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a b s t r a c t

The complex structural and material behaviour of the human heel fat pad determines the

transmission of plantar loading to the lower limb across a wide range of loading scenarios;

from locomotion to injurious incidents. The aim of this study was to quantify the hyper-

viscoelastic material properties of the human heel fat pad across strains and strain rates.

An inverse finite element (FE) optimisation algorithm was developed and used, in

conjunction with quasi-static and dynamic tests performed to five cadaveric heel speci-

mens, to derive specimen-specific and mean hyper-viscoelastic material models able to

predict accurately the response of the tissue at compressive loading of strain rates up to

150 s�1. The mean behaviour was expressed by the quasi-linear viscoelastic (QLV) material

formulation, combining the Yeoh material model (C10 ¼ 0:1MPa, C30 ¼ 7MPa, K¼ 2GPa) and

Prony's terms (A1 ¼ 0:06, A2 ¼ 0:77, A3 ¼ 0:02 for τ1 ¼ 1ms, τ2 ¼ 10ms, τ3 ¼ 10s). These new

data help to understand better the functional anatomy and pathophysiology of the foot

and ankle, develop biomimetic materials for tissue reconstruction, design of shoe, insole,

and foot and ankle orthoses, and improve the predictive ability of computational models of

the foot and ankle used to simulate daily activities or predict injuries at high rate injurious

incidents such as road traffic accidents and underbody blast.

& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The heel fat pad bears repeated loads during locomotion, spreads

them over the calcaneus (the heel), and absorbs shocks

(Buschmann et al., 1995; De Clercq et al., 1994; Jahss et al.,

1992; Jørgensen and Bojsen-Møller, 1989; Ker et al., 1989). These

functions depend on itsmaterial and structural behaviour, which

is determined by its microstructure, geometry, and interface with
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surrounding tissues. With an average thickness of 18mm from

the calcaneus to the plantar skin (Bojsen-Møller and Jørgensen,

1991), the human heel fat pad contains a reticular arrangement

of collagen/elastin fibrous walls that create compartments that

surround and retain adipose tissue (Hsu et al., 2007; Jahss et al.,

1992). Based on the size of these compartments, they can be

categorised into two layers; superficial (attached to the plantar

epidermis), and deep (attached to the calcaneus). The superficial
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layer contains micro-chambers while the deep layer consists of
larger, macro-chambers (Blechschmidt, 1982).

The material and structural behaviour of the heel fat pad
regulates the amount of load that is transmitted to the bones
and joints of the lower limb across a range of loading
scenarios; from low rate activities such as standing and
running, to high rate incidents that can cause injury such
as sport and vehicular accidents. Therefore, the characterisa-
tion of the tissue across a range of strain rates can be used
for a variety of applications such as understanding the
pathophysiology of related diseases (Kinoshita et al., 1996;
Tong et al., 2003), shoe and insole design (Jørgensen and
Bojsen-Møller, 1989), reconstruction of degenerated tissue
(Wang et al., 1999), design of biomimetic materials for treat-
ment of injuries and diseases of the plantar foot (Balkin and
Kaplan, 1991; Mulder, 2012), development of accurate FE
models (Fontanella et al., 2013), or prediction of and protec-
tion from injury in road traffic accidents and underbody blast
(Dong et al., 2013; Shin et al., 2012).

The heel fat pad is inhomogeneous and anisotropic while
it is reported to exhibit non-linear viscoelastic behaviour due
to its biphasic nature (Rome, 1998). In vivo studies have used
imaging (Gefen et al., 2001; Prichasuk, 1994), indentation
(Erdemir et al., 2006; Rome et al., 2001), or both techniques
(Tong et al., 2003) to quantify the material properties of the
tissue. Indentation, however, cannot be utilised to obtain
material properties as the captured behaviour depends on the
diameter of the indenter and is localised (Spears and Miller-
Young, 2006). Furthermore, the behaviour of the tissue
cannot be investigated by in vivo experiments at high rates
as they are likely to cause injury to the subject.

In situ (Aerts et al., 1996, 1995; Bennett and Ker, 1990;
Erdemir et al., 2009) and in vitro (Gabler et al., 2014; Ledoux
et al., 2004; Miller-Young et al., 2002) testing of cadaveric heel
fat pads permit the use of rigs and devices able to reach
extreme and complex loading scenarios. In situ studies,
however, report structural properties only in the form of
force–displacement curves; these cannot generally express
the behaviour of the material and have limited use as they
strongly depend on the geometry of the tissue (Spears and
Miller-Young, 2006), whilst in vitro testing requires disruption
of the material continuity that may affect the material
behaviour. The response of the tissue has been investigated
for rates up to 60 s�1 (Gabler et al., 2014), however, there exist
situations, for example in under-body blast, that the tissue
can be loaded at rates quicker than this (Bir et al., 2008).

In order to overcome the complications of in vivo, in situ
and in vitro methods in obtaining the material properties of
the heel fat pad, computational studies and inverse FE
modelling can be used. Inverse FE modelling is an optimisa-
tion procedure attempting to minimise the difference
between captured data from experiments and the numerical
results from FE simulations replicating the experimental
protocol. The combination of experimental and computa-
tional work permits thorough investigation of the response of
the tissue without the need to isolate small samples and
disrupt its material continuity. Although this has been
attempted previously for the heel fat pad, these studies have
adopted simple, 2D FE models (Erdemir et al., 2006; Spears
and Miller-Young, 2006), or reported a complicated material
behaviour expressed by a formulation that is not supported

by commercial FE software packages and predicts tissue

behaviour only at low loading rates (Natali et al., 2012).
The aim of this study was to quantify the material proper-

ties of the human heel fat pad across a range of strains and

strain rates using an inverse FE method in conjunction with

experiments whereby the fat pad structure and its interface

with surrounding tissues was not disrupted.
2. Methods

2.1. Sample preparation

Five male cadaveric lower extremities (mean age 47 years,

range 40–57 years), with no known pathology that could

affect the properties of the fat pad, were obtained from a

licensed human tissue facility. Ethical approval was obtained

from the Tissue Management Committee of the Imperial

College Tissue Bank ethics committee (Ethical approval

number: 12-WA-0196).
The specimens were stored fresh frozen at �20 1C and

thawed prior to dissection and testing. Each specimen was

Computed Tomography (CT) scanned (Siemens Somatom

Definition AS 64, Erlangen, Germany) with a slice thickness

of 1 mm and an in plane pixel size of 0.4�0.4 mm2 (voxel size

of 0.16 mm3) in order to check for any pre-existing orthopae-

dic pathology and to obtain geometric data for the FE models.
Feet were dissected from the lower extremities by section-

ing along a transverse plane proximal to the distal end of the

tibial diaphysis, such that both distal tibia and fibula were

preserved. To isolate the calcaneus with the fat pad attached

and to prepare the sample for potting, a custom-built rig was

used to ensure that the sample was positioned in a typical

standing, or seated posture. This involved resting the sole of

the foot flat against the bottom of the rig and positioning the

exposed distal tibia perpendicular to the bottom of the rig. At

this stage, soft tissues covering the medial and lateral sides of

the calcaneus were removed to permit bolts to be squeezed

against the bone to hold the specimen in place. The distal

tibia, the fibula, the forefoot anterior to the calcaneus, the

talus, and the cartilage of the posterior and anteromedial

facets were removed to reveal the proximal surface of the

calcaneus.
Each sample, still secured on the dissection rig, was

turned upside down and fixed with clamps such that approxi-

mately half of the calcaneal body was below the edge of a

45 mm deep cylindrical pot. The sample was fixed into

position within the pot using polymethyl methacrylate

(PMMA) bone cement (Fig. 1a). Four uniaxial strain gauges

(model C2A-06-125LW-120, Vishay PG, Bradford, UK) were

attached to the calcaneal body using cyanoacrylate in order

to monitor the deformation of the bone and detect fracture.

Two were positioned on the medial and two on the lateral

side, and on each side one gauge was aligned vertically and

one horizontally. Throughout preparation and testing, the

samples were regularly sprayed with phosphate-buffered

saline (PBS) to keep them hydrated.



Fig. 1 – (a) Photograph of the prepared sample, potted in PMMA and held in the potting ring. (b) and (c) show schematics of the
apparatus used for conducting quasi-static and high rate compressive testing, respectively.
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2.2. Compressive testing

Each sample was subjected to both quasi-static and dynamic
testing. Although similar methods were used for both types
of testing, the testing rig and loading protocols differed and
are therefore described separately in the following sections.

2.2.1. Quasi-static tests
Quasi-static compression tests were carried out using a
screw-driven uniaxial materials testing machine (5866 series,
Instron, High Wycombe, UK). Each sample was centred
beneath a cylindrical, flat tup, 50 mm in diameter that was
connected to a 10 kN load cell (resolution 71 N) that was
incorporated in the machine (Fig. 1b). Load, displacement and
strain were recorded at a frequency of 1 kHz using a PXIe data
acquisition system (model 1082, National Instruments, Aus-
tin, TX, USA) and a custom-written LabVIEW code (v2012,
National Instruments, Austin, TX, USA).

For the quasi-static compression tests, three precondition-
ing compressive cycles were performed up to 5 N before the
fat pad tissue was compressed to 50% strain at a speed of
0.01 mm/s. This protocol was repeated twice for each sample;
between tests, samples were allowed to rest for 15 min.
Preliminary investigations demonstrated that 15 min resting
time and three preconditioning cycles were sufficient to
ensure that the behaviour of the fat pad was consistent; the
force–displacement data from the repeated tests after the
second preconditioning cycle were similar for all samples
(relative error less than 2% and R240.99). The displacement
required to achieve the target strain was calculated using the
undeformed thickness of the tissue measured from the
CT scans.
2.2.2. Dynamic tests
Dynamic tests were performed using a drop rig (Dynatup 9250

HV, Instron, High Wycombe, UK) on the same day after the

quasi-static tests. The drop rig incorporates a load cell (40 kN

capacity, resolution 75 N) above a cylindrical, curved 50 mm

diameter tup (Fig. 1c). A curved tup was used for the dynamic

tests to avoid disruption of the tissue that may have been

caused by sharp edges at high rates. An accelerometer (model

352C04, PCB Piezotronics Ltd, Hitchin, UK) was secured to the

top of the 7 kg falling mass and was used to calculate the

velocity and position of the impactor during testing. High

speed video (Phantom V12.1, 33000 fps, Vision Research,

Bedford, UK) was captured to confirm the time of initial

contact and help determine time of failure.
Tests were performed at increasing drop heights of 2, 4, 8,

16, 32 and 64 cm, corresponding to target velocities at impact

of 0.6, 0.85, 1.2, 1.7, 2.4 and 3.4 m/s. To confirm that the

sample was not damaged during the tests, after each increase

in drop height a repeat of the initial 2 cm drop test was

performed and the peak force, time to peak force and slope of

the force–time curve were compared. If the difference in any

of these parameters between initial and repeated 2 cm drop

was greater than 10%, the sample was deemed to have failed

and testing was stopped.
All data were recorded using the same data acquisition

system that was used for the quasi-static tests, however, at a

frequency of 25 kHz. A low-pass Butterworth filter was used

to filter the force measurements. The cut-off frequency

(1 kHz) was selected based on the frequency analysis of the

signal.
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2.3. FE modelling

2.3.1. Geometry extraction and meshing
Specimen-specific finite element models were developed to
simulate the quasi-static and dynamic tests (Fig. 2a). The
geometries of calcaneus and heel fat pad of each sample were
extracted from the CT scans using Mimics (v15.0, Materialise
HQ, Leuven, Belgium).

The extracted geometries were imported as stereolitho-
graphy (.stl) files in Geomagic Studio (v2013, Geomagic Inc.,
Morrisville, NC, USA) to form solid objects that were then
processed in Autodesk Inventor (v2013, Autodesk Inc., San
Rafel, CA, USA) to perform Boolean operations and achieve a
good match between contacting surfaces. The heel fat pad
was meshed with Herrmann tetrahedral finite elements
(Herrmann, 1965) using HyperMesh (v13.0.110, Altair, Troy,
MI, USA) with an average element side length of 1.5 mm,
which was found to be sufficient for creating a converged
mesh. The cortical calcaneus was modelled as a rigid surface
and both the bone and the fat pad were imported into the
nonlinear FE software package MSC.Marc (v2014, MSC.Soft-
ware, Santa Ana, CA, USA) to setup and run the simulations.
Both cortical and trabecular structures as well as the sur-
rounding bone cement were initially meshed and modelled
with tetrahedral finite elements for every sample. A sensitiv-
ity analysis was performed which showed that their beha-
viour did not affect the force–time response of the model and
so they were replaced by a rigid surface to reduce the
computational cost.

2.3.2. Boundary conditions
The cortical calcaneal bone was fixed while the tup, modelled
as a rigid body, was restricted to move in the direction of the
impact only. For the quasi-static compression simulations
the tup was displacement driven to compress the samples up
to the target displacement. The input for the dynamic
simulations was the initial velocity of the impactor prior to
coming into contact with the sample (Fig. 2b); for each
Fig. 2 – (a) The specimen-specific models of all samples.
(b) The boundary conditions of the FE simulation of the
dynamic tests for one of the samples.
simulation the initial velocity was set to be equal to the
velocity at impact of the respective dynamic test. The mass of
the impactor was 7 kg as in the experimental apparatus.

Contact between fat pad and calcaneus was set to ‘glued’
thereby slipping was not allowed. ‘Touching’ contact was
implemented between tup and fat pad; the fat pad was
allowed to slide on the rigid surface with a low coefficient
of friction (0.01). A sensitivity analysis showed that coefficient
of friction values between 0.005 and 1.5 – a physiological
range of the coefficient of friction between palmar skin and
several types of metal, reported by O’Meara and Smith (2001)
– did not alter the force experienced by the tup (less than 1%
relative error).

2.3.3. Inverse FE algorithm
An inverse FE algorithm was used to determine the strain
rate dependent material properties. The algorithm is based
on the derivative free Nelder-Mead or downhill simplex
method for function minimisation (Nelder and Mead, 1965)
and was developed using a combination of programming
languages (Fortran, Matlab, Python) and MSC.Marc. This
algorithm can be used to find the local minimum or max-
imum of an objective function specified by the user. The main
output of numerical and experimental tests was the com-
pressive force measured over time at the plantar fat pad by
the load cell. Therefore, the objective function was formed to
calculate and minimise the difference between the experi-
mental (xexp) and numerical (xnum) force measurements (Eq. 1).
A factor (δ) (Eq. 2) was also included in the mathematical
formula to ensure that force measurements that were less
than 1 N did not contribute as significantly to the objective
function as those above 1 N.

O:F:¼
Xn
i ¼ 1

δ∙
xexp;i�xnum;i

xexp;i

 !2

þ 1�δð Þ∙ xexp;i�xnum;i
� �20

@
1
A ð1Þ

δ¼
0; xexp;io1

1; xexp;iZ1

(
ð2Þ

The formulation that was selected to represent the hyper-
elasticity of the tissue was a subcategory of the generalised
Mooney–Rivlin material model, the Yeoh material formula-
tion described in Eq. (3) (Bonet and Wood, 2008).

W¼
X3
i ¼ 1

Ci0 I1�3ð Þi þ 9
2
KðJ1=3�1Þ2 ð3Þ

The material constants C10, C20, C30 of the tissue were the
optimising parameters of the procedure while I1 and J

represent the first Cauchy–Green strain invariant and the
volumetric deformation, respectively. The value assigned to
the bulk modulus, K (2 GPa), was defined from a preliminary
sensitivity analysis in order to ensure incompressible beha-
viour of the material and it was within the range of values
reported in the literature for the same (Gabler et al., 2014), or
other incompressible biological tissues (Etoh et al., 1994;
Glozman and Azhari, 2010). The optimisation algorithm was
considered converged when the change in objective function
and material constants in consecutive iterations was less
than 0.001% and 0.0001 MPa, respectively.



Fig. 3 – The quasi-static compressive force–displacement
curves for all 5 samples.
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In order to investigate the strain rate dependency of the

above formulation, only the initial part of the force–time

history curves from each dynamic experiment were used in

the objective function (up to until the velocity of the impactor

had dropped by 10%); during this time the strain rate of the

sample can be assumed to be constant. By using this method,

each test corresponded to a different strain rate and each run

of the optimisation algorithm gave a set of specimen-specific

material properties for each sample.
By the end of the optimisation procedure, a set of material

constants C10, C20, C30 had been derived for each strain rate

and every sample. In order to allow information from each of

the material models to be used in simulations of varying

strain rate, a custom-written user subroutine was implemen-

ted to each of the specimen-specific FE models. The user

subroutine ensured that the appropriate material properties

were assigned to the fat pad for each increment of the

simulation depending on the strain rate experienced by the

tissue at the previous step. This was achieved by linearly

interpolating across the material constants derived for con-

stant strain rates. Using this method, five specimen-specific

material models were implemented into the FE models.
The properties were averaged across all samples in order

to provide a material formulation described by strain rate

dependent relationships of the material constants

(C10 _εð Þ;C20 _εð Þ;C30 _εð Þ). These cannot be implemented without

the use of custom-written scripts in models simulating load

cases of varying strain rate. To derive a continuous material

formulation supported by most FE software packages, the

QLV material formulation was used (Fung, 1981). Five terms

of a Prony series (relaxation constants Ak, time constants τk)

were included in the Yeoh model and fitted to the average

hyperelastic and strain rate dependent material formulation

(Eq. 4).

W¼
Z t

0

X3
i ¼ 1

Ci0 1�
X5
k ¼ 1

Ak 1�e
� t� τ

τk

� �" # !
d
dτ

I1�3ð Þi
" #

dτ ð4Þ

The specimen-specific and the average QLV material

formulations were finally implemented in MSC. Marc to

simulate each dynamic test for its whole duration and

compare the result against the experimental data. During

the dynamic tests the tissue experienced a range of strain

rates. A fit between numerical and experimental results on

each sample for the highest, non-catastrophic dynamic test

was used to test the derived formulation for validity since the

largest range of strain rates was expected in this test.
3. Results

3.1. Quasi-static tests

The compressive force–displacement curves for all samples

are shown in Fig. 3. All samples exhibited hyperelastic

behaviour under quasi-static compression up to 50% strain

with maximum forces ranging from 369 to 616 N.
3.2. Dynamic tests

The force–time history curves for all samples at all drop
heights are presented in Fig. 4. Two samples failed at the last
drop from the height of 64 cm, two at the 32 cm and one at
the 16 cm drop. The mean maximum compressive force that
was reached prior to failure was 6.52 (SD 1.96) kN.

3.3. Inverse FE optimisation

The derived values for the material parameters C10 and C30

are shown in Fig. 5. The derived values for the material
parameter C20 were consistently less than 0.0001 MPa and
therefore the term was set to zero.

The C10 _εð Þ and C30 _εð Þ relationships that were best fitted to
the derived material parameters for all samples are described
by Eqs. (5) and (6) and shown in Fig. 5. The material properties
of the QLV model that were best fitted (R2¼0.84) to the
average strain rate dependent C10 _εð Þ and C30 _εð Þ relationships
are shown in Table 1. From the five Prony's terms, through
the fitting procedure, two terms got values lower than 0.00001
and were neglected. The ability of the C10 _εð Þ and C30 _εð Þ
relationships and the QLV material model to predict accu-
rately the experimental result is compared in Fig. 6.

C10 ¼ 0:003e0:028_ε ðR2 ¼ 0:49Þ ð5Þ

C30 ¼ 0:035_ε þ 0:39; ðR2 ¼ 0:5Þ ð6Þ
4. Discussion

This study has characterised the material properties of the
heel fat pad across the largest range of strain rates to date
and is the first to attempt to identify properties for rates
higher than 60 s�1. An inverse FE method was used such that
the material continuity of the tissue was not disturbed. This
method combines the benefits of in situ and in vitro testing as
stress–strain curves can be obtained through testing the
whole area of interest and not isolated components.
Although previous studies also utilised inverse FE methods
for the same purposes (Erdemir et al., 2006; Natali et al., 2012;
Spears and Miller-Young, 2006), this is the first study where



Fig. 4 – The force–time history curves from dynamic tests from all drop heights for all 5 samples.
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the inverse algorithm was based on specimen-specific FE

models.
All samples exhibited hyperelastic and strain rate depen-

dent behaviour; the tissue was found to exhibit a stiffer

response with both higher strain and higher strain rate. This

is in agreement with the majority of previous experimental

studies (Bennett and Ker, 1990; Erdemir et al., 2006; Gabler

et al., 2014; Ledoux and Blevins, 2007; Miller-Young et al.,

2002). An average strain-rate dependent formulation and a

QLVmodel were derived to capture that behaviour and can be

implemented readily in FE models used to simulate various

load cases; from daily activities to high rate road traffic

accidents or under-body blast. No limit above which the

behaviour becomes independent of the strain rate was

identified. However, as shown in Fig. 5, above strain rates of

70 s�1 smaller changes in material constants are seen in all

samples apart from S1 and S5 for C30 and C10, respectively.
Therefore, it is likely that at a higher rate a limit would have

been reached.
The specimen-specific data shown in Fig. 5 are associated

with high variability. This is also highlighted by the low

coefficient of determination (R2r0:5Þ of the best fitted strain-

rate dependent C10 _εð Þ and C30 _εð Þ relationships (Eqs. 5 and 6).

This finding suggests that in future applications specimen-

specific data should be preferred when available. Conducting

experiments on a greater amount of samples is highly

recommended in order to investigate further whether the

material behaviour of the heel fat pad can be represented

appropriately by an average material formulation. Despite the

high variability, the derived average QLV material model

provided results as accurate as the specimen-specific formu-

lations for a high rate simulation (Fig. 6).
The results obtained in this study are compared to

previous studies in Fig. 7. Stress–strain curves, which are
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independent of the material geometry and were reported

mostly by in vitro studies, were selected for comparing as the

force–displacement response of the heel fat pad depends on

the thickness and the area over which the force is applied.

The average material formulation of the heel fat pad for

quasi-static (Fig. 7a) and dynamic (10 s�1 and 100 s�1)

(Fig. 7b&c) strain rates derived in this study describes con-

sistently stiffer behaviour than previously reported by in

vitro studies (Gabler et al., 2014; Ledoux and Blevins, 2007;

Miller-Young et al., 2002). In the case of the Miller-Young

et al. (2002) study this could be due to the diameter (8 mm) of

the samples tested being slightly smaller than the average

thickness of the macro-chambers of the unloaded tissue

(10 mm; Hsu et al., 2007). The average behaviour obtained in

this study for a strain rate of 10 s�1 is close to the behaviour

suggested by Gabler et al. (2014) (Fig. 7b). However, there is

a marked difference between the material behaviours at

100 s�1. This may be due to the fact that the tests conducted

by Gabler et al. (2014) went up to a maximum strain rate

of 60 s�1 and the material response for higher rates was

extrapolated.
Fig. 5 – Derived material constants (a) C10 and (b) C30 and the
respective best fitted curves for all samples and rates.

Table 1 – Values of the average QLV material formulation of th

C10 [MPa] C30 [MPa] K [GPa] A1 for τ1 ¼ 1ms A2 for τ

0.1 7 2 0.06 0.77
A potential limitation of cadaveric studies is that the

behaviour of living tissue might differ from cadaveric tissue.
One of the major differences between living and cadaveric
tissue is the blood propulsion; this has been shown not to
affect the behaviour of the heel fat pad for compression rates

higher than 0.4 m/s while at lower rates it does not affect the
stiffness of the tissue more than 3% (Weijers et al., 2005).
Bennett and Ker (1990) also showed that freezing of the tissue
does not affect its behaviour as results from samples tested

immediately post-amputation did not differ from those after
freezing and thawing the same samples. Since the loading
rates of this study are impossible to reach with an in vivo

protocol, testing of cadaveric tissue is the most appropriate
methodology. Compared to results from an in vivo quasi-
static experiment utilising imaging techniques (Gefen et al.,
2001), the material behaviour reported in this study is stiffer

by one order of magnitude. Based on the findings mentioned
above (Weijers et al., 2005) this is more likely to be due to the
different experimental settings rather than the fact that

cadaveric samples were used in this study. A possible reason
for this discrepancy could be the fact that despite using an
accurate imaging technique, the strain calculations assumed
a uniform and uniaxial strain distribution. The use of FE

modelling overcomes this limitation as the deformation of
the tissue can be realistically represented; non uniform and
in various directions. The possibility that the use of cadaveric
tissue determined the outcome of this study cannot be

definitely rejected, especially since contradicting results from
testing living and cadaveric heel fat pads have been also
reported in previous studies (Kinoshita et al., 1996; Bennett

and Ker, 1990). This discrepancy has been considered as a
paradox by Aerts et al. (1995) and was addressed to the
difficulty of isolating the response of the heel fat pad from
that of the whole human body in an in vivo setting.

The temperature of the sample during testing was equal to

the room temperature (20–25 1C). Bennett and Ker (1990)
reported that between this temperature and the physiological
body temperature (37 1C) the dissipation ability of the tissue

drops by less than 3%. Therefore, the effect of this factor on
the material properties is minimal.

The suggested formulations describe the combined
response of the soft tissue underneath the calcaneus (micro
and macro-chambers, adipose tissue, skin). This is due to the

fact that the plantar soft tissues of the heel, attached to the
calcaneus, were not disrupted prior to testing and were
segmented as a single, homogenous structure from the CT

scans. This is not a limitation for the suggested applications
where the structural response of the soft tissues of the heel
region are of interest.

The average and specimen-specific material models predict
well the slope of the force–time history curve for the drops on

each sample but not the peak force and the unloading curve of
e heel fat pad.

2 ¼ 10ms A3 for τ3 ¼ 0:1s A4 for τ4 ¼ 1s A5 for τ5 ¼ 10s

0 0 0.02



Fig. 6 – Comparison between the experimental and computationally predicted (using both specimen-specific C10 _εð Þ and C30 _εð Þ
values and the QLV model) force–time curves from the fastest non-catastrophic test of each sample.
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the graph. When the strain rate of the simulated test becomes
less than 10 s�1 the FE models overestimate the experimental
response. The physiological explanation of this mismatch is
associated with the balance between the response of the
fibrous tissue and the fat globules. When compressed slowly,
the fat globules expand circumferentially and stretch the
chambers that mainly restrict this motion. The response is
expected to be different when the tissue is compressed slowly
at the end of a dynamic test after the tissue had been
deformed rapidly and mainly the fat globules have been
restricting the deformation up to this point. Numerically, this
difference can be explained by the lack of energy dissipation
terms for both material formulations. Although the strain rate
dependence is taken into account, when the specimen-specific
formulations are implemented, the tissue unloads like a spring
and returns all the stored energy. Although the implemented
QLV model includes energy dissipation terms (Prony series), it
was best fitted to the specimen-specific, strain-rate dependent
formulations and therefore the accuracy did not improve. This
limitation can be tackled by adopting a different optimisation
strategy where the QLV material parameters are optimised
directly for all dynamic tests of each sample simultaneously.

The results from this study are important for understand-
ing heel biomechanics at various conditions, from daily
activities such as walking and running to high rate loading
scenarios involving injury. The derived properties can be
implemented readily in FE models of the foot and ankle used
for a wide range of applications; from shoe and insole design
to injury prediction and design of protection. The accurate
description of the material behaviour of the fat pad tissue
also permits better selection of materials that can be used for
reconstruction. Finally, the novel inverse FE method devel-
oped can be used to characterise the material behaviour of
other complex biological tissues, such as brain tissue or the



Fig. 7 – (a) Comparison between the average compressive engineering (Engg) stress–strain curve of the human fat pad derived
in this study and in previous attempts for (a) quasi-static, (b) 10 s�1 and (c) 100 s�1 strain rates.
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intervertebral disc, across strain rates and for various types of

loading.
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