
stochastic 
processes 
and their 
applications 

Nonlinear renewal theory for Markov random walks 

Vincent F. Melfi 

Department of Statistics and Probability, Michigan Stare University, East Lansing. MI 48824.1027, USA 

Received 27 November 1991; revised 11 January 1994 

Abstract 

Let {S,} be a Markov random walk satisfying the conditions of Kesten’s Markov renewal 
theorem. It is shown that if {Z”} is a stochastic process whose finite-dimensional, conditional 
distributions are asymptotically close to those of {S,} (in the sense of weak convergence), 
then the overshoot of {Z,,} has the same limiting distribution as that of IS.}. In the 
case where {Z,} can be represented as a perturbed Markov random walk, this allows 
substantial weakening of the slow change condition on the perturbation process; more 
importantly, no such representation is required. An application to machine breakdown 
times is given. 

Keywords: Markov random walk; Nonlinear renewal theory; Prokhorov metric; Markov 
renewal theory 

1. Introduction 

Let SO,S1,... be a stochastic process for which renewal theorem is known, i.e., for 

which it is known that the overshoot {S,. - a: a 2 0} converges in distribution (to 

a known limiting distribution) as a + co. Here z, = inf{n 2 1: S, > a}. 

In many applications, especially in statistics, what is needed is a renewal theorem 

for a process ZO, Z1, . . . which is asymptotically close to {S,} in some sense. This has 

spurred the development of such renewal theorems, usually called nonlinear renewal 

theorems, during the past 15 years. (The adjective “nonlinear” is used because such 

theorems may be used to obtain the limiting distribution of the overshoot of the 

original process {S,} over a nonlinear boundary.) 

When S, is the nth partial sum of i.i.d. random variables (i.e., a random walk) 

satisfying certain conditions (e.g., the distribution of the summands is nonarithmetic 

and has finite positive mean), it is a consequence of Blackwell’s renewal theorem that 

(Sza - u} converges in distribution as a + co. In this setting, nonlinear renewal theory 

has been explored by Lai and Siegmund (1977), Lalley (1982), Zhang (1988), 

and Woodroofe (1990), among others. In all but the last reference, it is assumed that 

{Z,} is a perturbed random walk, i.e., Z, = S, + g,, where the sequence (&,} of 
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perturbations satisfies a slow change condition such as 

~max{ltll, . . . , 1 &,I} -+ 0 in probability as II -+ co, 

lim sup [FD max 15n+k-&12~ =0 Vs>O. (2) 
6+On>l Osk5nd 

The paper of Woodroofe (1990) presents a more general formulation which does not 

require that (2,) is a perturbed random walk; rather, it requires closeness of 

conditional distributions. 

Each of the papers above contains applications of the theory to probability and 

statistics. For surveys of the theory, as well as many more applications, see Woodroofe 

(1982) and Siegmund (1985,1986). 

Recently, Su (1990) and Melfi (1992) have developed nonlinear renewal theory 

when {S,} is a Markov random walk. Recall the definition of a Markov 

random walk. It begins with a Markov chain Y,, Yr , . . . with state space E, 

the driving process. The summands Xi have the property that the conditional 

distribution of X, given { Yi: i 2 0} and {Xj: j # n> depends only on Y,_ I 

and Y,,. The process { Y,,X,} is called a Markov renewal process, and 

{S, = X, + ... + X,: n 2 1) is called a Markou random walk. (A more precise 

definition is given in the next section.) In Su (1990) the state space E of the 

Markov chain is required to be finite; in Melfi (1992) it can be any complete 

separable metric space. 

Both of the above references require that Z, = S, + t,, with {t,,} satisfying 

a slow change condition analogous to that given above. The purpose of this 

paper is to present a renewal theory for processes {Z,} which satisfy an alternative 

(much weaker) condition of asymptotic closeness to {S,}. This condition does 

not require any representation of the form Z, = S, + r,; rather, it only requires 

that finite-dimensional, conditional distributions coalesce (in the sense of the 

Prokhorov metric). In one direction, this allows weakening of the slowly 

changing conditions in the case where Z, = S, + 5.. More interestingly, it al- 

lows processes {Z,} which have no such representation; for example, {Z,} 

may have a dependence structure like that of a Markov random walk, but 

where the driving process is nor Markovian. (It may also be worth noting that the 

state space E is only required to be a separable metric space.) One motivation for 

developing renewal theory for such processes is the study of clinical trials where 

allocation is adaptive and randomized. Details of such applications will be worked 

out in a future paper. 

In the next section Kesten’s Markov renewal theorem is described, along with 

a result which shows that the convergence in this theorem holds uniformly (in the 

starting point of the Markov chain) on compacts. In Section 3, nonlinear extensions of 

Kesten’s Markov renewal theorem are presented. These theorems are proved in 

Section 4. Section 5 contains some comments on the applicability of these theorems, 

as well as some techniques for verifying some of the conditions. In Section 6, 

a machine breakdown example is presented. 
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2. Kesten’s Markov renewal theorem 

Markov renewal theorems have been proved by a variety of authors; notably, Orey 

(1961), Jacod (1971), Kesten (1974), and Athreya et al. (1978). At present, the most 

general result available seems to be that of Kesten, so this theorem will be the 

embarkation point for the nonlinear renewal theory below. 

The statement of Kesten’s Markov renewal theorem follows. Let (E, d) be a separ- 

able metric space with Bore1 a-algebra Q. Begin with a stochastic transition kernel 

Q on E, i.e., a function Q : E x &’ + [0, l] which is a measurable function for fixed A E 6 

and is a probability measure (on 8) for fixed y E E, and let YO, Y1,. . . be a Markov 

chain with transition kernel Q, so that for AE& and n, k 2 1, 

p{ yn+k EAI Yo, YI,..., Yn) = Qk(Yn;A). 

The summands {X,} are required to satisfy 

(3) 

~(X,I{Yi:iLO},{xj:j#n})=F(.IY"-,,Y"), (4) 

where { F( .I x, y): x E E, y E E } is a family of distributions on g( Iw). Define So = 0 and 

s.=x1+...+x,, n21. 

Then {S,} is a Markov random walk. 

(5) 

It is convenient to assume that { Y,,, X, > is the coordinate process on the canonical 

probability space (sZ,F) = ((E x [w)“,(b x g)“), where N denotes the nonnegative 

integers and &? is the Bore1 o-algebra on Iw. Also, for YE E, P, represents the 

probability measure pertaining to paths with Y, = y. (For details on the construction 

of these processes, see Melfi (1992) and Revuz (1984).) 

2.1. Kesten’s conditions 

Two of the conditions for Kesten’s Theorem, (K2) and (K3) below, are rather 

mundane; (K2) is analogous to the condition that the mean is positive and finite in 

ordinary renewal theory, while (K3) is an aperiodicity condition. Condition (Kl) is 

a recurrence condition on the Markov chain which is satisfied for some non-Harris 

recurrent Markov chains (since it only requires that ( Y,,} return to &positive open 

sets w.p.l), but requires the existence of a jinite invariant measure. Condition (K4) is 

a continuity condition which is crucial for proving uniform convergence in Theorem 

1 below. Some explanation of (K4) will be given after its statement. 

From now on, the notation “a.s.” means “a.e. [P,] for each y.” For f: (E x R)” + [w 

and 6 > 0, define 

f6(Y O,~O,Yl,~l, . ..I 

= lim sup{f(yb,sb,y;,s;, . . . ): d(_ViTy;) + ISi - S;I < 6 Vi I M) 
m-cc 

= lim fi, say. 
m-rm 

(6) 
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(This will be used in (K4) below.) Note that f” is (& x 98)’ measurable for every (not 
necessarily measurable) f: In fact, it may be shown that for every f, f$ is lower 
semicontinuous for each m. The conditions follow. 
(Kl) There exists a probability measure d, on d which is invariant for Q, i.e., for every 

(7) 

Also, for all open A with $(A) > 0, 

P4.{ Y”E.4 3n 2 1) = 1 for all yEE. 

(K2) 

(8) 

(K3) 

(K4) 

s E,IXl IWY) < ~7 

P:= E,(X,M(dy) > 0, s 
lim +S, = p as. 
n-tm 

There exists a sequence { [, 1 c R such that the group generated by ([,} is dense 
in R and such that for each v and each S > 0 there is a z = z(v, 6) E E with the 
following property: For each E > 0 there is an Aeb with $(A) > 0, integers 
ml, rn2, and an q E IF8 such that for each y E A, 

P,(4Ym,,z) < &, l&l, - VI s 6) > 0 

and 

Pr(d(Y,,z2,Z) < 8, IS,, - ? - i,i 2 dj > 0. 

For each YE E and 6 > 0 there is a q = q(y,6) such that for all product 
measurable functions f: (_E x iR)N -+ R, 

w-(Yo,&3, Yl,Sl, -‘* 15 wswhs,, Yl,SI, *..I + ~SUPl.fl 

and 

&f(Y,,So, Y,,S I,...) 2 &J’S(Yi,,S,, Yr,Srt...) f asuplfl 

whenever d(y,z) -=c 4. 

Some insight into the above condition is provided by the observation that (K4) 
implies that the transition operators for the whole process ( Y,, S,>, 2 0 are weakly 
continuous under the product topology on (E x 82)“. In other words, for AGE and 
AE(&xL@“, let N(y; A) = P,{( YO, So, Y, , S1, . ..)E A i. Then (K4) implies that 
N(y’;.) 3 N(y; .) as y’ + y, where =j. denotes convergence in distribution. 

To see this, let a metric e on (E x R)N be defined by 

e((y,s), W,s’)) = 2 $ mm{ 1,d(yi,_YI) + Jsi - .$I]. 
i=O 
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Then e metrizes the product topology (Kelley, 1955, p. 122). Now fix 6 > 0 and yeE, 

let q = q(y, 6/2) be given by (K4), and let m be so large that l/2171 < S/2. For any 

~,s)E(E x R)” with d(yi,y:) + Isi - .$I < 6/2, Vi I m, e((y,s),(y’,s’)) < 6. Thus for 

any A E(c? x B)“, 

(1,)6’2 I 1.48, 

where A6 = { ze(E x R)“; e(z, A) < 6). 

So, for y’ with d(y, y') < q and A ~(8 x g)N, 

N(y’i-4) = E,,l~(yo,So, Y,,Sl,...) 

I E,(~A)“‘~( Ye,&, Y,,Sr, . ..) + 6/2 

I E,~AJ(Y~,&,, Y,,Sr, . ..) + 6/2 

I N(y; Ad) + 6/2. 

Thus the Prokhorov distance between N(y’;.) and N(y;.) is less than 6. 

Since((E x R)“,e) is separable, and since the Prokhorov distance metrizes weak 

convergence on separable metric spaces, N(y’;.)*N(y;.) as y’+ y. 

2.2. Kesten’s Markou renewal theorem 

Let { YH, XA; nEi2) be the coordinate process on the space (Q’, F’) = ((E x UT?)“, 

(&’ x B)“), and let P’ be the probability measure on (a’, F’) under which { Yn, Xh) is 

the two-sided stationary process associated with the original Markov renewal process 

( Yn,X,: nE N}. (Details of this construction may be found in Melfi (1992); see also 

Doob (1953, p. 456).) 

Define 

r I;= 1 x:, if n > 0, 

s:,= 0 if II = 0, 

- clp_,+, XA if n < 0, 

and define a measure $ on d by 

$(A)=P’{wgS;,<O, YbEA} 

Also, let the distribution K be given by 

where 

r,=inf{n>l:S,>a}, a20. (9) 
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Kesten’s Markov renewal theorem (Kesten, 1974). Assume that conditions (Kl)-(K4) 

are satisfied. Then for any starting point y E E, ( Y,_, SIa - a) has joint limiting distribu- 

tion K, as a -+ co. In particular, for any y E E and r > 0, 

lim PY{ &a - a > r> = 1 m (2 - r)P,{S,,EdA}. 
a-tm 

c1 E Il/(dz) 
s s r 

2.3. Uniform convergence 

It is interesting that, with no further conditions, the convergence in Kesten’s 

theorem holds uniformly (in the starting point) on compacts. That is the content of 

Theorem 1 below, The proof of Theorem 1 is omitted; a similar result is proved in 

Melfi (1992). The key to the proof is understanding condition (K4), although there are 

some technical details that need to be addressed. (For those who are interested, the 

proof of Theorem 1 may be found in Melfi (1991).) 

Theorem 1. For each E > 0 and compact set C E 6, there is an a0 = ~~(8, C) < 00 such 

that for all a 2 ao, 

3. Nonlinear Markov renewal theorems 

Let { Wn: n 2 0) be a stochastic process taking values in (E, &), and let (Z,: n 2 0) 

be a real-valued stochastic process. Both are defined on the same probability space 

(r, d, P). For a 2 0 define 

t, = inf{n 2 1: Z, > a}, (10) 

R, = Z,a - a, 

w, = w*_. 

(11) 

Also,let{~‘,:k~1}beafiltrationforwhich~~~o(Wo,...,W,,Z,,...,Z,)forallk. 

Of primary interest below are limiting distributions for R, and ( W,, R,). 

The Prokhorov distance plays an important role in what follows, so its definition 

and a few relevant properties are recalled. For probability measures P, Q on a metric 

space (X,d) equipped with its Bore1 a-algebra LX!, define the Prokhorov distance 

p between P and Q by 

p(P,Q) = inf{e > 0: P(A) 2 Q(A’) + E tlA~&‘}), 

where A” = {ZEN”: d(z, A) < E}. 

Then p is a metric on the set of all probability measures on JS’ (Dudley, 1989, p. 309). 

An important property is that if (X, d) is separable, then the Prokhorov distance 
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metrizes the topology of weak convergence, i.e., if P, Pi, P2,. . . are probability 

measures on d, then 

p(P,, P) --) 0 if and only if P,, =z. P. (12) 

For this and other properties of p, see Dudley (1989). 

3.1. Limiting distribution of the overshoot 

Let B, and (Z,,,: k 2 l} be the prior a-algebra and post-t, delayed process, 

respectively, i.e., for a 2 0 and k 2 1, 

~~={(A~~:An{t,=n}~~~foralln21}, 

and 

Z,,!i = Z,.., - Z,,. 

Additionally, for a 2 0, m 2 1, y E E, BE 9Y”‘, and y E r, let 

L,,,(Y;B)= [FP{(Z,,I,...,Z.,~)EBIY~)(~) 

and 

G(Y; B) = P,{(&, . . ..&.)~B}, 

where {S,} is a Markov random walk. Let P,,, represent the Prokhorov metric for 

distributions on Wm. The conditions for a renewal theorem follow. 

(I) There exists a Markov random walk satisfying (Kl)-(K4) for which 

Pnlc~lVn~ Lz( W,; . )] -+ 0 in probability 

for each m 2 1. 

(II) {R,: a 2 0) is tight. 

(III) { W,: a 2 0) is tight. 

Theorem 2. Assume conditions (I)-(III). Then 

limP{Z,.-aar} =tS~(dz)Sm(I^-r)P,{~~,,~dl), 
a-m I 

i.e., {Zta - a} has the same limiting distribution as {S,. - a}. 

3.2. Joint limiting distribution 

Much of the notation in this section remains the same as in Section 3.1. It will be 

necessary, however, to define joint analogues of L,,, and Lz. So, for a 2 0, m 2 1, 

yeE, B~(8x.92)~~ and y~r, let 

WO,, = W*,+m, 

C&Y; B) = W(W..i>Za,r, . . . . ~,,,,Z,,,)EBI~~}(Y), 
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and 

G(Y;m = ~,{(~,,S,,..., Ym,&JEB}. 

Also, let P,,, be the Prokhorov metric for distributions on (B x 3)“‘. The analogue of 

condition (I) is: 

(I’) There exists a Markov random walk satisfying (Kl)-(K4) for which 

&?IC&Jll, Lz( W,;. )] -+ 0 in probability as a -+ co 

for each m 2 1. 

Theorem 3. Assume conditions (I’), (II), and (III). Then ( W,, R,) has joint limiting 

distribution K, i.e., ( W,O, ZrO - a) has the same limiting distribution as ( YcO, &a - a). 

4. Proofs 

4.1. Proof of Theorem 2 

In this section, all the conditions of Theorem 2 are in force. A bit more notation will 

facilitate the proof. For 0 < b < co, let Kz represent the distribution of the overshoot 

of the Markov random walk over b (i.e.), 

K,*(y;A) = P,{S,, - beA} 

forA~~andy~E.Also,for~~OandO~b~co,letO=u,~~~~~u,=brepresent 

a partition of [0, b] satisfying max 1 c is p(Vi - Ui- 1) < E and p < (b + 1)/c. 

It is useful to focus attention on uniform behavior on compact sets. The following 

lemma records two useful facts in this regard. 

Lemma 1. Fix E > 0, b0 < oc), and a compact set C c E. Then there exist b E(bo, co) and 

m E N such that 

PICK,*&.), K%_,,(y;.)] < &Vi I p and YEC; and 

P,(Si I3bt/i I m} < EvyEC. 

(a) 

(b) 

Proof. Fix E, bO, and C. Existence of a number b such that (a) holds is an immediate 

consequence of the uniform convergence on compacts established in Theorem 1. For 

(b), define, for each y E E, 

J, = J,(&,b) = inf{j: P,{S, I 3b + 1 Vi I j} < e/2}. 

Then J, < cc a.e. [P,] since (by (K2)) P,(S, -+ ~0) = 1. Let 0 < 6 < ~/2. By (K4), if 

Y’ E NY; dy, @I, then 

Py.{ Si I 3b Vi < Jy} I Py{ Si 2 3b + 6 Vi I Jy} + 6 

< P,{Si I 3b + 1 Vi I Jy} + 6 

< E/2 + s < F. 
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Now {B(Y;~Y; 6)): YW . is an open cover of C, so there are yr, . . . ,y, such that 

IJf=r E(yi; q(_Yi,6)) 2 C. Let m = max{ JY,, . . . ,JYI}, and fix ~EC. 

Then y E B(yi; q(yi, 6)) for some i I 1. By the above, 

P,{Si I 3b Vi I m} 

IP,{SiI3b+lViIm}+6<&. 0 

A useful decomposition is presented next. For fixed e,b, partition 

0 = 00 < ... <v,=b,r>4s,m,a,CcEandi=l,..., p,define 

Ci=Ci(U)={W~EC}n{Vi_~<R,IVi}, 

A~={~E[Wm:zj12b-Vi-EVj<kandz~>2b-vi-~+r+E3kIm}, 

B~={z~[W~:zj12b-vi-~Vj<kand~,>2b-vi+r3k_<m} 

u {zE[W~: zj _< 2b - vi-l Vj I m}. 

Note that Ci E Y, and that the sets Ai, Bi, and Ci satisfy 

Cin{(Zc7,1,.*.3 Z,,,)EA~} c Ci n (~o+~~ > r} 

E Ci n {(Zo,lr ...,Za,m)EBi). 

(These inclusions are easy to verify if the time is taken to sort out the notation.) 

The next result is the key to the proof of Theorem 2. 

Proposition 1. Fix E > 0, b,, < co, and a compact set C E E. Let 0 < b < co be as in 

Lemma 1. Then there is an a, < co such that for all a 2 a,, and r > 4~, 

s 
Kt(Wa;(r + 4s,w))dP - 4~ 

(W,EC, R, 5 b) 

I ${W,EC,&,_<b,R,+Zb >r} 

I 

s 

Kt( W,;(r - 4qco))dP’ + 4s. 
(W~EC, R, c b) 

Proof. Fix E > 0, r > 48, 0 < b0 < co, and a compact set C. Let b and m be as in 

Lemma 1. Let a0 be so large that 

Thenfora>aoandi=l,...,p, 

PCCin{(Z,,,,...,Z,,,)EBi}] = s La.m(~; Bi)d$(y) c, 
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Also,foryeCandi=l,..., p, 

Lz(y; Bf) I L$(y; {ZE KY’: zj < 2b - Vi- 1 + E Vj < k and 

zk > 2b - Vi - E + r 3k I m}) 

+ CXY; ( - oo,3bl”) 

I KS-,,_,+,(y; (r - 36 a)) + E 

I K,*(y;(r - 48, co)) + 28, 

where the second and third inequalities follow from Lemma 1. 

So for a 2 ao, 

~{W,EGR,IR,+Z~ >r)=P fi (Cin{Ro+zb > r)) 
i=l 

I P (!j (Cin{(Z,,,,...,Z,,,)EBi}) 

i i=l I 

[K:( W,;(r - 4.5, co)) + 2.51 dP + - 
btl 

2 (W,~C,Ra<b)~if(~;(~- 4Ga))dP + 3,s. 
s 

This proves the second inequality in the proposition; the first may be established by 

a similar argument. q 

The proof of Theorem 2 now may be completed. Fix 6 > 0. It is enough to show 

that there is a b < co such that for all r > 6, 

limsupP{R,+,b > r} 5 K(E x (r - 6, co)) + 6 
a+m 

and 

To do this, let e < 6/7. Then there is a b. < cc and a compact set C c E such that 

P(R, 5 bo} I 1 - E, 

P{W,EC} 2 l-E, 

and 

IKt(y;(r - 4s, co)) - K(E x (r - 48, co))1 I E, 

for all b 2 bo, a 2 0, and ~EC. 
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For these values of E, be, and C, let b and m be the constants guaranteed by Lemma 

1. Then, by Proposition 1, there is an a0 < cc such that for all a 2 ao, 

P{R, I b, R.+B > r, W,EC} < 
s 

(w,ec,R,<b) MK;(r - 4~ co))dP + 4s. 

So for a r ao, 

p{Ro+26 > r} I P{Ro+2b > r, R, I b} + 6 

I P{ Ra+zb >r,R,Ib, W,EC}+~& 

_< 
s 

K$( W,; (r - 46, cc))dP + 6~ 
(tf',~C.R,cb) 

I K(E x (r - 4a, co)) + 7.5 < K(E x (r - 6, co)) + 6. 

This establishes the inequality for lim sup. The companion inequality for lim inf may 

be proved similarly. 

4.2. Proof of Theorem 3 

The proof of Theorem 3 parallels that of Theorem 2; whatever intuition there was in 

the proof of Theorem 2 is, however, disguised by the complication of working with 

joint distributions. 

The partitions 0 = u. < ... < up = b and the sets Ci are defined precisely as in the 

last section. The sets Bi, however, must be redefined. For i = 1, . . . ,p, A E E x [0, co), 

and m 2 1, define 

Bi = {(w,z): Zj 5 2b - Ui_1 Vj < k, (W,,Z, + Ui - 2b)EA”, 3k I m} 

U {(w,z): Zj 2 2b - Ui-l Vj I m}. 

It is easy to verify that (as long as A n (E x [0, E]) = 4) 

Cin{(Wa+Zb,Ra+zb )EA} s Cin{(K,l~Z~,l~~..~ Wo.mrZ~.m)EBi}~ 

Let Kt represent the joint distribution of Y,, and S,, - b, i.e., for ye E and 

AE~X~[O,cc), 

E(Y;A) = Py{(Yr,,S,. - U)EA}. 

Lemma 1 is restated in this context. The proof is entirely analogous. 

Lemma 2. Fix e > 0, b. < co, and a compact set C c E. Then there exist bE(bo, 00) 

and m E IV such that 

pCK,*(y;.),K~,-,,(y;.)l < &Vi I P and YEC, 

PCG(Y;.),K(.)I < EVYEC, and 

P,{SiI3bViim}<sVYEC. 

64 
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Proposition 2. Fix E > 0, 0 < b,, < co, and a compact set C. Let 0 < b < co be as in 

Lemma 2. Then there is an a0 < co such that for all a 2 a, and A ~8 x %9[0, co) 

satisfying A n (E x [O, 481) = 4, 

P(KEC,R, i b,(W,+sRo+zb)EA) I K(A6”) + 6.5. 

Again the proof is analogous to the proof of Proposition 1 and will be omitted. 

To prove Theorem 3, fix 6 > 0 and let E < 6/8. Find 0 < b0 < co and a compact set 

C satisfying 

B{R,<b,,j>l-sIp{W,EC) Va20. 

Let b and m be given by Lemma 2. For A G E x [O, oo), define 

A(E) = A n (E x (4qoo)). By Proposition 2, there is an a, < cc such that for all a 2 a0 

and AIS~XW[O,~), 

~{(K+,,>R,+,,)EA} 

= ~((Wa+zb,Ra+z,+ )EA\A(E)) + ~((K+B,R,+,,)EA(E)} 

I P{(R,+,, s4&} + P{W,EC,R,I b,(W,+,,,R,+,,)EA(&)} + 2~ 

I P{(R,+26 < 4.5) + K(A6”) + 6~ + 2s 

I P{(R,+z, Id} + K(A6) + 6. 

So for every 6 > 0 and AE& x S?[O, co), 

limsupP{(W,,R,)EA} < limsupP(R, I S} + K(A6) + 6. 
c-m c+co 

(13) 

Now specialize to closed sets. If F is closed, then Fb 1 F as fi 10. Also, by Theorem 2, 

limsup,,, P{R, < S} ~K(Ex[O,6])-tOas6~O.So,let6~Oin(13)toobtain 

limsupP{(W,,R,)EF} <_ K(F) for all closed F, 
c-oj 

which, by the Portmanteau theorem (Billingsley, 1968, pp. 11-12) proves Theorem 3. 

5. Comments on the conditions 

In this section some comments will be made about the conditions of Theorems 

2 and 3. The following material (in particular Section 5.1) will make clear the 

connection between those results and the more traditional nonlinear renewal theory 

for perturbed processes. Throughout, it is assumed that {S,} is a Markov random 

walk satisfying conditions (Kl)-(K4). 

5.1. Condition (I) 

It is shown that the following conditions on ( t,} are sufficient for Condition (I) to 

hold in the setting of a perturbed Markov random walk: there exists a /j~(t, l] for 
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a-B t, - ff --+ 0 in P,-probability for each y 
i I 

as a + co; (14) 
cc 

lim sup PY{ max IL+k -5,12&}=0 VE>O, vy; (15) 
6-tOflZl k I dnp 

for each n 2 1, 5, is a( Yo, . . . , Y,, So, $,)-measurable. (16) 

Notice that these conditions are weaker than those assumed in Melfi (1992) and Su 

(1990). 

Proposition 3. Assume that Z, = S, + &,, with 

satisfies condition (I). 

{ <,,} satisfying (14)-(16). Then {Z,> 

Proof. For a 2 0 and k 2 1, define 

$,k = s,a+k - &. , 

5o.k = &,+k - tt,> 

and 

Then z,,k = &,k + tla,k, and (by the strong Markov property and (16)) 

W(S,. 1, . . . 9 S,,m)l~J = c!xY,;.) 

for all m 2 1 and a 2 0. 

Thus for BE 23’” and 6 > 0, 

P{(Z,,1, ... > Z,m)~Bl~a} I P{(s,,,,...,s,,,)~B~l~~} 

+ piyy; it;%ki 2 slga) 

= G(Y,;B’) + p’f-‘;; it.,kt 2 lima}, 

i.e., 

But (14) and (15) imply that toTk + 0 in P,-probability as a + co, so letting a + cc and 

then 6 -+ 0 in the above proves Proposition 3. 0 

5.2. Tightness of {R,} 

In this and the following section, assume that ( W,}, {S,], and {Z,} are defined on 

the same probability space. It is shown below that if &, = Z, - S, satisfies 

{ &,: a 2 0} is tight (17) 
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and 

{L: a 2 0} is tight, (18) 

then {R,} is tight. As an example, if { Z, > is a perturbed random walk as in Section 5.1, 

conditions (17) and (18) will hold if { 5.) is tight. 

Lemma 3. Assume (17) and (18). Then for every E > 0, there is a b < 00 such that for all 

a 2 0, 

(9 P{T~_* < ta) 2 1 -s; and 

(ii) P{t, I z,+*} 2 1 - E. 

Proof. Fix E > 0. The assumptions guarantee b < co for which P{ C,, > b} 

< E > P { 5,. < - b > for all a 2 0. To prove (i), note that since Zta > a, 

P{S,O I a - b} = P{Z1l I a -b + <,.} 

I P(4,. > b} + p{Z,. 5 a - b + L.,5,, I b} 

<E+O=E 

P(& I a-b} = lP{Z,a 5 a - b + &,} 

I P(L, > b} + P’(Z,. I a-b + &,,5,, I b} 

<&+O=&. 

Now use the relation {Sta > a - b} G {s.-~ 5 t.} to get P{z,-~ I to} 2 IF’{&. > 

a - b} 2 1 - E, proving (i). 

For (ii), since S,. + b > a + b, 

P{Z Co+b 5 a> = P{%+, s a - rv,+,> 

s P{( za+b I - b} + pp( %a+, 5 a - L+vLo+b ’ - b) 

-C&+0=&. 

Now use the relation {Z,.+, > a} E (t. I z,+~} to get 

P(2, I t.+b) 2 P{Z,.+, > a} 2 1 - E. 0 

The preceding lemma shows that, with high probability, t, is between To_* and 

r,+b for every a. The next result shows that, with high probability, r,+b and r,_b are 

not too far apart. 

Proposition 4. For any jxed b < co, { (z,+b - 5,-b): a 2 0} is tight. 

Proof. For a > 0 and k 2 1, define 

Sa,k = &a+, - &a. 
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Let b < co. Then for r > 0, {(z,+~ - z,_~) > r} 5 {Sa_b,lr 5 2b Vk I r}. Fix E > 0, 

and let C be a compact set for which P ( Yr, E C} < s/2 for all a 2 0. By Lemma 1, 

there is an IE N for which 

L,*(y; ( - co, 2b]‘) < s/2 Vy E C. 

So for any a 2 0, 

P{(L+* - To-b) > I> 2 P{Sa-b,k < 2b Vk I r} 

= 
s 

P{So-b,k 2 2b Vk I rlP&,}@ 

= L,*(Y_;( - co,2b]‘)dP 
s 

5 E/2 + E/2 = E, 

where the final inequality follows by integrating separately over the sets { Y,,_ b E C} 

and ( Yr,_,#C}. 0 

Proposition 5. Zf (17) and (18) are true, then { R,: a 2 O> is tight. 

Proof. For a 2 0, 

R, = Z,= - a = Sea + t,, - a 

= (S& - a) + (S,. - Sr,) + L 

The first and third terms on the right are tight (by the Markov renewal theorem and 

(16)), so it is only necessary to consider the second term. 

For this term, note that 

The last term is bounded above by ) S,. - a I + I ST._, - (a - b )I + b, which is tight. 

Next, for R > 0, 

p{ IS,. - &.I > RI 5 p{ 1% - &.I > R, z,-b 5 t, 5 z,+b, (?,+b - To-b) 5 “‘7 

Y ro_bEC} + IFD{h < ?-b} 

+ p{ t, > ?z+b} + p{(za+b -&b) >m} + p{ y,a-,$c}. 

For fixed E > 0, use Lemma 3 to find a b < cc for which the second and third terms 

on the right are less than ~/5 for all Q, then use the Markov renewal theorem to find 

a compact set C such that the last term is less than s/5 for all a, then use 

Proposition 4 to find an m for which the fourth term on the right is less than 

s/5 for all a. 

It only remains to show that for this b, C, and m, there is an R < co for which the 

first term on the right is less than s/5 for all a. This follows from condition (K4) by an 

argument like that in Lemma l(b). The details are omitted. 0 
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5.3. Tightness of { WO} 

Condition (III) of Theorems 2 and 3 requires that { WO} = { Wta: a 2 0) is tight. 

Some simple conditions which imply that { WO} is tight are 

(a) E is compact, 

(b) E = R and { WO} is L’-bounded, and 

(c) wtO - Y,, -5 0. 

Tightness of { WO} follows immediately from (a); from (b) by Chebyshev’s inequality, 

and from (c) by the Markov renewal theorem and Slutsky’s theorem. 

In general, tightness of { Wa} may be difficult to verify. The following gives some 

conditions under which { Wa} may be shown to be tight, and also serves to indicate the 

sort of argument which may be used to prove tightness. 

It is natural to assume that { Wn} and { Yn} are asymptotically close in some sense, 

since often { Wn} will be a perturbed version of { Yn}. The following result shows how 

to exploit such closeness to prove tightness of { Wa}. 

Lemma 4. If W, - Y,, “2 0 and if ( Yto: a 2 0} is tight, then { Wta: a 2 0) is tight. 

Proof. Since the convergence of W, - Y, is as., n may be replaced by t, to get 

Wta - Yl, “3 0. This, along with tightness of { Y,,}, proves the result. 0 

Thus the key in this setting is tightness of { Yl,}. It may be shown that this follows 

from (17) and (18) above. The proof is almost the same as for tightness of {R,} given 

above. 

Proposition 6. Assume that W, - Y,, “2 0, and that (17) and (18) hold. Then { Wa} is 

tight. 

Proof. All that remains is to show that (17) and (18) imply that ( Yta: a 2 O> is tight. 

ForKE~,u20,b<co,CE~,andmE~, 

p{ Yt14K} I W Ytn#K, Yr,_bEC, r,-b I t, I r,+b, (r,+b - r,-b) I m} 

+ P{r, > r,+b) + P{t0 < r,-*) + P{ Y*_,$C) 

+ P{(G+~ - r& > m}. 

Lemma 3 and Proposition 4 serve to bound the latter four terms, as in the proof of 

Proposition 5. Then (K4) is used to bound the first term on the right. The details are 

omitted. 0 

6. A machine breakdown example 

One application of Theorems 2 and 3 is the study of breakdown times of machines 

which have some control or adjustment made at the time of repair. This section is 

devoted to the investigation of such a process, where the distribution of the time 
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between breakdowns depends on an underlying Markov chain and the machine 

setting. 

Specifically, let {E,: II E Z} be i.i.d. uniform [ - 3, t-1, and let Y, = (3) Y,_ 1 + E,, 

n 2 1. Let V, be a stochastic process with values in some measurable space (M,&), 

and let {T,: n 2 l} be a real-valued stochastic process satisfying 

~(T,I(Yi:i20},{~:j#n},{Vj:j<n})= 
if Y,-- Y,_, >O 

0, if Y,-Y,-,50 

for A E 9 and n 2 1. Here V, represents some measurement (for example, quantity of 

output) at time n; 0, = 0,(( Yi, Ti, I(}: i < n) represents the machine setting at time n; 

and { T,,: n 2 1) is the sequence of times between breakdown. 

It is assumed that all of the above random elements are defined on the same 

probability space (r, &‘, P), and that 0 = lim,,, 0, exists a.e. [P]. It is also assumed 

that {F,, G,: ZE rW} is a family of distributions with common compact support, that 

F, -+ FB and G, -+ GB in total variation as z -+ 8, and that F, and G0 are absolutely 

continuous with respect to Lebesgue measure. Let /z = & and v = v0 be the means of 

Fe and Go, respectively, and assume that 2 + v > 0. 

Let {X,: n 2 l} satisfy 

~(X"l{Yi:i~O},{Xj:jZnS)= 

FB if Y,- Y,_, >O, 
G 

0 
if y _ y_ 1o 

n nl 3 

and define 

s, = xi + ... + x, 

and 

Z, = T, + ... + T,. 

Then {S,} is a Markov random walk, and it is shown next that { Y,, S,, Z,} satisfies 

the conditions of Theorem 3, so that ( Y,,, Z,= - a) converges in distribution as a -+ co. 

First, conditions (Kl)-(K4) must be verified for the process { Y,,X,}. It is well 

known that ( Y,,} satisfies condition (Kl) with 4 given by 

(see Nummelin, 1984, for example). 

A short excursion into the theory of Markov chains facilitates the verification of 

(K2). Sources of further information include Breiman (1968) and Revuz (1984). First 

a few definitions are needed. Let {in: n 2 0) be a Markov chain with state space (D, 9) 

and transition function N(. ;). Also, for x E D, let P, represent the unique probability 

measure pertaining to paths of {c,} starting at x. 

Definition. {(I,: n 2 0} is said to be indecomposnble if and only if there do not exist two 

disjoint, nonempty subsets A and B in 9 for which 

N(x,A)= 1 VXEA and N(x,B)= 1 VXEB. 
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Definition. {i,,: n 2 0} is said to be Harris recurrent (with respect to the measure m) if 

and only if for every A E 2 with m(A) > 0, 

Px{ f la(cJ= 2)= 1 VXED. 
n=l 

The Markov chain of interest is defined next. Define D G [ - 1, 11’ by 

D= {(x,y)t[- l,I,2:yt[$~]I. 

Let N be the transition function on (D,SB) given by N((x,y), C) = Q(y; C,), where 

C, = {x: (x,y)~C}, and let iO,iI, . . . be a Markov chain with transition function N. 

Then for yE[ - 1, l] and AE~‘, 

P,{C(Y& ~,)~(~I~Y,)~...I~~} = e&J,iI,...)~~}, 

where ny is the measure on 53 defined by 

vy(A x B) = IA(Y) s Q(y;dz). 
B 

Lemma 5. The measure 7c, dejined by 

n(C) = $(dx)Q(x; dy), cog> 
s c 

is stationary for { [,}. 

Proof. The lemma follows from the fact that d, is stationary for { Y,,) and Proposition 

6.6 of Breiman (1968). 

The Markov chain { [,> is clearly indecomposable. This, along with Lemma 5, 

implies that rc is the unique stationary distribution and that if co has distribution n, 

then { [,} is ergodic (see Breiman, 1968, Theorem 7.16). 

Let m denote Lebesgue measure on 9. 

Proposition 7. The Markov chain {[,,} is Harris recurrent with respect to m. 

Proof. (This proof is similar to an argument in Belisle et al. (1990).) First note that 

n and m are mutually absolutely continuous. Thus rc has a strictly positive density, say 

g, with respect to m. Also note that for any x E D, N2(x; .) is absolutely continuous 

with respect to m. Fix A E 22. By the ergodicity of { [,), 
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Thus 

P, lim ‘“fl la([i) = n(A) = 1 for a.e. x[m], 
n+m n i=. 

i.e., m(D,,) = 1, where 

lim l”ir la(ii) = n(A) . 
n+m n i=l 

To prove Harris recurrence, it is necessary to know that D, = D. So fix XED. Then 

= lim L ‘it la(ii) = X(A) 
n+a) n i=. 

= N2(x; Do)= N'(x;D)= 1, 

where the penultimate equality follows from the fact that N2(x; .) is absolutely 

continuous with respect to m. 

Thus 

~_~ ~~zl lA(ii)= n(A) 
1-O 

Now let A satisfy m(A) > 0. Then n(A) > 0, so that the above relation implies that 

px f 1AKi) = a 
i 

=I VXED, 
i=l 

i.e., { [,} is Harris recurrent with respect to m. 0 

Condition (K2) is now easy to verify. By the law of large 

recurrent Markov chains (Revuz, 1984, p. 140), for each A E 9, 

t ,$ IA(L)-’ n(A) a.e. CPA vx. 
I-1 

Proposition 8. 

numbers for Harris 

(19) 

dill l,{Yi - Yi_ 1 > 0} --f 3U.S. 
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Proof. Let A = ((x,y)~D: y > x}. Then 

n(A) = P4{ Yr > Y,,} = 
s 

PZ{ Yr > z}4(dz) 

= 
s 

($ - +z)4(dz) = 4, 

since the mean of 4 is zero. Thus 

PZ 
[ 

iii1 liyi- yi-l >O}+&] 
= p,z [ i i$I lA(ii)+ +] 

= px t .$ lA(ii)++ s [ vZ(dx) = I 

1-l 1 
by (19). 

For condition (K2), first note that 

J?vXl = AP,j Yl > y} + VP,{ Y1 2 yj 

= tw - y) + $v(l + y). 

Therefore, 

= t 
s 

(jb + v - iy + vy)#(dy) = +(i + v), 

since the mean of 4 is zero. 

So, letting XT, XI, . . . be i.i.d. F. and X:,X:, . . . be i.i.d. Ge, 

by Proposition 4 and the strong law of large numbers. 

Condition (K3) is clearly true. For (K4), more notation is needed. For y E [ - 1, l] 

and n 2 1, let 

‘“(Y) = (t)“y + i (+)“-k&k, 
k=l 

and let S,(y) be defined as S, is above, but with Y,,(y) in place of Y,. Then the 

PO-distribution of ( Y,,(y), S,(y)} is equal to the P,-distribution of { Y,,,S,}. 



V.F. Mel$/Stochastic Processes and their Applications 54 (1994) 71-93 91 

Now 

n-l 

ynb) - y”-l(Y) = - (t)“y + ‘%I + 1 [(i)“-k - (+)n-l-k]&k 
k=l 

n-l 

= -(+)“y+&,-_: 1 (+)“-l-k&k 

k=l 

= -(+)“y+ E,, -3 i ($)“-k&k&l 

k=2 

= - (3)“~ + J,, say. 

p0{1W, CD,[ yk(y) - yk-l(y)] # I(,, a,[ yk(z) - ykm l(z)] 3k 2 I} < 6. (20) 

Proof. Fix 6 > 0 and y > 0. (The argument for y 5 0 is analogous.) Then for k 2 1 

and z > 0, 

p0{1,0, m,[ yk(y) - yk-l(y)] # lC0, m,[ yk(z) - yk-l(z)]j 

= PO { yk(y) - yk- 1 (d > 0, yk(z) - yk- 1 (z) 2 o} 

+ PO{ yk(y) - yk-l(Y) 5 0, yk(z) - yk-l(z) > O) 

= f?~{(1/2~)y < Jk 5 (l/zk)Z} + PO((1/2k)Z -=C Jk 5 (l/pk)y} 

One of the quantities on the right will be zero, depending on whether y > z or y < z. 

For simplicity, assume that y < z. 

It may be shown that for each k, the density of Jk is bounded by 1. Thus 

LHS(20) 5 f Po{(1/2k)y < Jk I (1/2k)~} 
k=l 

I f (1/2k)(z - y) -c 6, 

k=l 

whenever (z - y) < 6. For y > z, a similar argument shows that LHS(20) < 6 when- 

ever (y - z) < min{y,6}. (Taking the minimum of 6 and y avoids problems with 

z < 0.) 0 

To verify (K4), let y E [ - 1, l] and 6 > 0. Let q = q(y, 6) be as in Lemma 6, and for 

zE[- ljl], define E(ytz)=il~O,mj[Yk(y)- yk-l(y)]= lcO,mJ[yk(z)- yk-l(z)] 

Vk 2 l}. Now fix z E B(y; q) and note that by Lemma 6, PO { (E(y, z))‘> < 6. So for any 

f: (C - 1,ll x co, CO)P + R 

= s kf(Yo(~)>So(~), Y,(Y)>~I(Y), . ..) -fs(Yo(z),So(z), Y,(z),Sl(z), . ..)ldP. 

IO+SsupIf(, 
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where the inequality follows by integrating separately over E(y, z) and E(y, z)E. This 

establishes one inequality in (K4); the other follows by the same argument. 

Conditions (II) and (III) are clearly true. 

Lemma 7. The process ( Y,,, Z,} satisfies (I’). 

Proof. For (x, y) E [ - 1, l]* and K E 0, let 

H,(. kY) = 
F,(.) if y > x, 

G,(.) if y I x. 

Fix E > 0 and m 2 1. Let 6 > 0 be so small that if 1~ - 01 < 6, then the total variation 

distance between H,( ‘1 x, y) and He(. 1 x, y) is less than s/m for all (x, y) E [ - 1, l]*. Fix 

a y E r for which 8,(y) -+ 8, and let n be so large that lo,(y) - 81 < 6. Then for 

AE(C - l,ll’X(O,~))“, 

= Q(Yn(y);dY1)...Q(y~-l;dy,) s A 

xF on+I(yj(dz1 I Y,(y),y,)...Fe,+,(y)(dz, - ~-1 IY~-I,Y~) 

I AQ(Y,(~),d~l)...Q(~,-l;d~~) s 
xF ,v,,+Iw(dz1 I Yn(y),~,).~.CFo(dzrn - ~-1 ly,-i,ym) + &/ml. 

Iterating this relation shows that 

I Q(Y,(y);dyl)...Q(y,-1;dy,) s A 

x Fo(dz1 I Yn(~Xy,)...Fddz, - L-I lym-t,ym) + m&/m 

= t;( Y,(r); A) + c. 

Thus 

PL-~((Y”+1~Z”,1,..., Yn+m, z,,,)E.l~“},L~(Y,;.)l “2 0, 

from which the lemma follows. q 

Theorem 4. The pair ( Y,., Z,= - a) has joint limiting distribution k. In particular, 

limP{Z,a-a>r}=& (s - r)P,{S,,Eds}. 
a-rm 
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