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Can dissipation prevent explosive decomposition in high-energy
heavy ion collisions?
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Abstract

We discuss the role of dissipation in the explosive spinodal decomposition scenario of hadron production during the chiral
transition after a high-energy heavy ion collision. We use a Langevin description inspired by microscopic nonequilibrium field
theory results to perform real-time lattice simulations of the behavior of the chiral fields. We show that the effect of dissipation
can be dramatic. Analytic results for the short-time dynamics are also presented.
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Lattice QCD result§1] suggest that strongly inter- QGP generated in a high-energy heavy-ion collision
acting matter at sufficiently high temperature under- may proceed in a number of different ways. In general,
goes a phase transition (or a crossover) to a deconfinedthere is a competition between the mechanisms of nu-
quark—gluon plasma (QGP). Despite the difficulties in cleation and spinodal decompositif®}. Results from
identifying clear signatures of a phase transition in ul- CERN-SPS and BNL-RHIC feature what has been
trarelativistic heavy ion collisions, recent data from the calledsudden hadronization [4] or explosive behavior
experiments at BNL-RHIC clearly point to the obser- [5] in the hadronization process of the expanding QGP
vation of a new state of matt2]. and seem to favor a fast (explosive) spinodal decom-

Depending on the nature of the QCD phase transi- position. Recently, possible signatures of this behavior
tion, the process of phase conversion in the expandingin high-energy nuclear collisions were propo$ed

Most theoretical attempts to understand this behav-
ior focused on the rapid changes in the effective po-
 E-mail address gkrein@ift.unesp.b(G. Krein). tential of QCD near the critical temperature such as
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predicted, for instance, by the Polyakov loop model conclusions once the system has already reached the
[7], which would be followed by a very fast spin- unstable spinodal region. On the other hand, effects
odal decomposition proce$s]. In this case, one ob-  from the finite size of the plasma will most likely play
serves a nearly instantaneous decay of the Polyakova nontrivial role[19]. Both effects will be taken into
loop condensate, producing an exploding source of pi- account in a future publicatidi20].

ons as well as large RMS spatial fluctuations in the  In what follows, we consider the real-time dynam-
chiral fields. Previous studies using low-energy chi- ics of chiral symmetry breakdown of a QGP created
ral effective models to investigate how nucleation rates in a high-energy heavy ion collision. We assume that
compare to the time scale of expansion of the plasmathe system is characterized by a coarse-grained free
also found very likely that most of the system would energy

reach the spinodal region and then undergo an explo-

sive phase conversidB-13].

Therefore, both experiment and theory seem to sug-

1
F($,T)= f d3x[§<V¢)2+ Ueit(9, T)], 1

gest that a QGP generated in a high-energy heavywhere Uet(¢, T) is an effective potential of the

ion collision expands and cools down so fast that
the processes of chiral symmetry break-down and
hadronization can be described within the framework
of an effective potential that is quenched into the spin-
odal region, where long-wavelength fluctuations grow
with no barrier to overcome. This leads to what we
will refer to as the explosive spinodal decomposition
scenario. However, we will argue that even if the sys-
tem quickly reaches this unstable region there is still
no guarantee that it will explode. To asses the differ-
ent possibilities one has to study the time evolution of

Landau—-Ginzburg form whose coefficients depend
on the temperature, angl(x, r) is a real scalar field
which plays the role of an order parameter thatds
conserved, such as the chiral condensate. To model
the mechanism of chiral symmetry breaking found in
QCD, we adopt the linear-model coupled to quarks,
whose standard Lagrangian can be found, for instance,
in Ref.[11]. This approach is widely used in the liter-
ature and its specificities imply no major limitations to
our main results.

Quarks can be treated as fast-moving modes and

the order parameter of the transition after the system is integrated out using a classical approximation for the
qguenched beyond the mean-field analysis, in order to chiral field, yielding the effective potentidles (¢, T)

incorporate the effects from dissipation, and ask how
they could modify the explosive decomposition pic-

ture. In particular, dissipation effects have proved to be
important in the context of disoriented chiral conden-
sate (DCC) formation in heavy ion collisiofis4—18]

In this Letter we present an exploratory investi-
gation of the effects of dissipation in the explosive
spinodal decomposition scenario of hadron produc-
tion during the QCD transition after a high-energy
heavy ion collision. We use a Langevin description
inspired by microscopic nonequilibrium field theory
results to perform real-time lattice simulations for the
behavior of the inhomogeneous chiral fields. We show
that the effects of dissipation can be dramatic even for
very conservative assumptions. Analytic results for the

short-time dynamics are also presented and discussed. . L . |

For the sake of simplicity, we consider an infi-

nite system that is quenched to the spinodal and then

evolves with a fixed effective potential. We believe
that the subsequent evolution of the effective poten-
tial should not bring deep modifications to our general

that is shown inFig. 1L The pion directions play no
major role in the process of phase conversion we are

-------- T =100 MeV
——T=108 MeV
T =124 MeV
- T =130 MeV
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Fig. 1. Fit of the effective potential in the sigma direction for differ-
ent temperatures in the region of interest for the phase conversion,
Tsp <T< Tc.
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considering, so we concentrate on the sigma direction  The main physics behind" is the decay of the
represented by the fieltl (see Ref[11] for details). In field and as such one would think that would be
Fig. 1, we showUesi(¢, T) for a few values of temper-  significant only in regions wher¢ oscillates rapidly.
ature. The critical temperature % ~ 123 MeV and However, this needs not be the case in general. The
the spinodal is reached &ty ~ 108 MeV. In order to procedure detailed in Ref$15,21] leads to an ef-
simplify the numerics and to compare with analytic re- fective equation of motion that is richer in structure
sults for the short-time behavior of the order parameter and much more complicated thg@). There is no
evolution, we work with a fit ofUet(¢) by a polyno- a priori reason for the dissipation functidn be so
mial of sixth degree whose coefficients depend on the simple and the noise be Gaussian and white. In gen-
temperature. Such a polynomial fit is an almost perfect eral, one obtains a complicated dissipation kernel that
representation a/er, and it is the fit that is displayed  simplifies to a multiplicative dissipation term which
in Fig. L depends quadratically on the amplitude of the field
In our analysis, the evolution of the order parameter as n1(T)¢3(X, 1) (%, 1), wheren, is determined by
¢ (x, 1) and its approach to equilibrium will be dictated imaginary terms of the effective action fgrand de-

by a Langevin equation of the form pends weakly (logaritmically) on the coupling(s). The
fluctuation—dissipation theorem implies, then, that the
06 + 1"% + Ulg(p) = £(F, 1), (2) noise term will also contain a multiplicative contribu-
ot tion of the forme¢ (X, 1)£1(%, t), and be in general non-

where I, which can be seen as a response coeffi- Markovian. The white-noise limit is reobtained only
cient that defines a time scale for the system and en-in the limit of very high temperature. Nevertheless, as-
codes the intensity of dissipation, will be taken to be sumingI” to be a linear function of the temperature is
a function of temperature only; = I'(T'). The func- a reasonable first approximation, as can be seen from
tion &£(x, ) represents a stochastic (noise) force, as- the results presented h5,16] We will comment fur-
sumed Gaussian and white, so tliatx, 7)) = 0 and ther on this point later on when discussing our results.
(EG, DEX, 1)) =2I'TS(x —Xx)8(t —t'). For the sake of simplicity, we adopt the simple ap-
Eq. (2) could, in principle, be obtained from a mi-  proximate form of Eq(2) for a phenomenological de-
croscopic field-theoretic description of the real-time scription of the dissipative evolution of the expectation
nonequilibrium dynamics of the chiral field at finite value of the sigma field. Although assumedly simple,
temperature. This procedure was implemented in the this analysis allows for a clear distinction and com-
case of ar¢* scalar field theory in Refg[15,21] parison of the roles played by dissipation and the (ex
The noise and dissipation terms, which originate from plosive) spinodal instability in the spinodal decompo-
quantum fluctuations, are engendered by either self- sition scenario of hadron production during the QCD
interactions of the chiral field or coupling to one or transition after a high-energy heavy ion collision. The
more different fields that play the role of a heat bath, simple form of Eq.(2) is also convenient for a com-
provided one incorporates higher order terms in the parison of our numerical results to (linear) analytic
computation of the effective equation of motion for estimates in the region of short-time evolution to mea-
¢(x,1). In fact, it is well known that one has to go sure the effect of nonlinearities.
up to two-loop corrections in order to pick up imagi- In our numerical simulations we solve E) on
nary parts in the self-energy associated with viscosity a cubic space-like lattice with 84sites under peri-
and dissipation. Self-interactions of the chiral field, as odic boundary conditions, with a lattice spacing of
well as its interactions with quarks and anti-quarks, a = 0.91 fm. We use a semi-implicit finite-difference
justify the inclusion of a dissipation and a noise term scheme for the time evolution and a fast Fourier trans-
such as done in Eq2) in the framework adopted in ~ form for the spatial dependen2?]. Temperature is
this Letter. The same is true for an approach that also fixed to the spinodal valu&sp ~ 108 MeV. We per-
includes the dynamics of the Polyakov loop conden- form several runs starting from different random initial
sate coupled to the chiral field and, as we will argue, configurations around the inflexion point@§s which
the inclusion of this effect could dramatically modify happens ap ~ 0.162T" and then average the results
the results of Refd5,7]. from the different initial configurations. For time steps
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of Ar =0.001/T the results become independent of

the lattice spacing once it is smaller than- 1 fm.
Before presenting the results of the simulations, it

is instructive first to analyze the short-time behavior
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In this case, one sees that short wavelengths with
k2 > |A| are absorbed by the system, while those with
k2 < |A| explode exponentially. Of course, as time

increasesg’ increases and the linear equation is not

of the solution. One can linearize the equation around valid anymore and the fully nonlinear equation has to

the inflexion pointpg substitutingp by ¢ = ¢’ + ¢g in

Eq. (2) and average over the noise. For short times,
¢’ is small and the cubic and higher-order terms in
Ueii(¢") can be neglected, so that the equationdor

becomes linear. Since the equation is linear, the aver-

age over the noise can be done formally. An analytic
form for the short-time solution of the linear equation
can be found by using the polynomial fit &y,

6
Ueﬁ:Zan¢nv (3)
n=0

which leads to following equation for the averagg)

(")
ot )

whereA = 2a; +6azdo + 12a4¢2 +20as¢3 + 30asdy.
Note that the constant term lﬂéﬁ does not contribute

(@) + I +A(¢') =0,

be solved. The other interesting limit is the one with
I’ =0, i.e., no dissipation. We will discuss this limit
in connection with the solution of the full nonlinear
equation in the following.

We show results of simulations for three different
values of the dissipation coefficient, namdly= 0,
2T and 4r. It can be argued that the response co-
efficient has the formlI"(T) ~ 2T /b, whereb is a
number of order one to first approximati@d]. The
cases considered provide a conservative band around
the valuel’ (T) ~ 2T to illustrate the effect of dissipa-
tion.

In Fig. 2 we compare the solutions of the full,
nonlinear equation with the solution of the linearized
equation forl"/T = 2. Fig. 2(a) shows that the roll-
down for theO(¢’?) potential is slower than for the
full Uet potential. This is obviously due to the fact
that the falloff of full Ueff is steeper that of thé (¢’2)

to Eq.(4) since the average over noise of a constant is for smallg’. At short times, smaller than=5 fm~*,

zero. One can write the solution of Eg,) in terms of
the Fourier transfornig’(k, 1)) of (¢'(x, t)) as

(¢'(k,t~0)= CrM 01 4 Cpe—rar (5)

whereC; andC» are integration constants and(k)
andxz(k) are the roots of the quadratic equation
32(k) + Iak) + (K2 — |A]) =0, (6)

where we used the fact thdt < O in our case. From

this one sees that for short wavelengths, such that

k?>> I'?/4+|A|, we have (complex conjugate) imag-
inary roots and the solution oscillatory. For long wave-
lengths, such tha&t? < I'2/4+ | A|, we have real roots
and there is an exponential growth of the Fourier com-
ponents. This exponential growth yields the explosive
spinodal decomposition.

Two other limits are also instructive. One is the
strong dissipation limit of large™, such that the first

one sees that both solutions are very close to each
other. One interesting aspect of the solutions shown in
Fig. 2b) is that the exponential explosion of the linear
solution happens much later than the explosion of the
full nonlinear equation. This seems at first sight very
counterintuitive since, from the discussion above, one
would expect an early-time explosion of the solution
of linearized solution. This does not happen here be-
cause th&(¢’?) potential is much shallower than the
full Uess for smallg’.

In Fig. 3we show the average value ¢fin units
of its vacuum valuegyac, as a function of time for
the three different values af mentioned above. In
absence of dissipation, the solution (dotted line) is ob-
viously oscillatory, with an explosive early-time be-
havior. The effect of dissipation is of retarding the
exponential growth, as shown by the solid and dashed
lines in the figure.

The results clearly show that even for a very con-

order time derivative dominates over the second order servative value of dissipatiod; = 27, the effect can

one. In this case, the short-time solution to E4).is
given by

(¢'(k,t~0) = Coe—KE—14DI/T @)

be dramatic. For this value af', dissipation retards
the time evolution ofp towards its vacuum value in
~ 100% compared to the case with= 0. The impor-
tant point to be noted here is that for expansion times
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Fig. 2. (a) The full nonlinear (solid line) and ti@(¢'2) effective
potential (dashed line). (b) The corresponding average valugs of
in units of its vacuum valugyac as a function of time for" /T = 2.

of the order of 5 fiT!, which in of the order of the
time scales for the RHIC collisions, there might be
not enough time for the onset of the spinodal explo-
sion[5].

Of course, effects brought about by the expansion
of the plasmd5] and by its finite siz¢19], as well as
a more realistic treatment of dissipation from the mi-
croscopic point of view, will bring corrections to this
picture. For instance, the authors of Rl consider
a Hubble expansion of the system which introduces
a dissipation-like term to the evolution equation of
the form H(d¢/dt), wheret is the proper time and
H = 1/r is the expansion rate. Therefore, for a very

rapid expansion, corrections due to dissipation, such

185

| T=0
| —r=2T
________ r=4T *

<0>/6,.

I TR R 1 1 T R
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tifm™]

Fig. 3. Average value of the chiral fielg in units of its vacuum
valuegyac as a function of time for"/T =0, 2, 4.

as discussed here, should play a comparatively less im-
portant role. Also, dissipation being mainly the result
of the decay of thep field, common wisdom would
suggest that its effect should be less important at short
times, when the field is slowly starting to roll down the
potential. However, as discussed earliErdepends,

in general, ornp—in a A¢* model it is proportional to
¢%—and it is not a priori clear what will be the effect
of such a dependence on the short-time evolution of
the system. These issues will be addressed in a future
publication[20].
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