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Abstract

There is a variety of reasons for the installation of a monitoring system in a manufacturing process. Hole-making mainly drilling is one of the
most common operation used and usually is carried out as one of the last steps in the production process. Holes in rotating turbine and
compressor disks are among the most highly-stressed geometric features of jet-engines. For manufacturers of jet-engine components it is
important to assess the quality of these at an early stage in the manufacturing of the product. The use of commercially available monitoring
systems in hole-making has been successful in individual cases so far. Major reasons for this lack of effectiveness are the large material
variations within one production batch, the overall difficult machinability of the materials applied, the small lot size which makes “teach-in”
operations ineffective. The paper describes a design of adaptive control system for drilling process of aerospace critical components. The
proposed system is directed towards the real time control of selected surface roughness parameter. Proposed model for monitoring and control
consists of two subsystems: surface roughness prediction subsystem and decision making subsystem. The artificial neural network was
employed to calculate surface roughness parameters throughout process monitoring indices such as torque M,, force F,, power P and cutting
conditions feed f, cutting speed v.. Due to ability to predict nonlinear behaviour and quickly calculate future values, artificial neural networks
are ideal for both predictive and adaptive controllers. Test samples were nickel based super alloy Udimet 720 used in discs for gas turbine
engines. The experimental results show that predicted values of surface roughness are very close to the values measured experimentally.
Advantages of the proposed subsystem for surface roughness prediction are simplicity, computational power and speed, capacity and ability to
learn from system changes as they become.
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Nomenclature SI surface integrity
f feed rate [mm] .
Ve cutting speed [m/min] 1. Introduction

Fz  cutting force [N]

Mz  torque [Nm]

P power consumption [W]

Ra  surface roughness parameter [um]|

Ray, limitation of the roughness parameter [um]
Rapcq...predicted roughness parameter [um]

VB tool flank wear [pm]

CC cutting conditions

PM process monitoring

There is a variety of reasons for the installation of a
monitoring system in a manufacturing process. Hole-making
mainly drilling is one of the most common operation used and
usually is carried out as one of the last steps in the production
process in highly stressed aero engine components. Holes in
rotating turbine and compressor discs belong to the most
highly stressed geometric features of aero engines. Udimet
720 is well-known as a difficult to cut material used in
aerospace industry in applications such as turbine discs.
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Consequently, it is important for engine manufacturers to
assess the quality of these holes in an early stage of the
manufacturing chain and not as late as in final inspection [1-
3]. Surface quality is an important performance to evaluate the
productivity of machine tools as well as machined components
[4]. Many researchers have studied surface roughness
parameters during machining processes with different
approaches in recent years [5-7]. Due to ability to predict
nonlinear behaviour and quickly calculate future values,
neural networks are ideal for both predictive and adaptive
controllers [8]. Pontes et. al. [9] employed Radial Basis
Function (RBF) neural network for predicting of surface
roughness in hard turning. The authors concluded that RBF
networks can be an effective, efficient and affordable
alternative for surface roughness in hard turning. Asilturk [10]
et. al. used multiple regression model and Artificial Neural
Network (ANN) for modelling and prediction of surface
roughness when turning AISI 1040 steel. They developed
prediction model for surface roughness in a term of cutting
speed, feed rate and depth of cut using back-propagation
training algorithms. Upadhyay and Mehta [11] proposed
multiple regression and ANN models for in-process prediction
of surface roughness in turning titanium alloy Ti-6Al-4V
using feed rate, depth of cut, radial and tangential vibrations
signals. Developed models can predict the surface roughness
within reasonable accuracy making them suitable for in
process prediction.

Objective of this study is to present the purpose of
Adaptive Control System (ACS) for drilling process of nickel
based super alloy Udimet 720 that will recognize the surface
roughness of workpiece during machining and be able to adapt
the operation to obtain surface with required values of Ra. The
general requirement on surface roughness finished bolt holes
in turbine discs is given Ra < 1,6 pm [3].

2. Concept of closed loop adaptive control system for
drilling process Accent — ACC

The Accent — ACC scheme illustrated in Fig. 1 represents
Adaptive Control Constrain System (ACCS). This system
enables to adjust cutting conditions (feed and/or speed) to
maintain the measured variables below their constraint limit
values. ACC controls the machining parameters to maintain
the maximum working conditions during the time — varying
machining process. The artificial neural network (ANN) was
employed to calculate surface roughness parameters (SI)
throughout process monitoring (PM) indices and cutting
conditions (CC).

Initial CC
IMulti sensor| Unit for
o monitoring sgnal | PM
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Fig. 1. Coneept of closed loop ACCENT - ACC system.

3. Experimental work and data acquisition system

Results from experimental measurements performed at the
Laboratoire Génie de Production — ENIT Tarbes - France [12]
were chosen as input parameters for training and testing of
neural networks, which were used as an alternative way to
estimate the surface roughness in real time when machining.
Forged nickel alloy Udimet 720 with diameter of 80 mm was
used as testing material. This type of material is mostly used
in the manufacture of aircraft turbine discs. Tested samples
have undergone the same heat treatment used as a real disc.
Employed cutting tool was coated (TiAIN) carbide tool with
removable cutting head of diameter 15.5 mm. Length of
drilled holes was 37 mm and were pre-bored with drill of 13
mm. The experiments were conducted on 3-axis vertical
milling machine tool with NC Siemens 840D controller.
Analog data was collected for the different cutting parameters
by using sensors. Spindle power sensor Watt—Pilote was used
to measure the power consumption for each setting of
machining operations. Force measurements were realized by
using Kistler piezo-dynamometer for 4 component
measurement (Fx, Fy, Fz, Mz) type 9272. Variable cutting
conditions have been selected according to aerospace
components producers’ recommendations and are listed in
Table 1.

3.1 Artificial Neural Network for surface roughness (Ra)
prediction subsystem

Constructive learning method has been used for design the
proper structure of ANN. Learning process starts from the
simplest to more complex on trial and error basis. The multi —
layered feed forward ANN shown in Fig. 2 with back
propagation Levenberg-Marquardt (LM) training algorithm
was employed for prediction of surface roughness in drilling

nickel based super alloy Udimet 720.

HN 1 |
b '-._\

Fig. 2. Developed structure of ANN prediction model.
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Table 1. Experimental conditions and results from drilling.

Trial Cutting conditions Process monitoring signals Measured variables
number f [mm/rev] v [m/min] SD Mz SDP SD Fz VB [mm] Ra [pum]
1 19 0.1 0.06 273 111.60 60.00 0.57
2 19 0.25 0.14 8.02 327.80 198.30 2.81
3 25 0.2 0.14 5.03 270.40 181.30 1.41
4 25 0.15 0.08 3.02 162.30 104.20 1.27
5 25 0.1 0.05 249 133.90 79.00 0.95
6 30 0.1 0.13 1.83 118.30 80.00 0.92
7 30 0.15 0.53 239 154.10 123.20 0.92
8 30 0.2 0.28 4.68 302.00 154.10 0.88
9 30 0.05 0.12 1.82 117.50 83.50 1
10 15 0.25 0.14 5.38 173.50 132.20 0.97
11 15 0.2 0.08 2.76 89.10 84.70 1.99
12 15 0.15 0.08 3.06 98.60 65.90 0.94
13 15 0.1 0.09 2.88 92.80 74.20 0.49
14 19 0.1 0.10 3.09 126.17 66.63 0.4
15 22 0.125 0.13 295 139.60 100.10 1.4
16 22 0.175 0.10 386 182.40 124.70 1.46
17 19 0.2 0.10 285 116.68 114.44 0.92
18 25 0.1 0.17 2.08 111.86 132.73 0.76
19 22 02 0.10 4.51 21340 133.20 1.08
20 22 0.15 0.11 318 150.40 11830 1.13
21 22 0.1 0.54 3.28 155.20 59.10 0.56
22 19 0.2 0.09 243 99.50 81.50 0.89
23 19 0.2 0.09 3.88 158.40 117.80 1.24
24 25 0.1 0.13 3.00 161.00 94.20 0.98
25 19 0.1 0.13 1.37 55.93 81.02 0.43
26 19 0.2 0.15 7.44 303.90 179.40 1.24
27 22 0.15 0.12 384 181.91 163.00 1.13
28 19 0.1 0.04 276 112.58 77.80 0.39
29 15 0.2 0.11 5.69 183.68 123.73 1.5
30 22 0.15 0.21 443 209.75 169.80 1.09
31 15 0.2 0.14 498 160.72 103.92 1.19
32 19 0.1 0.07 1.70 69.40 95.90 0.59
33 19 0.1 0.09 1.56 63.82 81.28 0.39
34 19 0.1 0.12 1.90 77.48 76.90 0.37
35 22 0.1 0.11 1.99 94.10 64.90 117
36 22 0.1 0.11 1.53 72.49 86.48 0.71
37 22 0.1 0.12 1.91 90.37 81.73 0.59
38 22 0.15 0.06 277 130.90 113.00 1.09
39 22 0.15 0.09 2.97 140.67 122.77 0.98
40 22 0.15 0.14 293 138.67 126.06 0.93
41 15 0.1 0.07 1.98 63.70 51.60 0.6
42 15 0.1 0.11 1.26 40.59 66.20 0.37
43 15 0.1 0.12 1.34 43.08 66.70 0.38
The tangent of sigmoid function was used in the hidden Designed ANN architecture consists of 6 input

layer whereas the output layer had pure linear neuron. parameters (v, f, SD Fz, SD Mz, SD P, VB) and one output

Developed ANN consists of neurons divided into input parameter (Ra).

layer, output layer and hidden layer. The neurons between The structure of developed neural network in Fig. 2 is 6-

the layers are connected by links having synaptic weights. 12-1 (6 neurons in the input layer, 12 neurons in hidden
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Fig. 3. The error profile of surface roughness parameter Ra for training,
testing and validating patterns.

layer and 1 neuron in the output layer) [13].Total number of
experimental measured data (43) was divided into three data
sets for training, testing and validation. Modeling, training
and testing were realized by using Matlab Neural Network
toolbox. The trained neural network model is validated and
tested with regard to approximation property employing 4
random Ra values from experimental measurement trials
(referred to as test and validation data set). The results
predicted from ANN model are compared with
experimental measurements as illustrated in Fig. 3. As
shown in Fig. 4, there is very good correlation between
ANN prediction and experimental measurements. Therefore
it can be realized that the neural network presents a very
good performance and predicted values of Ra are in
accordance with those experimentally measured ones.
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Fig. 4. Correlation of all dataset for surface roughness Ra.

The correlation coefficient (R value) between the outputs
and targets is a measure of model accuracy. For designed
architecture of ANN for Ra prediction the value R for
training, validation and testing datasets was equal to 1, and
indicates excellent correlation. The R value for entire (all)
dataset is 0.9975 and it represents high level of correlation.

It can be concluded that designed and trained ANN has
high efficiency when predicting Ra by selected input
parameters It can be seen from Fig. 3 that there is a strong
relationship between the predictor variables (v, f, SD F,,
SD M,, SD P, VB) and response variable (Ra). Comparing
measured and predicted Ra values the highest percentage
difference 9.47% occurred in pattern no. 15.
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Fig. 5 Proposed model of ACCENT - ACC system for drilling process.
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The correlation coefficient (R value) between the outputs
and targets is a measure of model accuracy. For designed
architecture of ANN for Ra prediction the value R for
training, validation and testing datasets was equal to 1, and
indicates excellent correlation. The R value for entire (all)
dataset is 0.9975 and it represents high level of correlation.
It can be concluded that designed and trained ANN has high
efficiency when predicting Ra by selected input parameters.
It can be seen from Fig. 3 that there is a strong relationship
between the predictor variables (v, f, SDF,, SD M,, SD P,
VB) and response variable (Ra). Comparing measured and
predicted Ra values the highest percentage difference
9.47% occurred in pattern no. 15.

4. Design of adaptive control system for drilling process
Accent — ACC

The proposed model of Accent — ACC system for
drilling nickel based super alloy Udimet 720 is shown in
Fig. 5. An ANN based in-process surface roughness
prediction subsystem predicts surface roughness (Rayq)
using process monitoring signals PM (force Fz, torque Mz,
power P), cutting conditions CC (feed f, cutting speed v.)
and parameter of tool wear (flank wear VB). In the first
stage of Ra prediction VB is determined by ANN model as
a function of CC and PM due to stability and costs issues of
the direct measurement methods. Output of VB calculation
is subsequently sent to the ANN unit as an additional input
to the ANN for Ra prediction. Then value of Ra,.q is sent to
decision unit. In decision making subsystem the predicted
surface roughness Ra,.y value is compared to the Ray,, and
thereafter ARa is determined according to Eq. 1.

ARa = Ry, - Ra g M

A comparison between Ray, and Raj.s determines
whether variance of surface roughness is permitted or
cutting conditions of drilling process are running out of the
validated process window earlier defined by aerospace
components producers. Based on deviation of surface
roughness during machining (ARa) in adaptation system the
feed rate is adjusted online to maintain surface roughness
within acceptable limits. Maximum permissible value of
surface roughness in drilling operation of highly stressed
aero engine components is Raj,, < 1.6 pm as was mentioned
above.

Conclusions

In this study, ACC system for drilling process when
machining nickel based super alloy Udimet 720 was
proposed. Artificial neural network based subsystem for
prediction of surface roughness parameter Ra by using
sensor fusion was designed and tested to verify its
prediction capability. The results show that predicted values
of Ra are very close to the values measured experimentally.
Advantages of the proposed subsystem for Ra prediction are
simplicity, computational power and speed, capacity and
ability to learn from system changes as they become. Future
research is aimed at development of decision making

subsystem and adaptive controller that will be able
adaptively adjust feed rate to maintain surface roughness
within acceptable limits. Results indicate possibility for
further research in this area as well as applying adaptive
control techniques to the manufacture. Benefits will be seen
in term of elimination of costly part re-validation, reduced
part manufacturing time, more consistent part quality and
tool usage optimization.
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