INCREASED BONE MINERAL DENSITY IS ASSOCIATED WITH HIGHER DYNAMIC JOINT LOADS AT THE ASYMPOMATIC KNEES OF SUBJECTS WITH UNILATERAL HIP OA

A. Dua, L.E. Thorp, J.A. Block, N. Shakoor
Rush Univ. Hosp., Chicago, IL

Purpose: We have previously shown that subjects with endstage unilateral hip osteoarthritis (OA) more commonly develop endstage OA of the contralateral knee rather than the ipsilateral knee, and that these subjects have higher dynamic joint loads at the contralateral knee than the ipsilateral knee. Local bone mineral density (BMD) reflects the loading history of that bone; hence, BMD may be a marker of excessive loading of the knee joint as well as of early asymptomatic OA. Here, we evaluated subjects who had unilateral hip OA but who were asymptomatic at their knees, to test the hypothesis that asymmetric loading of the knees induced by unilateral hip OA results in elevated BMD at the medial tibial plateau of the contralateral knee compared with the ipsilateral knee, and that these BMD asymmetries correlate with dynamic joint loading at the knees.

Methods: Fifty subjects with symptomatic unilateral hip OA and asymptomatic knees were evaluated. Subjects had moderate to severe radiographic unilateral hip OA using the Kellgren Lawrence (KL) grading system. Subjects were asymptomatic at the knees (WOMAC pain during walking <20 mm out of 100 mm). Subjects underwent DXA scanning of bilateral knees and these scans were evaluated in a blinded manner by a trained investigator using a previously validated method. The BMD of the medial and lateral regions of the tibial plateau and the distal tibial shaft were measured in each knee. Subjects also underwent gait analyses using an optoelectronic camera system and multicomponent force plate. Inverse dynamics were used to calculate dynamic joint loads and the peak external knee adduction moment, a validated marker of medial compartment knee loading, was used as the primary load parameter. Paired t-tests were used to evaluate differences in BMD and loading between the knees and Spearman correlations were used to evaluate correlations between BMD and loading. p<0.05 was considered significant.

Results: Bone mineral density was significantly increased at the contralateral medial tibial plateau compared with the ipsilateral medial tibial plateau (0.912g/cm² ± 0.208 vs 0.869g/cm² ± 0.196 p=0.040). Furthermore, a direct correlation was found between the medial knee load (peak external knee adduction moment) and BMD at the contralateral medial knee (rho=0.381, p=0.008). No significant differences were noted for BMD at the lateral compartments of the two knees.

Conclusions: This study demonstrates that unilateral hip OA is associated with increased BMD at the contralateral medial knee when compared with the ipsilateral medial knee, that BMD alterations are directly correlated with loading alterations at the OA-predisposed knee (contralateral knee), and that these events occur even in asymptomatic, clinically uninvolved knees. These findings suggest that BMD alterations may be a surrogate marker for joint loading and OA progression, even in asymptomatic subjects. Although further investigation is necessary to delineate causal relationships, BMD may be a useful tool to follow structural progression in longitudinal OA studies.

ANKLE CONTACT MECHANICS FOLLOWING FOCAL DEFECT RESURFACING WITH A METALLIC IMPLANT: A COMPUTATIONAL INVESTIGATION

The Univ. of Iowa, Iowa City, IA

Purpose: A persistent osteochondral defect (OCD) can lead to chronic degeneration of adjacent/opposing cartilage. Focal resurfacing with a metal implant is a promising new treatment option. The superior talar dome is a common site for an OCD, but the dome’s geometric complexity presents challenges to successful implant design, selection, and placement. The purpose of this study was to document the effect of implantation parameters upon ankle contact mechanics after focal resurfacing of the talar dome with a metal implant.

Methods: Finite element (FE) simulations of loading of the intact ankle, the ankle after introduction of a 15 mm cylindrical defect to the medial edge of the talar dome, and the ankle with a focal resurfacing implant (HemiCAP; Arthrosurface Inc.) were performed. The ankle contact FE modeling built upon previous work, with bone and the resurfacing implant both treated as rigid bodies, and cartilage as a linear elastic material. A 300 N axial load was applied across the ankle joint. Then the tibia was rotated (under load) about the talus through a functional arc of flexion/extension, with the talus free to rotate. The effects of various implantation parameters (implant height, rotation about its post axis, and valgus/varus tilt) were studied over a simulated motion cycle.

Complementary static loading experiments had previously been performed in cadaver ankles (n=7), before and after creation of a comparable OCD, in part to validate the FE model. Contact stresses were measured using a high-resolution pressure sensor (TekScan). The defect was then resurfaced with a metallic implant, with implantation height controlled in very fine (0.25 mm) increments. Contact stress measurements were repeated at heights from -0.5 to +0.5 mm with respect to an as-implanted reference.

Results: Experimentally there was a 20% reduction in the ankle contact area with the untreated defect, and a 40% increase in peak contact stress, plus a pronounced shift in the highest-loaded region. Following flush implant resurfacing, contact area recovered to 90% of intact, but peak contact stress remained elevated. For 0.25 mm proud implantation, there was a 120% elevation in peak contact stress atop the metal cap, relative to the intact state. FE-computed contact stresses and trends agreed closely with experiments.

Figure 1. Coupled talar internal rotation associated with plantarflexion of the ankle was greatly disrupted when an unfilled talar OCD was modeled. An appropriately positioned focal resurfacing implant restored the normal talar kinematics.
Whereas simulations in the intact state showed smooth and regular motion across the duty cycle, in the presence of an unfilled defect, there was dramatically increased external rotation with ankle plantarflexion (Fig. 1).

There was also a striking elevation (376% of intact) in cartilage stress on the talar dome directly adjacent to the defect at higher angles of plantarflexion. Appropriate (baseline) implantation of the resurfacing device substantially restored the natural kinematics (Fig. 1), but did not uniformly restore stresses to levels in the intact ankle. The ankle motion and contact stresses were similarly sensitive to rotational implantation parameters.

Conclusions: Focal resurfacing with a metal implant appears to be a viable strategy to restore normal joint mechanics in ankles with a large talar OCD. However, given that implant-on-cartilage contact stresses were highly sensitive to proudness and malpositioning, very precise implantation is necessary. Over time, active tissue remodeling may compensate for small incongruities in the implant-to-cartilage interface. The FE approach holds substantial attraction for studying other resurfacing options, such as osteochondral plugs or other implant designs.

Supported by a grant from Arthrosurface Inc., and by NIH/NIAMS Grant P50 AR055533.

148

THE RELATIONSHIP BETWEEN OBESITY AND KNEE JOINT KINEMATICS DURING WALKING IN KNEE OSTEOARTHRITIS PATIENTS

J. Aaboe¹, T. Alikjær², H. Bliddal¹, M. Henriksen¹

¹The Parker Inst., Frederiksberg, Denmark; ²Dept. of NeuroSci.

and Pharmacology, Univ. of Copenhagen, Copenhagen, Denmark

Purpose: Discrepancies exist in the literature on knee joint kinematic characteristics of knee osteoarthritis (OA) patients during walking. Studies have reported knee joint sagittal kinematics in knee OA patients to be both lower, higher and the same compared to healthy subjects. It is generally accepted that knee joint mechanics during walking is associated with progression of medial knee OA. Obesity and knee OA co-exist in an increasing part of the population, and the two diseases intertwine in several ways. Body-mass index (BMI) is the single most important risk factor for knee OA. The purpose is therefore to evaluate the relationship between body mass index (BMI), knee kinematics during walking and how severity of knee OA influence this relationship in obese knee OA patients.

Methods: Patients referred to a dietary program were included. All measurements were performed before the dietary intervention. From standard 3D gait analyses, at self selected speed (SS) and at a standard speed of 4.5 km/h (ST), sagittal plane knee kinematics was extracted. Medial Kellgren-Lawrence grades (K-L) were scored from standard weight bearing radiographs. Data from the sagittal plane kinematics was divided into three terms of range of motion, PH1, PH2 and a PHtot (Fig. 1).

Results: 192 patients were included in the study and of those, gait analyses were completed on 177 patients (80% females). The characteristics of the patients were: mean (±SD) age 62.7±6.4, body mass 101.7±14.5, height 1.66±0.14 and BMI 37.1±4.4. The radiographic severity was a mean K-L score in the medial compartment of 2.2±1.1 and the patients were in the data analyses divided into two groups as “severe” (K-L>2) and “less severe” (K-L≤2).

Generally, severe patients walked with less sagittal plane range of motion during stance phase. Severe patients had a reduced range of motion in PH1 for both SS and ST (p=0.003 and p=0.02, SS and ST respectively, Fig. 2).

Conclusions: At both self selected and standardized walking speeds, severe knee OA patients have more flexed knees at heel strike and reduced angular motion in the load acceptance phase compared to less severe patients. This shows that radiographic severity reflects a distinction between two patterns of walking in obese knee OA patients. Severe patients use a smaller joint surface area which may induce a concentration of joint stresses to smaller areas of the cartilage. In the concentric phase from maximum to minimum flexion (PH2), a negative relationship between BMI and sagittal plane knee joint angle indicates that more obese knee OA patients adapt functionally to reduce dynamic loading. In this part of stance phase body weight is solely supported by one leg, and this adaptation may be a strategy to reduce knee joint moments, a strategy that may be a compensation to avoid pain. This study supports the notion that obesity is detrimental to knee joint mechanics.

149

CORRELATES OF SINGLE LIMB STANDING BALANCE FOR INDIVIDUALS WITH KNEE OSTEOARTHRITIS

M.A. Hunt, T.V. Wrigley, R.S. Hinman, K.L. Bennell

Univ. of Melbourne, Carlton, Australia

Purpose: Patients with osteoarthritis (OA) of the knee are known to have impaired standing balance compared to healthy individuals. This limits their functional capabilities and places them at risk for falling. Factors which contribute to standing balance ability in this patient population are unknown. Thus, the purpose of this study was to identify anatomical and disease-specific pre-