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Abstract

We discuss the role of dissipation in the explosive spinodal decomposition scenario of hadron production during t
transition after a high-energy heavy ion collision. We use a Langevin description inspired by microscopic nonequilibriu
theory results to perform real-time lattice simulations of the behavior of the chiral fields. We show that the effect of dis
can be dramatic. Analytic results for the short-time dynamics are also presented.
 2005 Elsevier B.V.
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Lattice QCD results[1] suggest that strongly inte
acting matter at sufficiently high temperature und
goes a phase transition (or a crossover) to a decon
quark–gluon plasma (QGP). Despite the difficulties
identifying clear signatures of a phase transition in
trarelativistic heavy ion collisions, recent data from t
experiments at BNL-RHIC clearly point to the obse
vation of a new state of matter[2].

Depending on the nature of the QCD phase tra
tion, the process of phase conversion in the expan
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QGP generated in a high-energy heavy-ion collis
may proceed in a number of different ways. In gene
there is a competition between the mechanisms of
cleation and spinodal decomposition[3]. Results from
CERN-SPS and BNL-RHIC feature what has be
calledsudden hadronization [4] or explosive behavior
[5] in the hadronization process of the expanding Q
and seem to favor a fast (explosive) spinodal dec
position. Recently, possible signatures of this beha
in high-energy nuclear collisions were proposed[6].

Most theoretical attempts to understand this beh
ior focused on the rapid changes in the effective
tential of QCD near the critical temperature such
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predicted, for instance, by the Polyakov loop mo
[7], which would be followed by a very fast spin
odal decomposition process[5]. In this case, one ob
serves a nearly instantaneous decay of the Polya
loop condensate, producing an exploding source o
ons as well as large RMS spatial fluctuations in
chiral fields. Previous studies using low-energy c
ral effective models to investigate how nucleation ra
compare to the time scale of expansion of the plas
also found very likely that most of the system wou
reach the spinodal region and then undergo an ex
sive phase conversion[8–13].

Therefore, both experiment and theory seem to s
gest that a QGP generated in a high-energy he
ion collision expands and cools down so fast t
the processes of chiral symmetry break-down
hadronization can be described within the framew
of an effective potential that is quenched into the sp
odal region, where long-wavelength fluctuations gr
with no barrier to overcome. This leads to what
will refer to as the explosive spinodal decomposit
scenario. However, we will argue that even if the s
tem quickly reaches this unstable region there is
no guarantee that it will explode. To asses the dif
ent possibilities one has to study the time evolution
the order parameter of the transition after the syste
quenched beyond the mean-field analysis, in orde
incorporate the effects from dissipation, and ask h
they could modify the explosive decomposition p
ture. In particular, dissipation effects have proved to
important in the context of disoriented chiral conde
sate (DCC) formation in heavy ion collisions[14–18].

In this Letter we present an exploratory inves
gation of the effects of dissipation in the explos
spinodal decomposition scenario of hadron prod
tion during the QCD transition after a high-ener
heavy ion collision. We use a Langevin descripti
inspired by microscopic nonequilibrium field theo
results to perform real-time lattice simulations for t
behavior of the inhomogeneous chiral fields. We sh
that the effects of dissipation can be dramatic even
very conservative assumptions. Analytic results for
short-time dynamics are also presented and discus

For the sake of simplicity, we consider an in
nite system that is quenched to the spinodal and
evolves with a fixed effective potential. We belie
that the subsequent evolution of the effective pot
tial should not bring deep modifications to our gene
.

conclusions once the system has already reache
unstable spinodal region. On the other hand, effe
from the finite size of the plasma will most likely pla
a nontrivial role[19]. Both effects will be taken into
account in a future publication[20].

In what follows, we consider the real-time dynam
ics of chiral symmetry breakdown of a QGP crea
in a high-energy heavy ion collision. We assume t
the system is characterized by a coarse-grained
energy

(1)F(φ,T ) =
∫

d3x

[
1

2
(∇φ)2 + Ueff(φ,T )

]
,

where Ueff(φ,T ) is an effective potential of th
Landau–Ginzburg form whose coefficients depe
on the temperature, andφ(�x, t) is a real scalar field
which plays the role of an order parameter that isnot
conserved, such as the chiral condensate. To m
the mechanism of chiral symmetry breaking found
QCD, we adopt the linearσ -model coupled to quarks
whose standard Lagrangian can be found, for insta
in Ref. [11]. This approach is widely used in the lite
ature and its specificities imply no major limitations
our main results.

Quarks can be treated as fast-moving modes
integrated out using a classical approximation for
chiral field, yielding the effective potentialUeff(φ,T )

that is shown inFig. 1. The pion directions play no
major role in the process of phase conversion we

Fig. 1. Fit of the effective potential in the sigma direction for diffe
ent temperatures in the region of interest for the phase conver
Tsp< T < Tc.
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considering, so we concentrate on the sigma direc
represented by the fieldφ (see Ref.[11] for details). In
Fig. 1, we showUeff(φ,T ) for a few values of temper
ature. The critical temperature isTc ≈ 123 MeV and
the spinodal is reached atTsp ≈ 108 MeV. In order to
simplify the numerics and to compare with analytic
sults for the short-time behavior of the order parame
evolution, we work with a fit ofUeff(φ) by a polyno-
mial of sixth degree whose coefficients depend on
temperature. Such a polynomial fit is an almost per
representation ofUeff, and it is the fit that is displaye
in Fig. 1.

In our analysis, the evolution of the order parame
φ(�x, t) and its approach to equilibrium will be dictate
by a Langevin equation of the form

(2)�φ + Γ
∂φ

∂t
+ U ′

eff(φ) = ξ(�x, t),

where Γ , which can be seen as a response co
cient that defines a time scale for the system and
codes the intensity of dissipation, will be taken to
a function of temperature only,Γ = Γ (T ). The func-
tion ξ(�x, t) represents a stochastic (noise) force,
sumed Gaussian and white, so that〈ξ(�x, t)〉 = 0 and
〈ξ(�x, t)ξ(�x′, t ′)〉 = 2Γ T δ(�x − �x′)δ(t − t ′).

Eq. (2) could, in principle, be obtained from a m
croscopic field-theoretic description of the real-tim
nonequilibrium dynamics of the chiral field at fini
temperature. This procedure was implemented in
case of aλφ4 scalar field theory in Refs.[15,21].
The noise and dissipation terms, which originate fr
quantum fluctuations, are engendered by either s
interactions of the chiral field or coupling to one
more different fields that play the role of a heat ba
provided one incorporates higher order terms in
computation of the effective equation of motion f
φ(�x, t). In fact, it is well known that one has to g
up to two-loop corrections in order to pick up imag
nary parts in the self-energy associated with visco
and dissipation. Self-interactions of the chiral field,
well as its interactions with quarks and anti-quar
justify the inclusion of a dissipation and a noise te
such as done in Eq.(2) in the framework adopted i
this Letter. The same is true for an approach that a
includes the dynamics of the Polyakov loop cond
sate coupled to the chiral field and, as we will arg
the inclusion of this effect could dramatically modi
the results of Refs.[5,7].
The main physics behindΓ is the decay of theφ
field and as such one would think thatΓ would be
significant only in regions whereφ oscillates rapidly.
However, this needs not be the case in general.
procedure detailed in Refs.[15,21] leads to an ef-
fective equation of motion that is richer in structu
and much more complicated than(2). There is no
a priori reason for the dissipation functionΓ be so
simple and the noise be Gaussian and white. In g
eral, one obtains a complicated dissipation kernel
simplifies to a multiplicative dissipation term whic
depends quadratically on the amplitude of the fi
as η1(T )φ2(�x, t)φ̇(�x, t), whereη1 is determined by
imaginary terms of the effective action forφ and de-
pends weakly (logaritmically) on the coupling(s). T
fluctuation–dissipation theorem implies, then, that
noise term will also contain a multiplicative contrib
tion of the formφ(�x, t)ξ1(�x, t), and be in general non
Markovian. The white-noise limit is reobtained on
in the limit of very high temperature. Nevertheless,
sumingΓ to be a linear function of the temperature
a reasonable first approximation, as can be seen
the results presented in[15,16]. We will comment fur-
ther on this point later on when discussing our resu

For the sake of simplicity, we adopt the simple a
proximate form of Eq.(2) for a phenomenological de
scription of the dissipative evolution of the expectat
value of the sigma field. Although assumedly simp
this analysis allows for a clear distinction and co
parison of the roles played by dissipation and the (
plosive) spinodal instability in the spinodal decomp
sition scenario of hadron production during the QC
transition after a high-energy heavy ion collision. T
simple form of Eq.(2) is also convenient for a com
parison of our numerical results to (linear) analy
estimates in the region of short-time evolution to m
sure the effect of nonlinearities.

In our numerical simulations we solve Eq.(2) on
a cubic space-like lattice with 643 sites under peri
odic boundary conditions, with a lattice spacing
a = 0.91 fm. We use a semi-implicit finite-differenc
scheme for the time evolution and a fast Fourier tra
form for the spatial dependence[22]. Temperature is
fixed to the spinodal valueTsp ≈ 108 MeV. We per-
form several runs starting from different random init
configurations around the inflexion point ofUeff which
happens atφ0 ≈ 0.162T and then average the resu
from the different initial configurations. For time ste
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of 	t = 0.001/T the results become independent
the lattice spacing once it is smaller thana � 1 fm.

Before presenting the results of the simulations
is instructive first to analyze the short-time behav
of the solution. One can linearize the equation aro
the inflexion pointφ0 substitutingφ by φ = φ′ +φ0 in
Eq. (2) and average over the noise. For short tim
φ′ is small and the cubic and higher-order terms
Ueff(φ

′) can be neglected, so that the equation forφ′
becomes linear. Since the equation is linear, the a
age over the noise can be done formally. An anal
form for the short-time solution of the linear equati
can be found by using the polynomial fit ofUeff,

(3)Ueff =
6∑

n=0

an φn,

which leads to following equation for the average〈φ′〉

(4)�〈φ′〉 + Γ
∂〈φ′〉
∂t

+ A〈φ′〉 = 0,

whereA = 2a2+6a3φ0+12a4φ
2
0 +20a5φ

3
0 +30a6φ

4
0.

Note that the constant term inU ′
eff does not contribute

to Eq.(4) since the average over noise of a constan
zero. One can write the solution of Eq.(4) in terms of
the Fourier transform〈φ̃′(k, t)〉 of 〈φ′(x, t)〉 as

(5)
〈
φ̃′(k, t ≈ 0)

〉 = C1e
λ1(k)t + C2e

−λ2(k)t ,

whereC1 andC2 are integration constants andλ1(k)

andλ2(k) are the roots of the quadratic equation

(6)λ2(k) + Γ λ(k) + (
k2 − |A|) = 0,

where we used the fact thatA < 0 in our case. From
this one sees that for short wavelengths, such
k2 � Γ 2/4+|A|, we have (complex conjugate) ima
inary roots and the solution oscillatory. For long wav
lengths, such thatk2 < Γ 2/4+|A|, we have real roots
and there is an exponential growth of the Fourier co
ponents. This exponential growth yields the explos
spinodal decomposition.

Two other limits are also instructive. One is t
strong dissipation limit of largeΓ , such that the firs
order time derivative dominates over the second o
one. In this case, the short-time solution to Eq.(4) is
given by

(7)
〈
φ̃′(k, t ≈ 0)

〉 = C0e
−(k2−|A|)t/Γ .
In this case, one sees that short wavelengths
k2 > |A| are absorbed by the system, while those w
k2 < |A| explode exponentially. Of course, as tim
increases,φ′ increases and the linear equation is
valid anymore and the fully nonlinear equation has
be solved. The other interesting limit is the one w
Γ = 0, i.e., no dissipation. We will discuss this lim
in connection with the solution of the full nonline
equation in the following.

We show results of simulations for three differe
values of the dissipation coefficient, namelyΓ = 0,
2T and 4T . It can be argued that the response
efficient has the formΓ (T ) ≈ 2T/b, whereb is a
number of order one to first approximation[23]. The
cases considered provide a conservative band ar
the valueΓ (T ) ≈ 2T to illustrate the effect of dissipa
tion.

In Fig. 2 we compare the solutions of the fu
nonlinear equation with the solution of the lineariz
equation forΓ/T = 2. Fig. 2(a) shows that the roll
down for theO(φ′2) potential is slower than for th
full Ueff potential. This is obviously due to the fa
that the falloff of fullUeff is steeper that of theO(φ′2)
for smallφ′. At short times, smaller thant = 5 fm−1,
one sees that both solutions are very close to e
other. One interesting aspect of the solutions show
Fig. 2(b) is that the exponential explosion of the line
solution happens much later than the explosion of
full nonlinear equation. This seems at first sight ve
counterintuitive since, from the discussion above,
would expect an early-time explosion of the soluti
of linearized solution. This does not happen here
cause theO(φ′2) potential is much shallower than th
full Ueff for smallφ′.

In Fig. 3 we show the average value ofφ in units
of its vacuum value,φvac, as a function of time for
the three different values ofΓ mentioned above. In
absence of dissipation, the solution (dotted line) is
viously oscillatory, with an explosive early-time b
havior. The effect of dissipation is of retarding t
exponential growth, as shown by the solid and das
lines in the figure.

The results clearly show that even for a very co
servative value of dissipation,Γ = 2T , the effect can
be dramatic. For this value ofΓ , dissipation retards
the time evolution ofφ towards its vacuum value i
∼ 100% compared to the case withΓ = 0. The impor-
tant point to be noted here is that for expansion tim
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Fig. 2. (a) The full nonlinear (solid line) and theO(φ′2) effective
potential (dashed line). (b) The corresponding average valuesφ

in units of its vacuum valueφvac as a function of time forΓ/T = 2.

of the order of 5 fm−1, which in of the order of the
time scales for the RHIC collisions, there might
not enough time for the onset of the spinodal exp
sion[5].

Of course, effects brought about by the expans
of the plasma[5] and by its finite size[19], as well as
a more realistic treatment of dissipation from the m
croscopic point of view, will bring corrections to th
picture. For instance, the authors of Ref.[5] consider
a Hubble expansion of the system which introdu
a dissipation-like term to the evolution equation
the formH(∂φ/∂τ), whereτ is the proper time and
H = 1/r is the expansion rate. Therefore, for a ve
rapid expansion, corrections due to dissipation, s
Fig. 3. Average value of the chiral fieldφ in units of its vacuum
valueφvac as a function of time forΓ/T = 0,2,4.

as discussed here, should play a comparatively less
portant role. Also, dissipation being mainly the res
of the decay of theφ field, common wisdom would
suggest that its effect should be less important at s
times, when the field is slowly starting to roll down th
potential. However, as discussed earlier,Γ depends,
in general, onφ—in a λφ4 model it is proportional to
φ2—and it is not a priori clear what will be the effe
of such a dependence on the short-time evolution
the system. These issues will be addressed in a fu
publication[20].
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