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Abstract This paper deals with a steady MHD forced convective flow of a viscous fluid of finite

depth in a saturated porous medium over a fixed horizontal channel with thermally insulated

and impermeable bottom wall in the presence of viscous dissipation and joule heating. The govern-

ing equations are solved in the closed form and the exact solutions are obtained for velocity and

temperature distributions when the temperatures on the fixed bottom and on the free surface are

prescribed. The expressions for flow rate, mean velocity, temperature, mean temperature, mean

mixed temperature in the flow region and the Nusselt number on the free surface have been

obtained. The cases of large and small values of porosity coefficients have been obtained as limiting

cases. Further, the cases of small depth (shallow fluid) and large depth (deep fluid) are also dis-

cussed. The results are presented and discussed with the help of graphs.
� 2013 Production and hosting by Elsevier B.V. on behalf of Ain Shams University.
1. Introduction

The study of fluid flow problems associated with heat transfer
is of widespread interest in almost all the fields of engineering
as well as in astrophysics, biology, biomedicine, meteorology,

physical chemistry, plasma physics, geophysics, oceanography
and scores of other disciplines. Hydromagnetic flows and heat
transfer in porous media have been considered extensively in
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Figure 1 Flow configuration.
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recent years due to their occurrence in several engineering pro-
cesses such as compact heat exchangers, metallurgy, casting,
filtration of liquid metals, cooling of nuclear reactors and fu-

sion control. Abdulla [1], investigated theoretically and exper-
imentally of composite materials under the influence of
thermal insulation. Ananda Reddy et al. [2], studied, thermal

diffusion and chemical reaction effects with simultaneous ther-
mal and mass diffusion in magneto hydrodynamic mixed con-
vection flow with Joule heating. Analysis of combined forced

and free flow in a vertical channel with viscous dissipation
and isothermal-isoflux boundary conditions was studied by
Barletta [3]. Effect of viscous dissipation on thermally develop-
ing forced convection duct flows was considered by Barletta

et al. [4]. Barletta and Nield [5,6], considered the combined
forced and free convective flow in a vertical porous channel
in the presence of viscous dissipation and pressure work. Buo-

nomo et al. [7] showed that for horizontal channels heated
from below, the buoyancy force can induce secondary flow
that enhances the heat transfer. The effect of local thermal

non-equilibrium on forced convection boundary layer flow
from a heated surface in porous media was studied by Celli
et al. [8]. Chamkha [9–11], investigated MHD free convection

from a vertical plate embedded in a thermally stratified porous
medium. He considered similarity solutions for the laminar
boundary layer equations describing steady hydromagnetic
two dimensional flows and heat transfer in a stationary electri-

cally conducting and heat generating fluid driven by a contin-
uously moving porous surface immersed in a fluid saturated
porous medium. Huang and Liu [12], experimentally studied

convective instability in the thermal entrance region of a hor-
izontal parallel plate channel heated from below. Effect of
thermal insulation of the bottom of a melting tank on mass ex-

change of the glass was considered by Kuznetsov et al. [13].
Liu and Gau [14], studied onset of secondary flow and
enhancement of heat transfer in horizontal convergent and

divergent channels heated from below. Joule heating in mag-
neto hydrodynamic flows in channels with thin conducting
walls was investigated by Mao et al. [15]. Steady flow of a vis-
cous fluid through a saturated porous medium of finite thick-

ness, impermeable and thermally insulated bottom and the
other side is stress free, at a constant temperature was studied
by Mounuddin and Pattabhiramacharyulu [16]. Parvin and

Hossain [17] investigated on the conjugate effect of Joule heat-
ing and magnetic field on combined convection in a Lid-driven
cavity with undulated bottom surface. Magneto hydrodynamic

mixed convection in a horizontal channel with an open cavity
was considered by Rahman et al. [18]. Ravikumar et al. [19],
studied MHD three dimensional Couette flow past a porous
plate with heat transfer. Mixed convection inside a lid-driven

parallelogram cavity with isoflux heating was considered by
Sumon et al. [20]. Natural convection boundary layer flow
over a continuously moving isothermal vertical surface im-

mersed in a thermally stratified medium has been investigated
by Takhar et al. [21]. Flow through a porous wall with convec-
tive acceleration was studied by Yamamoto and Yoshida [22].

MHD mixed convection from a vertical plate embedded in a
porous medium with a convective boundary condition was
investigated by Makinde and Aziz [24]. Makinde and Mhone

[25] considered on temporal stability analysis for hydromag-
netic flow in a channel filled with a saturated porous medium.
In his study Makinde [26] considered MHD boundary layer
flow and mass transfer past a vertical plate in a porous medium
with constant heat flux. Recently, MHD mixed Convection in
a lid-driven Cavity with various heat transfer effects was stud-
ied by Chatterjee et al. [27,28].

In spite of all the previous studies, MHD forced convective
viscous flow through porous medium in a horizontal channel
with insulated and impermeable bottom wall in the presence

of viscous dissipation and Joule heating has received little
attention. Motivated by the above referenced work and the
numerous possible industrial applications of the problem, we

have extended the work of Mounuddin and Pattabhiramach-
aryulu [16], in the presence of transverse magnetic field. Hence
we have considered, the steady forced convective MHD flow of
a viscous liquid of viscosity l and of finite depth H through a

porous medium of porosity coefficient ‘K*’ over a fixed imper-
meable, thermally insulated bottom. The flow is generated by a
constant horizontal pressure gradient parallel to the fixed bot-

tom. The momentum equation considered is the generalized
Darcy’s law proposed by Yamamoto and Iwamura [23], which
takes into account the convective acceleration and the Newto-

nian viscous stresses in addition to the classical Darcy force.
The basic equations of momentum and energy are solved to
give exact expressions for velocity and temperature distribu-

tions. Employing the flow rate, mean velocity, mean tempera-
ture, mean mixed temperature and the Nusselt number on the
free surface have been obtained in the following cases (i) high
porosity, (ii) low porosity, (iii) large depths (large H), and (iv)

shallow depths (small H).

2. Mathematical formulation

We have considered a steady viscous, electrically conducting,
forced convection flow through a saturated porous medium,
over a fixed horizontal, impermeable and thermally insulated

bottom of finite depth H. With reference to a rectangular
Cartesian co-ordinates system, with the origin ‘O’ on the bot-
tom, let X-axis is assumed to be in the direction of the flow and

Y-axis is taken perpendicular to it (see Fig. 1 for flow configu-
ration).The boundary at the bottom is represented as Y= 0
and the free surface as Y =H. The free surface is exposed to

the atmosphere of constant temperature T1. A transverse mag-
netic field of uniform strength B0 is applied perpendicular to
the flow. The flow is steady and the Grashof number is consid-
ered to be very small. The flow is due to a constant pressure

gradient at the mouth of the channel. The magnetic Reynolds
number is taken to be small enough to neglect the induced
magnetic field in comparison with the applied magnetic field.

Let the flow be characterized by a velocity U in the X direction.
The fluid is assumed to be ionized and thereby is an electrical
conductor. However with in any small but finite volume the
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number of particles with positive and negative charges is
nearly equal. Hence the total excess charge density and im-
posed electric field intensity is assumed to be zero. By consid-

ering the above assumptions the governing equations of the
flow are given below.

� @P
@X
þ l

d2U

dY2
� l

U

K�
� reB

2
0U ¼ 0 ð1Þ

qcU
@T

@X
¼ j

d2T

dY2
þ l

dU

dY

� �2

þ reB
2
0U

2 ð2Þ

The corresponding boundary conditions are given by

U ¼ 0;
dT

dY
¼ 0 at Y ¼ 0 ð3Þ

l
dU

dY
¼ 0;T ¼ T1 at Y ¼ H ð4Þ

where p is the pressure, l is the kinematic viscosity, X and Y
are the cartesian coordinates, K* is dimensional porous param-

eter, r is the electric conductivity, B0 is applied magnetic field,
q is the density, T is the dimensional temperature, His depth of
the channel, and j thermal conductivity.

Now we can employ the following dimensionless variables

and parameters:

X ¼ ax; Y ¼ ay; H ¼ ah; U ¼ lu
qa2

; P ¼ l2p

qa2
; M ¼ reB

2
0a

2

l
;

a2
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j
; K� ¼ a2

a2
;
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;
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� �
and

@T

@X
¼ ðT1 � T0Þ

a
c2 where c2 ¼

@h
@x

; ð5Þ

where M is the magnetic parameter, Pr is the Prandtl number,
Br is the Brinkman number, T1 and T0 are the temperatures at
bottom and upper surface respectively, and a is the permeabil-

ity parameter in dimensionless form.

3. Solution of the problem

In view of Eq. (5), Eqs. (1) and (2) reduce to the following
dimensionless form:

d2u

dy2
� a2

1u ¼ �c1 ð6Þ

d2h

dy2
¼ Pr a c2u� Br

du

dy

� �2

� BrM u2 ð7Þ

Together with the boundary conditions

u ¼ 0 and
dh
dy
¼ 0 at y ¼ 0 ð8Þ

du

dy
¼ 0; h ¼ 1 at y ¼ h ð9Þ

The solutions of these equations together with the related
boundary conditions yield the velocity distribution:
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� �
ð10Þ
and the temperature distribution:
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with the aid of the expressions for velocity and temperature
distribution, we now derive the following important character-
istics of the flow.

(i) The flow rate:

q ¼
Z h

0

udy ¼ c1
a2
1

h� tan a1h

a1

� �
ð12Þ

(ii) The mean of velocity:
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h
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(iii) The mean temperature:
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(iv) The mean mixed temperature:
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(v) Heat transfer coefficient Nusselt number on the free

surface:

Nu¼ dh
dy

����
y¼h
¼Prc1c2
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1
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þBrMc2
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4. Deductions

4.1. Fluid flow in a medium with high porosity

Flow for small values of a1 i.e. large values of the porosity
coefficient K* (neglecting powers of a higher than oða2

1Þ), we
get
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(i) Velocity:

uðyÞ ¼ c1
2hy� y2

2
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(ii) Mean velocity

�u ¼ 1

h

Z h

0
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2

15
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(iii) Temperature:
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(iv) Mean temperature:
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h
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(v) Mean mixed temperature:R h
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(vi) Nusselt number on the free surface:

dh
dy

����
y¼h
¼ Prc1c2h
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4.2. For large values of a1

For low porosity the asymptotic flow characteristics are: i.e,

for large a1 sinh a1h � ea1h

2
; cosh a1h � ea1h

2
; tanha1h � 1 and

neglecting the terms of o 1
a3
1

 �
, we get

(i) Velocity:

uðyÞ ¼ c1
a2
1

ð1� e�ayÞ ð23Þ

(ii) Mean velocity:

�u ¼ c1
a2
1

ð24Þ

(iii) Temperature:

hðyÞ ¼ 1þ Prc1c2
2a2

1

ðy2 � h2Þ ð25Þ
(iv) Mean temperature:
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(v) Mean mixed temperature:R h
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1
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(vi) Nusselt number on the free surface:

dh
dy

����
y¼h
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a2
1

h ð28Þ

4.3. Flow for large depth that is for large h

For large h sinh a1h � ea1h

2
; cosh a1h � ea1h

2
; tanha1h � 1 and

neglecting the terms of o 1
h3

 �
, we get
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where y� d ¼ 1
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p
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porosity effect on the
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with velocity c1
a2
1

¼ c1a
2

K�

This is the velocity when viscous term is not there i.e.
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(ii) Mean velocity:
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(iii) Temperature:
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(iv) Mean temperature:

�h ¼ 1þ Prc1c2
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(v) Mean mixed temperature:R h
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(vi) Nusselt number on the free surface:

dh
dy

����
y¼h
¼dh
dy

����
y¼h
¼ Prc1c2

a2
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h� tanh a1h

a1

� �
� BrMc2
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Figure 2 Effects of a on velocity.
4.4. Flow for shallow fluids that is ‘h’ small (retaining terms up
to the o(h2))

(i) Velocity:

uðyÞ ¼ c1
24
ðð24hy� 12y2Þ � a2

1ðy4 � 4hy3ÞÞ ð36Þ

(ii) Mean velocity:

�u ¼ 1

h

Z h

0

udy ¼ c1h
2

3
ð37Þ

(iii) Temperature:

hðyÞ¼ 1þPrc1c2
720

ð120hy3�30y4Þ�a2
1ðy6�6hy5Þ

� �
þBrc21

180
ð90h2y2þ60hy3�15y4Þ�a2

1ð15h
2y4�12hy5þ2y6Þ
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�BrMc21
20;160
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1ð�224h

2y6þ952hy7
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(iv) Mean temperature:

�h ¼ 1

h

Z h

0

hdy ¼ 1 ð39Þ

(v) Mean mixed temperature:R h

0
hudyR h

0
udy

¼ 1 ð40Þ

(vi) Nusselt number on the free surface: dh
dy

���
y¼h
¼! 0 as terms

of o(h3) are neglected.

5. Results and discussion

In order to determine the physical nature of the problem, the
results discussed in the previous section are presented through

graphs from Figs. 2–13. The effect of various physical param-
eters such as a, h,M, and Pr on the convective flow, the numer-
ical values of velocity and temperature fields when the

temperatures on the fixed bottom and on the free surface are
obtained. In addition to this, the flow rate, mean velocity,
mean temperature, mean mixed temperature in the flow region

and the Nusselt number on the free surface have been dis-
cussed. In Fig. 2 velocity profiles are displayed with the varia-
tions in porosity parameter a. From this figure, it is noticed

that the velocity of the fluid increases from bottom to free sur-
face with the increase in the values of the porosity parameter a.
physically, an increase in the permeability of porous medium
leads the rise in the flow of fluid through it. When the holes

of the porous medium become large, the resistance of the med-
ium may be neglected. So that velocity at the insulated bottom
is observed to be zero and gradually it increases as it reaches

the free surface and attains a maximum there in.
In Figs. 3–5, mean velocity profiles are displayed. From
these figures it is observed that the mean velocity of the fluid
increases with the increasing values of h and decreases with

the increase in the values of the porosity parameter a and mag-
netic parameter M as expected. This is due to the application
of a magnetic field to an electrically conducting fluid produces

a dragline force which causes reduction in the fluid velocity.
For the cases of small a and large a, it is clear that the mean
velocity increases with the increasing pressure gradient c1
and decreases for the increasing values of a. In the case of large
depths that is large ‘h’ mean velocity decreases with the
increasing values of the porosity parameter a and as well as
magnetic parameter M. In the absence of magnetic parameter

these results are in good agreement with the results of Moinud-
din and Pattabhiramacharyulu [16]. Effects of porosity param-
eter a and magnetic parameter M are studied on temperature

through Figs. 6 and 7. From these figures it is noticed that
the temperature of the fluid decreases with the increase in
the values of the porosity parameter a. This is due to the pres-

ence of Joule heating that reduces the temperature because of
free expansion which causes a decrease in temperature. In the
case of small a temperature of the flow region decreases with

the increasing values of a and for the case of large a tempera-
ture reaches unity. In the case of large depth that is large ‘h’
temperature of the fluid increases with increasing values of a
and for shallow depths that is small ‘h’, the temperature of

the fluid decreases with the increasing a’s above y = 0.07
and remains constant for y< 0.07 for different porosity
parameters a. But reverse effect is observed in the case of mag-

netic parameter M, because the magnetic field retards the
velocity of fluid and therefore temperature of the fluid is
higher.

Figs. 8 and 9, depict that effects of Prandtl number Pr and
magnetic parameter M on mean temperature distribution. It is
observed that the mean temperature decreases as the Prandtl

number ‘Pr’ increases. For smaller values of Prandtl number
‘Pr’ the mean temperature increases as ‘Pr’ increases above
y= 0.7. But this trend reverses for y < 0.7. For larger values
of a mean temperature reaches unity the boundary value on

the free surface. In the case of large depths that is large ‘h’
mean temperature decreases as ‘Pr’ increases. A similar effect
is noticed in the case of magnetic parameter M. Mean mixed

temperature distributions are presented in Figs. 10 and 11,
with the variations in magnetic parameter M and porosity



Figure 3 Effects of h on mean velocity.

Figure 4 Effects of M on mean velocity.

Figure 5 Effects of a on mean velocity.

Figure 6 Effects of a on temperature.

Figure 7 Effects of M on temperature.

Figure 8 Effects of Pr on mean temperature.
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parameter a. From these figures, it is noticed that mean mixed

temperature decreases with the increase in the values of the
porosity parameter a, and also magnetic parameter M. In
the case of small a, mean temperature increases with the in-

crease in the Prandtl number ‘Pr’. In the case of large a, mean
mixed temperature increases with the increase in the values of
a. In the case of large depth that is large ‘h’ mean mixed tem-

perature decrease with the increasing Prandtl number ‘Pr’ and
as well as magnetic parameter M. From Figs. 12 and 13, it is
observed that the heat transfer rate increases with the increase

in the values of the Prandtl number ‘Pr’. In the case of small a,
Nusselt number increases with increase in the values of the
Prandtl number ‘Pr’ and decreases for the increasing values
of a. In the case of large depths that are large ‘h’ the rate of

heat transfer Nusselt number increases with the increasing val-
ues of the Prandtl number ‘Pr’.



Figure 9 Effects of M on mean temperature.

Figure 10 Effects of M on mean mixed temperature.

Figure 12 Effects of a on Nusselt number.

Figure 11 Effects of a on mean mixed temperature.

Figure 13 Effect of Pr on Nusselt number.
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6. Concluding remarks

We have considered, the steady forced convective MHD

flow of a viscous liquid of viscosity l and of finite depth
H through a porous medium of porosity coefficient ‘K*’
over a fixed impermeable, thermally insulated bottom. The

flow is generated by a constant horizontal pressure gradient
parallel to the fixed bottom. The momentum equation con-
sidered is the generalized Darcy’s law proposed by Yama

Moto and Iwamura [23], which takes into account the con-
vective acceleration and the Newtonian viscous stresses in
addition to the classical Darcy force. The basic equations

of momentum and energy are solved to give exact expres-
sions for velocity and temperature distributions. Employing
the flow rate, mean velocity, mean temperature, mean mixed

temperature and the Nusselt number on the free surface
have been obtained in the following cases (i) high porosity
(ii) low porosity and (iii) Large depths (large H) and (iv)
Shallow depths (small H). In this study the following con-

clusions are made.

a. Velocity and mean velocity distributions are observed to

decrease with the increase in magnetic parameter M,
whereas it shows reverse effect in the case of h and
porosity parameter a.

b. Temperature distribution and mean temperature distri-
butions increase with the increasing values of M and
Pr, but reverse effect is seen in the case of a.

c. Mean temperature and mean mixed temperature distri-

butions decrease with an increase in M, a and as well
as Pr.

d. Nusselt number increases with increasing values of Pr

and decreases with an increase in a.



550 K.V.S. Raju et al.
Acknowledgements

we are very much thankful to the reviewers for their valuable

suggestions for further improvement of this manuscript. We
also thank Prof. S.V.K. Varma, Head, Department of Mathe-
matics, S.V. University, Tirupati, A.P, India, for his continu-
ous support and encouragement in the preparation of this

manuscript.

References

[1] Abdullah FA. Theoretical and experimental investigation of

natural composite materials as thermal insulation. Al-Qadisiya J

Eng Sci 2011;4(2):26–36.

[2] Ananda Reddy N, Varma SVK, Raju MC. Thermo diffusion and

chemical effects with simultaneous thermal and mass diffusion in

MHD mixed convection flow with ohmic heating. J Naval

Architect Mar Eng 2009;6:84–93.

[3] Barletta A. Analysis of combined forced and free flow in a vertical

channel with viscous dissipation and isothermal-isoflux boundary

conditions. ASME J Heat Transf 1999;121:349–56.

[4] Barletta A, Magyari E, Keller B. Effect of viscous dissipation on

thermally developing forced convection duct flows, ETH – Chair

of Physics of Buildings. Research Report 13/2005. Zürich,
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