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A set S of unit vectors in n-dimensional Euclidean space is called
spherical two-distance set, if there are two numbers a and b so
that the inner products of distinct vectors of S are either a or b. It
is known that the largest cardinality g(n) of spherical two-distance
sets does not exceed n(n + 3)/2. This upper bound is known to
be tight for n = 2,6,22. The set of mid-points of the edges of a
regular simplex gives the lower bound L(n) = n(n + 1)/2 for g(n).
In this paper using the so-called polynomial method it is proved
that for nonnegative a +b the largest cardinality of S is not greater
than L(n). For the case a + b < 0 we propose upper bounds on |S|
which are based on Delsarte’s method. Using this we show that
g(n) = L(n) for 6 < n < 22, 23 < n < 40, and g(23) = 276 or 277.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

A set S in Euclidean space R
n is called a two-distance set, if there are two distances c and d, and

the distances between pairs of points of S are either c or d. If a two-distance set S lies in the unit
sphere S

n−1, then S is called spherical two-distance set. In other words, S is a set of unit vectors, there
are two real numbers a and b, −1 � a,b < 1, and inner products of distinct vectors of S are either a
or b.

The ratios of distances of two-distance sets are quite restrictive. Namely, Larman, Rogers, and Sei-
del [8] have proved the following fact: if the cardinality of a two-distance set S in R

n, with distances c
and d, c < d, is greater than 2n + 3, then the ratio c2/d2 equals (k − 1)/k for an integer k with

2 � k � 1 + √
2n

2
.
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Einhorn and Schoenberg [6] proved that there are finitely many two-distance sets S in R
n with

cardinality |S| � n+2. Delsarte, Goethals, and Seidel [5] proved that the largest cardinality of spherical
two-distance sets in R

n (we denote it by g(n)) is bounded by n(n + 3)/2, i.e.,

g(n) � n(n + 3)

2
.

Moreover, they give examples of spherical two-distance sets with n(n + 3)/2 points for n = 2,6,22.
(Therefore, in these dimensions we have equality g(n) = n(n + 3)/2.) Blockhuis [2] showed that the
cardinality of (Euclidean) two-distance sets in R

n does not exceed (n + 1)(n + 2)/2.
The standard unit vectors e1, . . . , en+1 form an orthogonal basis of R

n+1. Denote by Δn the regular
simplex with vertices 2e1, . . . ,2en+1. Let Λn be the set of points ei + e j,1 � i < j � n + 1. Since Λn

lies in the hyperplane
∑

xk = 2, we see that Λn represents a spherical two-distance set in R
n . On the

other hand, Λn is the set of mid-points of the edges of Δn . Thus,

g(n) � |Λn| = n(n + 1)

2
.

For n < 7 the largest cardinality of Euclidean two-distance sets is g(n), where g(2) = 5, g(3) = 6,
g(4) = 10, g(5) = 16, and g(6) = 27 (see [10]). However, for n = 7,8 Lisoněk [10] discovered non-
spherical maximal two-distance sets of the cardinality 29 and 45, respectively.

In this paper we prove that

g(n) = n(n + 1)

2
, where 6 < n < 40, n �= 22,23,

and g(23) = 276 or 277. This proof (Section 4) is based on the new sharp upper bound
(n+1

2

)
for

spherical two-distance sets with a + b � 0 (Section 2), and on the Delsarte bounds for spherical two-
distance sets in the case a + b < 0.

2. Linearly independent polynomials

The upper bound n(n+3)/2 for spherical two-distance sets [5], the bound
(n+2

2

)
for Euclidean two-

distance sets [2], as well as the bound
(n+s

s

)
for s-distance sets [1,3] were obtained by the polynomial

method. The main idea of this method is the following: to associate sets to polynomials and show
that these polynomials are linearly independent as members of the corresponding vector space.

Now we apply this idea to improve upper bounds for spherical two-distance sets with a + b � 0.

Theorem 1. Let S be a spherical two-distance set in R
n with inner products a and b. If a + b � 0, then

|S| � n(n + 1)

2
.

Proof. Let

F (t) := (t − a)(t − b)

(1 − a)(1 − b)
.

For a unit vector y ∈ R
n we define the function F y : S

n−1 → R by

F y(x) := F
(〈x, y〉), x ∈ R

n, ‖x‖ = 1.

Let S = {x1, . . . , xm} be an m-element set. Denote f i(x) := Fxi (x). Since

f i(x j) = δi, j, (1)

the quadratic polynomials f i , i = 1, . . . ,m, are linearly independent.
Let e1, . . . , en be a basis of R

n . Let Li(x) := 〈x, ei〉, x ∈ S
n−1. Then the linear polynomials L1, . . . , Ln

are also linearly independent.
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Now we show that if a + b � 0, then f1, . . . , fm, L1, . . . , Ln form a linearly independent system of
polynomials. Assume the converse. Then

n∑
k=1

dk Lk(x) =
m∑

i=1

ci f i(x),

where there are nonzero dk and ci .
Let

v = d1e1 + . . . + dnen.

Then

〈x, v〉 =
∑

i

ci f i(x). (2)

For x = xi in (2), using (1), we get

ci = 〈xi, v〉.
Take x = v and x = −v in (2). Then we have

‖v‖2 =
∑

i

ci f i(v) =
∑

i

ci F (ci), (3)

−‖v‖2 =
∑

i

ci f i(−v) =
∑

i

ci F (−ci). (4)

Subtracting (3) from (4), we obtain

−‖v‖2 = a + b

(1 − a)(1 − b)

∑
i

c2
i .

This yields v = 0, a contradiction.
Note that the dimension of the vector space of quadratic polynomials on the sphere S

n−1 is
n(n + 3)/2. Therefore,

dim { f1, . . . , fm, L1, . . . , Ln} = m + n � n(n + 3)

2
.

Thus |S| = m � n(n + 1)/2. �
Denote by ρ(n) the largest possible cardinality of spherical two-distance sets in R

n with a +b � 0.

Theorem 2. If n � 7, then

ρ(n) = n(n + 1)

2
.

Proof. Theorem 1 implies that ρ(n) � n(n + 1)/2. On the other hand, the set of mid-points of the
edges of a regular simplex has n(n + 1)/2 points and a + b � 0 for n � 7. Indeed, for this spherical
two-distance set we have

a = n − 3

2(n − 1)
, b = −2

n − 1
.

Thus

a + b = n − 7

2(n − 1)
� 0. �
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3. Delsarte’s method for two-distance sets

Delsarte’s method is widely used in coding theory and discrete geometry for finding bounds for
error-correcting codes, spherical codes, and sphere packings (see [4,5,7]). In this method upper bounds
for spherical codes are given by the following theorem:

Theorem 3. (See [5,7].) Let T be a subset of the interval [−1,1]. Let S be a set of unit vectors in R
n such

that the set of inner products of distinct vectors of S lies in T . Suppose a polynomial f is a nonnegative linear
combination of Gegenbauer polynomials G(n)

k (t), i.e.,

f (t) =
∑

k

fkG(n)

k (t), where fk � 0.

If f (t) � 0 for all t ∈ T and f0 > 0, then

|S| �
⌊

f (1)

f0

⌋
.

There are many ways to define Gegenbauer (or ultraspherical) polynomials G(n)

k (t). G(n)

k are a spe-

cial case of Jacobi polynomials P (α,β)

k with α = β = (n − 3)/2 and with normalization G(n)

k (1) = 1.

Another way to define G(n)

k is the recurrence formula:

G(n)
0 = 1, G(n)

1 = t, . . . , G(n)

k = (2k + n − 4)tG(n)

k−1 − (k − 1)G(n)

k−2

k + n − 3
.

For instance,

G(n)
2 (t) = nt2 − 1

n − 1
,

G(n)
3 (t) = (n + 2)t3 − 3t

n − 1
,

G(n)
4 (t) = (n + 2)(n + 4)t4 − 6(n + 2)t2 + 3

n2 − 1
.

Now for given n,a,b we introduce polynomials Pi(t), i = 1, . . . ,5.

i = 1: P1(t) = (t − a)(t − b) = f (1)
0 + f (1)

1 t + f (1)
2 G(n)

2 (t).

i = 2: P2(t) = (t − a)(t − b)(t + c) = f (2)
0 + f (2)

1 t + f (2)
2 G(n)

2 (t) + f (2)
3 G(n)

3 (t), where c is defined by the

equation f (2)
1 = 0.

i = 3: P3(t) = (t − a)(t − b)(t + a + b) = f (3)
0 + f (3)

1 t + f (3)
2 G(n)

2 (t) + f (3)
3 G(n)

3 (t). Note that f (3)
2 = 0.

i = 4: P4(t) = (t − a)(t − b)(t2 + ct + d) = ∑
f (4)

k G(n)

k (t), where c and d are defined by the equations

f (4)
1 = f (4)

2 = 0.

i = 5: P5(t) = (t − a)(t − b)(t2 + ct + d) = ∑
f (5)

k G(n)

k (t), where c and d are defined by the equations

f (5)
2 = f (5)

3 = 0.

Denote by D(n)
i the set of all pairs (a,b) such that the polynomial Pi(t) is well defined, all f (i)

k � 0,

and f (i)
0 > 0. For instance,

D(n)
1 =

{
(a,b) ∈ I2: f (1)

1 = −a − b � 0, f (1)
0 = ab + 1

n
> 0

}
,

D(n)
2 =

{
(a,b) ∈ I2: a + b �= 0, c � a + b, f (2)

0 = abc + c − a − b

n
> 0

}
,
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where

I = [−1,1), c = ab(n + 2) + 3

(n + 2)(a + b)
.

Let

U (n)
i (a,b) := Pi(1)

f (i)
0

.

Note that we have Pi(a) = Pi(b) = 0. Then Theorem 3 yields

Theorem 4. Let S be a spherical two-distance set in R
n with inner products a and b. Suppose (a,b) ∈ D(n)

i for
some i, 1 � i � 5. Then

|S| � U (n)
i (a,b).

Let S be a spherical two-distance set in R
n with inner products a and b, where a > b. Let c =√

2 − 2a, d = √
2 − 2b. Then c and d are the Euclidean distances of S .

Let

bk(a) = ka − 1

k − 1
.

If k is defined by the equation bk(a) = b, then (k − 1)/k = c2/d2. Therefore, if |S| > 2n + 3, then k

is an integer number and k ∈ {2, . . . , K (n)} [8]. Here, K (n) = 	 1+√
2n

2 
.

Denote by D(n)

i,k the set of all real numbers a such that (a,bk(a)) ∈ D(n)
i . Let

R(n)

i,k (a) :=
{

U (n)
i (a,bk(a)) for a ∈ D(n)

i,k ,

∞ for a /∈ D(n)

i,k ,

Q (n)

k (a) := min
i

{
R(n)

i,k (a)
}

Then Theorem 4 yields the following bound for |S|.

Theorem 5. Let S be a spherical two-distance set in R
n with inner products a and bk(a). Then

|S| � Q (n)

k (a).

Consider the case a + bk(a) < 0. Since bk(a) � −1, we have

a ∈ Ik :=
[

2 − k

k
,

1

2k − 1

)
.

Remark 1. Actually, the polynomials Pi are chosen such that the maximum of Q (n)

k (a) on Ik minimize

the Delsarte bound (Theorem 3). Clearly, Q (n)

k (a) is a piecewise rational function on Ik . It is not hard

to find explicit expressions for Q (n)

k (a) and to compute its maximum on Ik numerically. For instance,

max {Q (25)
3 (a): a ∈ I3 = [−1/3,1/5)} ≈ 284.14 (see Fig. 1).

4. Maximal spherical two-distance sets

In this section we use Theorem 5 to bound the cardinality of a spherical two-distance set with
a + b < 0.

Let S , |S| > 2n + 3, be a spherical two-distance set in R
n with inner products a and bk(a). Then

k ∈ {2, . . . , K (n)}, and −1 � bk(a) < a < 1.
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Fig. 1. The graph of the function Q (25)
3 (a).

Let K̃ (n) := max{K (n),2}. For given n and k = 2, . . . , K̃ (n), we denote by Ω(n,k) the set of all
spherical two-distance sets S in R

n with a + bk(a) < 0. Denote by ω(n,k) the largest cardinality of
S ∈ Ω(n,k).

Let

ϕ(n,k) := sup
a∈Ik

{
Q (n)

k (a)
}
,

ω̂(n,k) := max
{⌊

ϕ(n,k)
⌋
,2n + 3

}
.

Let us denote by ω̂(n) the maximum of numbers ω̂(n,2), . . . , ω̂(n, K̃ (n)), and by ω(n) we denote
the largest cardinality of a two-distance set S in S

n−1 with a + b < 0. Then g(n) = max{ω(n),ρ(n)}.
Since Theorem 5 implies ω(n,k) � ω̂(n,k), we have

Theorem 6. g(n) � max{ω̂(n),ρ(n)}.

Finally, for g(n) we have the following bounds: ρ(n) � g(n) � max{ω̂(n),ρ(n)}. Recall that ρ(n) =
n(n + 1)/2 for n � 7. For ω̂(n), 7 � n � 40, we obtain the computational results gathered in Table 1.

Since ω̂(n) � ρ(n) for 6 < n < 40, n �= 22,23, for these cases we have g(n) = ρ(n). For n = 23 we
obtain g(23) � 277. But g(23) � ρ(23) = 276. This proves the following theorem.

Theorem 7. If 6 < n < 22 or 23 < n < 40, then

g(n) = n(n + 1)

2
.

For n = 23 we have

g(23) = 276 or 277.

Remark 2. The case n = 23 is very interesting. In this dimension the maximal number of equiangular
lines (or equivalently, the maximal cardinality of a two-distance set with a + b = 0) is 276 [9]. On the
other hand, |Λ23| = 276. So in 23 dimensions we have two very different two-distance sets with 276
points.

Note that max {Q (23)
3 (a): a ∈ I3} ≈ 277.095. So this numerical bound is not far from 277. Perhaps

stronger tools, such as semidefinite programming bounds, are needed here to prove that g(23) = 276.
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Table 1
ω̂(n) and ρ(n). The last column gives the k with ω̂(n) = ω̂(n,k).

n ω̂ ρ k

7 28 28 2
8 31 36 2
9 34 45 2

10 37 55 2
11 40 66 2
12 44 78 2
13 47 91 2
14 52 105 2
15 56 120 2
16 61 136 2
17 66 153 2
18 76 171 3
19 96 190 3
20 126 210 3
21 176 231 3
22 275 253 3
23 277 276 3
24 280 300 3
25 284 325 3
26 288 351 3
27 294 378 3
28 299 406 3
29 305 435 3
30 312 465 3
31 319 496 3
32 327 528 3
33 334 561 3
34 342 595 3
35 360 630 2
36 416 666 2
37 488 703 2
38 584 741 2
39 721 780 2
40 928 820 2

Remark 3. Our numerical calculations show that the barrier n = 40 is in fact fundamental: LP bounds
are incapable of resolving the n � 40, k = 2 case. That means a new idea is required to deal with
n � 40.

Remark 4. It is known that for n = 3,7,23 maximal spherical two-distance sets are not unique, and
for n = 2,6,22, when g(n) = n(n + 3)/2, these sets are unique up to isometry. Lisoněk [10] confirmed
the maximality and uniqueness of previously known sets for n = 4,5,6. For all other n the problem of
uniqueness of maximal two-distance sets is open. We think that for 7 < n < 46, n �= 22,23 maximal
spherical two-distance sets in R

n are unique and congruent to Λn .
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