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KEYWORDS Abstract The Ordos Basin of North China is not only an important uranium mineralization province,
Ordos Basin; but also a major producer of oil, gas and coal in China. The genetic relationship between uranium miner-
Uranium deposits; alization and hydrocarbons has been recognized by a number of previous studies, but it has not been well
Hydrodynamics; understood in terms of the hydrodynamics of basin fluid flow. We have demonstrated in a previous study
Hydrocarbon generation; that the preferential localization of Cretaceous uranium mineralization in the upper part of the Ordos
Fluid overpressure; Jurassic section may have been related to the interface between an upward flowing, reducing fluid and
Fluid flow; a downward flowing, oxidizing fluid. This interface may have been controlled by the interplay between
Numerical modeling fluid overpressure related to disequilibrium sediment compaction and which drove the upward flow, and

topographic relief, which drove the downward flow. In this study, we carried out numerical modeling for
the contribution of oil and gas generation to the development of fluid overpressure, in addition to sedi-
ment compaction and heating. Our results indicate that when hydrocarbon generation is taken into
account, fluid overpressure during the Cretaceous was more than doubled in comparison with the simu-
lation when hydrocarbon generation was not considered. Furthermore, fluid overpressure dissipation at
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the end of sedimentation slowed down relative to the no-hydrocarbon generation case. These results
suggest that hydrocarbon generation may have played an important role in uranium mineralization, not
only in providing reducing agents required for the mineralization, but also in contributing to the driving
force to maintain the upward flow.

© 2011, China University of Geosciences (Beijing) and Peking University. Production and hosting by

Elsevier B.V. All rights reserved.

1. Introduction

The Ordos Basin in northern China is an emerging uranium
mineralization province, and is also one of the top oil, gas and coal
producers in China (Wei and Wang, 2004; Chen et al., 2005; Deng
et al., 2005). The potential relationship between uranium miner-
alization and organic matter or oil and gas in the Ordos Basin has
been recognized by a number of previous studies (e.g., Zhang,
2004; Feng et al., 2006; Peng et al., 2007; Xue et al., 2009),
and it has been generally agreed that uranium mineralization took
place where oxidizing, uranium-carrying fluids met reducing
agents (Xiao et al., 2004; Chen et al., 2006). The location where
the two fluids met was likely controlled by the hydrodynamic
regime of the basin, which has received relatively little attention
until recently.

Xue et al. (2010) carried out numerical modeling of Ordos
basinal fluid flow, taking into consideration the effects of
disequilibrium sediment compaction and topographic relief. Based
on their modeling results, they proposed that two fluid flow
systems were developed in Jurassic and Cretaceous time when the
margins of the basin were relatively uplifted and the strata within
it were gently inclined. An upper fluid flow system was driven by
gravity in relation to topographic relief and the flow direction was
downward from the basin margin to its center. A lower flow
system, driven by overpressures related to sediment compaction,
was upward from the basin center toward its margins (Xue et al.,
2010). It was further proposed that the location of the interface
between the two fluid systems, where oxidizing, uranium-carrying
fluid reacted with reducing, hydrocarbons-bearing fluid and
uranium ore minerals were precipitated, was a function of the
magnitudes of the two competing driving forces, i.e., compaction-
driven versus topography-driven flows (Xue et al., 2010). Because
the fluid overpressure caused by disequilibrium sediment
compaction was fairly small (about 20 bar), the location of the
interface between the two fluid systems was strongly influenced
by topographic relief (Xue et al., 2010).

Many studies have suggested that hydrocarbon generation can
be a major contribution to the development of overpressures in
sedimentary basins (Bredehoeft et al., 1994; Luo and Vasseur,
1996; Lee and Williams, 2000; McPherson and Bredehoeft,
2001; Hansom and Lee, 2005). In order to further understand
the localization of uranium mineralization in the Ordos basin, this
study extends the numerical modeling of Xue et al. (2010) by
taking into account the effect of oil and gas generation on fluid
overpressure development, in addition to the effects of disequi-
librium sediment compaction. We simulated the evolution of fluid
overpressure, fluid flow rate and temperature in a representative
cross section of the Ordos Basin for situations with and without
hydrocarbon generation. The results of the two situations are
compared to evaluate how hydrocarbon generation may have
influenced Ordos basinal fluid flow patterns and the localization of
uranium mineralization.

2. Geologic setting

The Ordos Basin is located on the North China craton, between
the Hercynian Inner Mongolia—Daxinganling orogen to the north
and the Indo-Sinian Qilian—Qinling orogen to the south (Fig. 1A,
B). It is bordered by the Alashan block on the west and by the
Shanxi block on the east (Fig. 1B). The basin was developed
during the Mesozoic on an upper basement of Paleozoic sedi-
mentary rocks, which are underlain by Precambrian crystalline
basement rocks. Because hydrocarbon reservoirs are found in both
the Paleozoic and Mesozoic rocks (Deng et al., 2005), the
Paleozoic strata are generally treated as part of the Ordos Basin
rather than basement (Fig. 1C).

The Paleozoic section consists of Cambrian and Ordovician
marine carbonates and mud rocks, a hiatus from Silurian to
Devonian, marginal marine, coal-bearing sediments of Carbonif-
erous age, and fluvial — lacustrine coal-bearing formations of
Permian age. From the Triassic to Cretaceous, the Ordos Basin
was filled with fluvial and lacustrine sediments — mostly sand-
stones and shales. Triassic strata consist of the Liujiagou,
Heshanggou, Zifang and Yanchang formations in ascending order.
The Jurassic rocks are separated from the Triassic by an uncon-
formity, and include (from oldest to youngest) the Fuxian, Yan’an,
Zhiluo, Anding and Fenfang formations. Cretaceous strata
unconformably overlie the Jurassic rocks and consist of the Yijun,
Luohe, Huachi, Luohandong and Jinchuan formations. The entire
basin was uplifted after the late Cretaceous, forming a series of
smaller grabens and horsts (Chen et al., 2005; Deng et al., 2005).
Overall the basin was characterized by uplifting in the east and
relative subsidence in the west during the Mesozoic time
(Deng et al., 2005).

The Ordos Basin is different from typical craton basins in that
basin margins were tectonically active, whereas the interior of the
basin was relatively stable. The strata in the interior of the basin
are generally horizontal or gently dipping (1°—3°), whereas those
in the marginal parts of the basin were subjected to significant
folding and faulting during Yanshanian (Jurassic and Cretaceous)
orogeny.

Hydrocarbon source rocks have been found in Upper and
Lower Paleozoic strata, and large-scale gas generation has been
estimated to have occurred in the Jurassic and Cretaceous (Ren,
1996). A number of uranium deposits and occurrences have
been found along the margins of the Ordos Basin. They are
concentrated in the Dongsheng-Zhungerqi area in the northeast,
the Suide-Mizhi and Yanchang-Yanchuan areas in the east, the
Huangling-Binxian and Hancheng-Baishui areas in the southeast,
the Longxian-Pingliang area in the southwest, the Ciyaobao-
Shigouyi area in the west, and the Ertuokeqi area in the north
(Fig. 1A). The most important uranium deposits include Sheng-
shangou in Dongsheng, Guojiawan in Longxian, and Diantou in
Huangling (Xue et al., 2010). Except for minor occurrences
in carbonaceous shales, most uranium mineralization occurs in
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Figure 1

A) Distribution of oil, gas and uranium mineralization in the Ordos Basin. Subdivisions of the basin include the Western Margin

Thrust-Faulting Belt (I), Western Depression Belt (II), Eastern Slope Belt (IIT), Western Shanxi Fold Belt (IV), Yi-Meng Uplift (V), and Weibei
Uplift (VI). Line a—b indicates the approximate location of the cross section shown in Fig. 1C. B) Regional tectonic setting of the Ordos Basin.
The location of the Ordos Basin in China is shown in the insert. C) A conceptual west-east cross section of the Ordos Basin, showing the major
strata of oil and gas accumulations and uranium mineralization (after Wang et al., 2004).

sandstones. Orebodies are typically tabular. The host strata include
the Triassic Liujiagou, Heshanggou, Zhifang and Yanchang
formations, the Jurassic Yan’an, Zhiluo and Anding formations,
and the Cretaceous Huachi and Jinchuan formations, the most
important of these being the Zhiluo Formation.

Although the deposits are located only a few hundred meters
below the modern surface, geologic, petrographic and fluid
inclusion studies suggest that the uranium mineralization took
place at temperatures from 60 to 180 °C (Li et al., 2006; Ling,
2007), which indicates either deep-burial or hydrothermal, rather
than early diagenetic environments (Xue et al., 2010). The ages of
uranium mineralization (U—Pb isochron method) in the
Dongsheng area fall in a wide range, including 177—149,
124—107, 85—74 and 20—8 Ma, with the Late Cretaceous interval
being the most important (Xia et al., 2003; Liu et al., 2007). Two
U—Pb isochron ages of the Diantou uranium deposit are 51 and
42 Ma (Chen et al., 2006).

3. Conceptual model and study methods

This study’s numerical modeling is based on a conceptual cross
section of the Ordos Basin in a west—east direction (Fig. 1C), as
also used in Xue et al. (2010). The model cross section is divided
into six hydrostratigraphic units, i.e., Cambrian, Ordovician,
Carboniferous—Permian, Triassic, Jurassic, and Cretaceous, with

a hiatus between the Ordovician and Carboniferous and another
between the Triassic and Jurassic (Table 1). The basin center is
chosen at the thickest section of the Cretaceous sediments, and the
basin margin is set near Luliangshan (Fig. 1C). An additional
1340 m of Cretaceous sediments was added on top of the section
in Fig. 1C to account for erosion (Ren et al., 2006). The lithology,
time interval, total organic carbon (TOC), and thickness (m) of the
different hydrostratigraphic units used in the numerical model are
listed in Table 1. The hiatuses are represented by only 1 m of
sediments over a long period of time.

The model is closed to fluid flow on the left (west) and bottom
and open on the right (east) and surface. A heat flux of 59.55 mW/
m? is supplied from the bottom based on an estimation of
geothermal gradient of 3.1 °C/100 m (Ren et al., 2006), and
a fixed temperature of 20 °C is set on the surface. The fluid
properties (thermal expansion coefficient, compressibility coeffi-
cient, heat capacity, and heat conductivity), solid matrix properties
(density, heat capacity, and heat conductivity), and parameters
related to porosity as a function of depth and permeability as
a function of porosity, are generic and are adopted from Bethke
(1985) and Garven (1985), as summarized by Chi and Savard
(1998) and Chi et al. (2010). Hydrocarbon properties and kine-
matic parameters (including kerogen-to-oil conversion and oil-to-
gas conversion) used in the modeling are based on type-II kero-
gens as the dominant hydrocarbon generator (Yang and Pei, 1996;
He, 2003; Li et al., 2005), and are adopted from Lee and Williams
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Lithology, time interval, TOC, and thickness (m) of hydrostratigraphic units of the Ordos Basin*.

Table 1
Unit

Thickness (m)

TOC:*:*
0

Time interval

(Ma)

Lithology**

11 12 13 14

10

(Wt. %)

140
1600
299

130
1700
341

120
1800

110
1900
427

100
2000

90
2100
521

80
2200

70
2300

60
2400
585

50

2500

40
2600
705

20 30
2700

2800

10
2900

Distance from basin center

3000

1.00
2.05
0.00
2.12
1.77
0.00
0.23
0.14

40% sd + 5% Ims +55% sh 145 — 65

K

J

469 384

538

724 770 674 555

591

583

200 — 145

50% sd + 5% Ims -+ 45% sh

205 — 200
245 — 205
360 — 245

30% sd + 5% lms + 65% sh
440 — 360

Hiatus
T

1284 1459 1580 1680 1690 1563 1482 1521 1435 1280 1109 939 768 597
472 421 247

550

1086

30% sd + 5% lms + 65% sh

188

370 306

308 410 429 478

495

493

504

561

20% sd + 5% Ims + 75% sh

95% Ims + 5% sh

C—P

Hiatus
(0]

316 312 378 469 561 735 731 747 696 671 494 381 265 145
329 322 285 303 271 270 232 214 128

329

524
317

520 — 440
556 — 520

95% Ims + 5% sh

172

300

329

322

95% lms + 5% sh

*Modified from Xue et al. (2010).

Cam

shale; Ims = limestone.
*#*TOC contents are based on compilation of data from Dai (1997), Li et al. (2005), Yang and Pei (1996), Mou (2001), Sun (2005), and Xue et al. (2009).

**sd = sandstone; sh

(2000), Speight (2006), Pepper and Corvi (1995) and Pepper and
Dodd (1995) as summarized in Chi et al. (2010).

In the study by Xue et al. (2010), the program Basin2™
(Bethke et al., 1993) was used. Because Basin2 does not have
a module of hydrocarbon generation we used the program
BsnMod in the present study. It was initially developed by Chi
and Savard (1998) and Chi (2001) based on the mathematical
model of Bethke (1985), with a module of hydrocarbon genera-
tion being added by Chi et al. (2010). Detailed derivation and
description of the governing equations (medium continuity, mass
balance, energy conservation, and hydrocarbon generation) can be
found in Bethke (1985) and Chi et al. (2010), and are not repeated
here. The use of the program BsnMod is briefly described as
follows.

The main interface of BsnMod (Fig. 2A) shows all the input
buttons including model selection, basin data, fluid properties,
solid properties, porosity—permeability parameters, boundary
conditions, numerical parameters, and parameters related to
hydrocarbon generations. Among all the inputs, the “basin data”
table (Fig. 2B) is the most complex, which contains all the data
from Table 1. The other tables (e.g., Fig. 2C, D, E and F) are
mostly of default values adopted from sources as discussed above.
In the menu and tool bar in Fig. 2A, there are two output func-
tions; one is for graphical output and the other for spreadsheet
output. The graphical output contains the calculation grids, fluid
flow vectors, contours of fluid overpressure and contours of
temperature, which can be copied to other graphical software such
as CorelDraw for further editing. The spreadsheet output contains
all the calculation results for each node of the grid — including
coordinates, temperature, fluid pressure, fluid overpressure, fluid
flow velocity, porosity, permeability, fraction of oil generation,
and fraction of gas generation, which can be copied to other
program such as Excel for further data manipulation.

4. Simulation results

The evolution of fluid flow rate, fluid pressure, fluid overpressure,
and temperature was simulated for the Ordos Basin through time
from the Cambrian to the Tertiary. Two sets of simulation were
carried out — one considering the effect of disequilibrium sedi-
ment compaction and temperature on fluid overpressure and fluid
flow, and the other considering oil and gas generation in addition
to the first set parameters. The simulation of the effects of
topography, which had been done by Xue et al. (2010), was not
carried out in this study.

Simulation results without considering hydrocarbon genera-
tion are shown in Fig. 3. Fluid overpressures were negligible
during the deposition of the Cambrian and Ordovician sediments,
with the maximum overpressure contour being only 0.04 bar. The
maximum fluid overpressure contour value increased to 10.8 bar
by the end of the Triassic (205 Ma), decreased to 5.6 bar by the
end of the Jurassic (145 Ma), increased again to 22.2 bar by the
end of the Cretaceous (65 Ma), and then decreased to 8.1 bar at
20 Ma. Throughout the history of the basin, fluid flow was
mainly upward and toward the basin margin (right side of the
model, Fig. 3, left column). Locally downward fluid flow was
developed due to fluid overpressure being lower in the Cambrian
and Ordovician strata than in the overlying Carboniferous,
Permian and Triassic strata. Fluid flow velocities were generally
very slow, with the maximum horizontal flow rate being
0.137 cm/year and maximum vertical flow rate being
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Figure 2 User interfaces of the BsnMod program. A) Main interface showing various input and output buttons; B) input of basin data; C) input
of fluid properties; D) input of solid properties; E) input of porosity and permeability parameters; F) input of parameters related to oil and gas

generation.

0.00728 cm/year (Fig. 3). Corresponding to these small flow
rates, the geothermal profile was almost non-disturbed, with the
isotherms being almost horizontal (right column, Fig. 3). These
simulation results are similar to those obtained by using Basin2
(Fig. 5 of Xue et al., 2010).

In the second simulation set, in which the effect of hydro-
carbon generation was taken into account in the calculation of
fluid overpressure, the fractions of oil and gas generated were
computed and added to the parameters used in the first set of
simulation. The results indicate that oil generation began in the
Triassic in the lower part of the basin, and gradually moved
upward during Jurassic and Cretaceous time; gas generation did
not start until Cretaceous time and continued to evolve afterward.
Fig. 4 is a “snapshot” of the oil and gas generation zones at the
end of the Cretaceous time. The simulation results of fluid flow
velocity, fluid overpressure and temperature from Cambrian to the
end of Jurassic (145 Ma and before; Fig. 5) are almost identical to
those without considering hydrocarbon generation (Fig. 3). This
suggests that hydrocarbon generation was minor and made
negligible contribution to fluid overpressure development during
this period of time. However, by the end of Cretaceous, fluid
overpressure (maximum fluid overpressure contour
value = 59 bar, Fig. 5) was significantly higher than in the case of
no-hydrocarbon generation (maximum fluid overpressure contour

value = 22.2 bar, Fig. 3). By the time of 20 Ma, fluid overpressure
with hydrocarbon generation (maximum fluid overpressure
contour value = 18 bar, Fig. 5) was still much higher than the no-
hydrocarbon generation counterpart (maximum fluid overpressure
contour value = 8.1 bar, Fig. 3).

However, despite the prominent fluid overpressure patterns
shown in Figs. 3 and 5, the magnitudes of fluid overpressure are
actually fairly small, as illustrated by the depth—pressure profile
of the basin center (Fig. 6). Without hydrocarbon generation, the
fluid pressure at different depths of the basin was close to
hydrostatic values throughout the basin history (Fig. 6A). With
hydrocarbon generation, however, an increase of fluid pressure
above the hydrostatic line is noticeable by the end of Cretaceous
(65 Ma), which gradually dissipated and became almost indis-
cernible by 20 Ma (Fig. 6B).

5. Discussion and conclusions

As shown in Fig. 1C, the majority of uranium mineralization of
the Ordos Basin is located in the upper part of the Jurassic section.
According to the mixing model of uranium mineralization, this
preferentially mineralized interval may have coincided with the
interface between the reducing, upward flowing fluid system and
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after ceasing of sedimentation (20 Ma).

the oxidizing, downward flowing fluid system (Xue et al., 2010).
The accumulation of large amounts of uranium requires that this
interface was relatively stable over a prolonged period of time.
From the ages of uranium mineralization, which range from
177 Ma to 8 Ma (Xia et al., 2003; Chen et al., 2006; Liu et al.,
2007), it appears that uranium mineralization in the Ordos Basin
may have started in early diagenetic stages of the Jurassic strata,
but most likely continued after the Cretaceous. Although fluid
overpressures were small during the history of the Ordos Basin
based on numerical modeling results (this study and Xue et al.,
2010), it has been shown that they were sufficient to maintain
the upward fluid flow in the lower part of the basin against the

downward forcing of the topography-driven fluid. The interface
between the two fluid systems may have been located in the upper
part of the Jurassic strata if the topographic relief was moderate
(350 m across the model cross section). Because fluid over-
pressure dissipated gradually after the end of sedimentation, an
accompanying decrease in topographic relief is required in order
to maintain the interface between upward and downward flow
systems at a relatively stable stratigraphic interval.

If the topographic relief did not reduce as much as the effect of
overpressure dissipation, the downward flowing oxidizing fluid
system would move deeper into the basin, leaching or remobi-
lizing uranium minerals previously accumulated in the upper part
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Figure 4  Numerical modeling results showing the distribution of oil
generation (10%—90% oil generated) and gas generation (10%—90%
gas generated) zones at the end of the Cretaceous (65 Ma).

of the basin (especially in the Jurassic). The results of the present
study indicate that fluid overpressures were significantly
increased, and the dissipation of fluid overpressure after the
cessation of sedimentation slowed down, when the effect of
hydrocarbon generation is considered (Fig. 5).

In conclusion, previous numerical modeling results indicate
that two competing fluid flow systems, an upward flowing,
reducing fluid and a downward flowing, oxidizing fluid, may have
developed in the Ordos Basin during Jurassic and Cretaceous time.
The stability of the interface between the two fluid systems, which
is critical for uranium mineralization, was vulnerable to topo-
graphic change, especially after the ceasing of sedimentation. The
fluid overpressure, which drives upward fluid flow, could have
been significantly increased by oil and gas generation within the
basin. If so, it may have played an important role in determining
the location of the interface between the two fluid flow systems
and, thus, constraining the localization of uranium mineralization.

Temperature (blue,°C) and fluid overpressure (red, bars)

52

e

Vy max=3.67 X 1072 (cm/iyr) Vz max=1.52 % 103 (cmiyr)

— 440Ma
Ve max=1.21% 1073 (cm/yr) vz max=1.08 x 1073 (cm/yr)

Figure 5

— —

008

Numerical modeling results for simulations taking into account the contribution of hydrocarbon generation to overpressure devel-

opment, showing fluid flow patterns, fluid overpressures, and isotherms at the end of Ordovician (440 Ma), end of Triassic (205 Ma), end of
Jurassic (145 Ma), end of Cretaceous (65 Ma), and after the cessation of sedimentation (20 Ma).
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Figure 6

Calculated depth—pressure profile at the basin center (left side of the model) at various stages of the Ordos Basin for simulations

without considering hydrocarbon generation (A) and with hydrocarbon generation (B). Note fluid pressure is close to hydrostatic values in most
cases, but a prominent fluid pressure increase above the hydrostatic line is noticeable at 65 Ma when hydrocarbon generation is included in the

simulation.
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