ A2, b1 ∈ B1 and b2 ∈ B2, the 4-tuple (a1,a2,b1,b2) is proper and compat-
ible with (X1, X2); and any proper 4-tuple (a1,a2,b1,b2) that is compatible with a 2-join (X1, X2) is such that for i = 1,2,
either ai ∈ Ai and bi ∈ Bi , or ai ∈ Bi and bi ∈ Ai .

In [12], Cornuéjols and Cunningham describe a set of forcing rules that output a 2-join of a graph compatible with
a given 4-tuple, if there exists one. The method is implemented in time O (n2). Here, we propose something slightly faster
for the same task.

Lemma 2.1. Let G be a graph and Z = (a1,a2,b1,b2) a proper 4-tuple of G. There is an O (n + m)-time algorithm that given a set
S0 ⊆ V (G) of size at least 3 such that {a1,b1,a2,b2} ∩ S0 = {a1,b1} (resp. {a1,b1,a2,b2} ∩ S0 = {a2,b2}) outputs a 2-join with
a split (X1, X2, A1, B1, A2, B2), compatible with Z and such that a1 ∈ A1 , a2 ∈ A2 , b1 ∈ B1 , b2 ∈ B2 and S0 ⊆ X1 (resp. S0 ⊆ X2),
if there exists such a 2-join.

Moreover, X1 (resp. X2) is minimal with respect to this property, meaning that any 2-join with split (X ′
1, X ′

2, A′
1, B ′

1, A′
2, B ′

2)

satisfying these properties is such that X1 ⊆ X ′
1 (resp. X2 ⊆ X ′

2).

Proof. We use the procedure described in Table 1. The following properties are easily checked to be invariant during all the
execution of the procedure (meaning that they are satisfied after each call to Explore):

• S and T form a partition of V (G), S0 ⊆ S and a2,b2 ∈ T .
• All unmarked vertices belonging to S ∩ N(a2) have the same neighborhood in T , namely A.
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• All unmarked vertices belonging to S ∩ N(b2) have the same neighborhood in T , namely B .
• All unmarked vertices belonging to S which do not see a2 nor b2 have the same neighborhood in T , namely ∅.
• For every 2-join (X1, X2) such that S0 ⊆ X1 and a2,b2 ∈ X2, we have that S ⊆ X1 and X2 ⊆ T .

Since all moves from T to S are necessary (this comes from the last item), if we find a vertex marked α.β in S then no
desired 2-join exists. If the process does not stop because of a vertex marked α.β then all vertices of S have been explored
and therefore are unmarked. So, if |T | � 3, at the end, (S, T ), is a 2-join compatible with Z : X1 = S , X2 = T , A1 = S ∩ N(a2),
B1 = S ∩ N(b2), A2 = T ∩ N(a1), B2 = T ∩ N(b1). Since all moves from T to S are necessary, the 2-join is minimal as claimed
(this also implies that if |T | � 2, then no desired 2-join exists).

Complexity issues: The neighborhood of a vertex in S is considered at most once. So, globally, the process requires
O (n + m) time. �
Corollary 2.2. There is an O (n +m) algorithm whose input is a graph G together with a proper 4-tuple Z of vertices and whose output
is a 2-join of G compatible with Z if such a 2-join exists.

Proof. We suppose |V (G)| � 6 for otherwise no 2-join exists. Suppose Z = (a1,a2,b1,b2). Take any vertex u of G \
{a1,a2,b1,b2} and apply Lemma 2.1 to S0 = {a1,b1, u} and then to S0 = {a2,b2, u}. Since for any 2-join (X1, X2) compatible
with Z , either u ∈ X1 or u ∈ X2, this method detects a 2-join compatible with Z if there is one. �
3. Computing a small universal set

A set U of proper 4-tuples of vertices of a graph G is universal if for every 2-join (X1, X2) of G , at least one 4-tuple
from U is compatible with (X1, X2). Note that for all graphs, there exists a universal set: the set of all proper 4-tuples of
vertices. Note that if a graph has no 2-join then any set of proper 4-tuple of vertices, including the empty set, is universal.

To detect 2-joins, it suffices to consider a universal set U , and to apply Corollary 2.2 for all 4-tuples Z = (a1,a2,b1,b2)

in U . This gives a naive O (n4m)-time algorithm (by considering the universal set of all proper 4-tuples) and an O (nm2) (that
was originally O (n3m)) algorithm for finding a 2-join as described in [12], by considering a universal set of size O (nm) as
explained in the introduction. We now show how to compute a universal set U of proper 4-tuples of G , of size O (n2), for
any connected graph G , resulting in an O (n2m) algorithm for finding a 2-join.

We first review some well known facts about breadth first search trees. When T is a tree and u, v are vertices of T , we
denote by uT v the unique path of T between u and v . For a graph G and vertices u and v of G we denote by dG(u, v)

the distance between u and v in G . A BFS-tree of a connected graph G is any couple (T , r) where r is a vertex of G and T
is a spanning tree of G such that for all vertices v ∈ V (G) we have dT (r, v) = dG(r, v). We say that r is the root of T . It is
a well known result that for any connected graph G and any vertex r, there exists a BFS-tree (T , r).

Once a BFS-tree (T , r) of a graph G is given, we use the following standard terminology. The level of a vertex v is
l(v) = dG(r, v) = dT (r, v). For any vertex v �= r, there exists a unique vertex u such that uv ∈ E(T ) and l(u) = l(v) − 1.
We say that u is the parent of v and v is a child of u. We denote by p(v) the parent of v . The vertices of rT v are the
ancestors of v . If v is a vertex of rT u then u is a descendant of v .

A well known linear-time algorithm, named BFS, computes a BFS-tree (T , r) of any connected graph G for any vertex r.
The algorithm provides as an output the tree together with an O (n)-time routine that allows to compute the parent and all
the ancestors of any non-root vertex, and the children and all the descendants of any vertex. For the implementation, see
for instance [17].

Consider the following method for computing a set U of 4-tuples.

(i) Start with U = ∅.
(ii) Choose a vertex r and run BFS to obtain a BFS-tree (T , r).

(iii) Add to U all proper 4-tuples (a1,a2,b1,b2) such that a1a2,b1b2 ∈ E(T ).
(iv) For all pairs of vertices u and v of G such that l(u) � 2 and l(v) � 1 do the following:

Compute the set Du of all descendant of u (note that u ∈ Du).
If there exists an edge a1 v with a1 ∈ Du , pick any such edge and add (a1, v, p(u), p(p(u))) and (p(p(u)), p(u), v,a1)

to U (when they are proper).

Lemma 3.1. A connected graph G admits a universal set of proper 4-tuples of G, of size O (n2). Such a set can be found in time O (n3).

Proof. We use the method above. It obviously computes a set U , of size O (n2), made of proper 4-tuples of G . The com-
plexity of this computation is dominated by step (iv). In this step for O (n2) pairs of vertices u and v , we first compute Du ,
which can be done in time O (n) (since we already have the tree T ), and then we check whether v is adjacent to a vertex
of Du , which again can be done in time O (n). So the total complexity is O (n3). It remains to prove that U is universal. Let
(X1, X2, A1, B1, A2, B2) be a split of a 2-join of G .
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If T contains an edge a1a2 between A1 and A2, and an edge b1b2 between B1 and B2, then, in step (iii), the proper
4-tuple (a1,a2,b1,b2) is compatible with (X1, X2) and added to U . So, from here on, up to a relabeling, we assume that T
contains no edge between A1 and A2.

Suppose first r ∈ X2. Pick any vertex a in A1. Since G is connected, a ∈ V (T ). So, the ancestors of a form a shortest
path P from r to a. Path P must have an edge b1b2 where b1 ∈ B1 and b2 ∈ B2. Note that P is chordless, and hence b1
is the unique vertex of P in B1, and b2 the unique vertex of P in B2. Let u be the vertex of P such that u, b1, b2 are
consecutive along P . Note that possibly, u = a. So, b1 = p(u) and b2 = p(p(u)).

We claim that Du is included in X1. Indeed, because of b2, every vertex x in B1 satisfies l(x) � l(b2) + 1. And any
descendant y of u satisfies l(y) � l(u) = l(b2) + 2. So, no descendant of u is in B1. Since T contains no edge between A1
and A2, no descendant of u can be in X2.

Let v be any vertex of A2. Note that since no edge between A1 and A2 is in T , l(v) � 1. At some point in step (iv),
the algorithm considers u and v . Since a ∈ Du , there exists an edge between Du and v , and any such edge a1 v must be
between A1 and A2 because Du ⊆ X1. So, (a1, v,b1,b2) = (a1, v, p(u), p(p(u))) is proper, compatible with (X1, X2) and
added to U .

When r ∈ X1, we find similarly that a proper 4-tuple (p(p(u)), p(u), v,a1) is added to U . �
Theorem 3.2. There is an O (n2m)-time algorithm that outputs a 2-join of an input graph, or certifies that no such 2-join exists.

Proof. By Lemma 3.1, compute a universal set U of O (n2) proper 4-tuples in time O (n3). Apply Corollary 2.2 to each 4-tuple
in U . This leads to an O (n2m)-time algorithm. In case of failure, U is a certificate. �

This algorithm is quite brute force and in the worst case, many computations are repeated many times. In fact, we do
not know any construction of instances for which the worst case is actually achieved. So, a faster implementation might
exist.

4. Detecting non-path 2-joins

The purpose of this section is to prove the following theorem.

Theorem 4.1. There is an O (n2m)-time algorithm that outputs a non-path 2-join of an input graph, or certifies that no non-path 2-join
exists.

Proof. The idea is similar to the one of the previous section. First we compute a universal set U of size O (n2) by Lemma 3.1.
Then, for every 4-tuple Z = (a1,a2,b1,b2) in U , we either find a non-path 2-join compatible with Z or certify that none
exists.

Therefore let us fix Z and define a bad path to be, for i = 1,2, an induced path of G of length at least 2, from ai to bi ,
avoiding a3−i and b3−i , whose interior vertices are all of degree 2. Note now that a 2-join is a non-path 2-join if and only
if none of the two sides is a bad path. We check now whether there exists a vertex u that is not in any bad path of the
input graph. This is easy to do in linear time by computing the degrees and searching the graph.

Suppose first that we find such a vertex u. Then we apply Lemma 2.1 to S0 = {a1,b1, u} and to S0 = {a2,b2, u}. We claim
that this will detect a non-path 2-join compatible with Z if there is one. Indeed, suppose there is one and suppose up
to symmetry that u, a1, b1 are in the same side. When we apply Lemma 2.1 to {a1,b1, u}, some 2-join (X1, X2) must be
detected. If it is a path 2-join, then the path-side must be X2 because u cannot be in a path-side since it is not in any bad
path. But since X1 is minimal in the sense of Lemma 2.1, we see that any 2-join compatible with Z and with a1, b1, u in
the same side must in fact be (X1, X2), and hence a path 2-join, contradicting our assumption (indeed, since X2 is a path,
no vertex can be moved from X2 to X1). So (X1, X2) is non-path and we output it. This completes the proof when there
exists a vertex that is not in any bad path.

Now we may assume that every vertex of G \ Z is in a bad path. This means that G is the union of paths from ai
to bi , i = 1,2, all of length at least 2, with interior vertices of degree 2, plus the two edges a1a2 and b1b2. Then it is
straightforward to decide directly whether a non-path 2-join compatible with Z exists by just counting: let k be the number
of bad paths; if k � 2, or k = 3 and all of the vertices of Z are in bad paths, then no non-path 2-join exists; otherwise a non-
path 2-join exists (and is easy to find by putting two bad paths with same endvertices on one side and all the other vertices
on the other side). �
5. Finding minimally-sided 2-joins

A non-path 2-join (X1, X2) of a graph G is minimally-sided if for some i ∈ {1,2}, the following holds: for every non-path
2-join (X ′

1, X ′
2) of G , neither X ′

1 � Xi nor X ′
2 � Xi holds. In this case Xi is said to be a minimal side of this minimally-sided

non-path 2-join. Note that any graph that has a non-path 2-join, also has a minimally-sided non-path 2-join. A non-path
2-join (X1, X2) of a graph G is an extreme 2-join if for some i ∈ {1,2}, the block of decomposition Gi has no non-path 2-join.
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Note that this definition could be sensitive to the precise definition of what we call a block of decomposition, but we do
not need the definition here.

Recall that graphs that have a non-path 2-join do not necessarily have an extreme 2-join, as shown in Fig. 1. For the
combinatorial optimization algorithms in [20], extreme 2-joins are needed. The graphs in [20] have no star cutsets, and it
is shown in [20] that in graphs with no star cutsets being a minimally-sided 2-join implies being an extreme 2-join. So, for
the needs in [20], it is enough to detect minimally-sided non-path 2-joins in graphs with no star cutsets.

Note that Lemma 2.1 ensures that the 2-joins that we detect satisfy a minimality condition, so one might think that the
algorithm in Section 4 detects a minimally-sided non-path 2-join. As far as we can see, this is not the case. Indeed, suppose
for instance that luckily, the first call to Lemma 2.1 with S0 = {a1,b1, u} gives a non-path 2-join (X1, X2). Then, Lemma 2.1
ensures only that X1 is minimal among all 2-joins with a1, b1, u in the same side, not among all possible 2-joins compatible
with (a1,a2,b1,b2). So, to detect minimally-sided 2-joins, a method is to try all possible vertices u. Below, we show that
this works for non-path 2-joins. We use Lemma 4.2 from [20].

Lemma 5.1. (See [20].) Let G be a connected graph with no star cutset, and let (X1, X2, A1, B1, A2, B2) be a split of a 2-join of G.
If (X1, X2) is a minimally-sided non-path 2-join, with Xi being a minimal side, then |Ai | � 2 and |Bi | � 2.

Theorem 5.2. There is an O (n3m)-time algorithm that outputs a minimally-sided non-path 2-join of an input graph with no star
cutset, or certifies that this graph has no non-path 2-join.

Proof. We compute a universal set U of size O (n2) by Lemma 3.1. Then, for all 4-tuple (a1,a2,b1,b2) in U , and for all
vertices u, we apply Lemma 2.1 for S0 = {a1,b1, u} and for S0 = {a2,b2, u}. This will detect a minimally-sided non-path
2-join if there is one. Indeed, suppose there is one, with a split (X1, X2, A1, B1, A2, B2) such that for i = 1,2 we have
ai ∈ Ai , bi ∈ Bi and (a1,a2,b1,b2) ∈ U . Then we may assume that up to symmetry, X1 is the minimal side. By Lemma 5.1,
A1 � 2. So, for some chosen vertex u ∈ A1 \ {a1}, we have S0 = {a1,b1, u} ⊆ X1, so Lemma 2.1 applied to S0 yields a 2-
join (X ′

1, X ′
2) such that X ′

1 is minimal among all the 2-joins compatible with (a1,a2,b1,b2) with {a1,b1, u} in the same
side, so a minimally-sided 2-join. Note that since u and a1 are both adjacent to a2, X ′

1 cannot be a path-side of the 2-join
(X ′

1, X ′
2). By the minimality of X1 we have X1 ⊆ X ′

1, and by Lemma 2.1 we have X ′
1 ⊆ X1. It follows that X ′

1 = X1 and
X ′

2 = X2.
Therefore by running the procedure of Lemma 2.1 for all 4-tuples (a1,a2,b1,b2) in U , and all vertices u, and by throwing

out every path 2-join, we get a list of O (n3) non-path 2-joins that must contain every minimally-sided non-path 2-join of
the graph. It suffices now to go through the list and pick a 2-join with fewest number of nodes on one side. That is
a minimally-sided non-path 2-join. �

The following algorithms are potentially useful although so far, they are not needed in any algorithm we are aware of.
We do not exclude star cutsets anymore, at the expense of a slower running time. A 2-join (X1, X2) of a graph G is
minimally-sided if for some i ∈ {1,2}, the following holds: for every 2-join (X ′

1, X ′
2) of G , neither X ′

1 � Xi nor X ′
2 � Xi holds.

Note that it is the same definition as for non-path 2-joins, except that the condition “non-path” is omitted.

Theorem 5.3. There is an O (n3m)-time algorithm that outputs a minimally-sided 2-join of an input graph or certifies that this graph
has no 2-join.

Proof. The same algorithm as in Theorem 5.2 works. Since we do not look for a non-path 2-join, we do not need to use
Lemma 5.1 and we do not throw out every path 2-join we obtain. �
Theorem 5.4. There is an O (n4m)-time algorithm that outputs a minimally-sided non-path 2-join of an input graph, or certifies that
this graph has no non-path 2-join.

Proof. The algorithm from Theorem 5.2 fails, because it may happen that a minimally-sided non-path 2-join has its minimal
side made of the union of two bad paths. So, we use the same method as in Theorem 5.2, but we check all pairs of
vertices u, v instead of all vertices u, and we apply Lemma 2.1 to {a1,b1, u, v} and {a2,b2, u, v}. Since for any non-path
side X of a 2-join, there exist two vertices u, v ∈ X that do not lie on the same bad path, this method detects a non-path
2-join when there is one. We omit further details since they are similar to these of Theorem 5.2. �
6. Consequences

The consequences of finding a non-path 2-join in O (n2m) time, and finding a minimally-sided non-path 2-join for graphs
with no star cutsets in O (n3m) time, are the following speed-ups of existing algorithms. Note that the speed-ups are
sometimes more than by a factor of O (n2). This is because in the algorithms mentioned below even cruder implementations
of non-path 2-join detection are used.
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(i) Detecting balanced skew partitions in Berge graphs in time O (n5) instead of O (n9) [19].
(ii) The decomposition based recognition algorithm for Berge graphs in [3] is now O (n15) instead of O (n18), which is not

so interesting since the recognition algorithm in the same paper that is not based on the decomposition method is
O (n9).

(iii) Finding a maximum weighted clique and a maximum weighted stable set in time O (n6) instead of O (n9) in Berge
graphs with no balanced skew partition and no homogeneous pairs, and finding an optimal coloring in time O (n7)

instead of O (n10) for the same class [20].
(iv) Finding a maximum weighted stable set in time O (n6) instead of O (n9) in even-hole-free graphs with no star cut-

set [20].

As far as we care only for these applications, it is not immediately usable to try detecting non-path 2-joins faster than
O (n2m), because O (n5) is a bottleneck independent from 2-join detection for all the algorithms mentioned here. An O (n4)-
time algorithm for extreme (or minimally-sided) non-path 2-joins would allow a speed-up of a factor n in the algorithms (iii)
and (iv). We leave this as an open question.
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