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1. Introduction 

The concept of a well distributed sequence was introduced by E. HLAwKA 
[6] and independently by G. M. PETERSEN [10]. Every well distributed 
sequence is uniformly distributed; but whereas there are many uniformly 
distributed sequences (almost every sequence in a compact Hausdorff 
space satisfying the second axiom of countability and furnished with a 
normed Borel measure p, is p,-uniformly distributed, E. HLAwKA [6, 7]), 
the set of well distributed sequences is much smaller: it was shown by 
G. HELMBERG and A. B. PAALMAN-DE MIRANDA [5] that almost no 
sequence is well distributed. This leads to the question (posed in the 
colloquium on uniform distribution at the Mathematical Centre in Amster­
dam, 1963/1964) whether well distributed sequences exist at all in every 
compact Hausdorff space satisfying the second countability axiom and 
for every normed Borel measure (cf. also [1], where several results on 
almost well distributed sequences in such spaces are obtained under the 
explicit assumption that the space admits at least one well distributed 
sequence). 

In the present paper we show that the answer to this question is in the 
affirmative: if X is an arbitrary non-void compact Hausdorff space satis­
fying the second axiom of countability and if p, is an arbitrary normed 
Borel measure on X, there exists a p,-well distributed sequence in X. In 
the proof we apply (in a modified form) a construction used by the second 
author in [3] in order to show the existence of uniformly distributed 
sequences. 

It was pointed out to us by G. HELMBERG that our construction used 
for proving lemma 4 (the special case of a non-atomic measure) is closely 
related to the method used by P. R. HALMos in exhibiting the isomorphism 
between an arbitrary separable, non-atomic, normalized measure algebra 
and the measure algebra of the unit segment I ([2], section 41). In fact 
this isomorphism theorem can easily be derived from our results; but we 
need more than a correspondence between measure algebras: we need 

1) Report ZW 1964-009 of the Mathematical Centre, Amsterdam. 
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and construct a point-by-point map, in order to be able to lift a well­
distributed sequence from the unit interval (where they are known to 
exist, cf. [6, 10]) to the space under consideration. 

The authors thank G. HELMBERG for advice and encouragement. 

2. Notation 

By N we will denote the set of natural numbers. The unit segment 
[0, 1], furnished with its usual topology, is designated by I, while A is 
used for Lebesgue measure on I. 

If X is a compact Hausdorff space, and if fl is a Borel measure on X, 
the restriction of fl to a Borel subset of X will also be denoted by fl. 
Moreover, if cp is an integrable function on X, we write fl(cp) synonymously 
with f cp(x) dfl· 

x 
The interior of a subset A of a topological space is denoted by AO, its 

boundary by b(A). If X is a metric space and A C X, then d(A) designates 
the diameter of A measured in the given metric of X. 

If X is a set, then ~(X) will denote the power set (set of all subsets) 
of X. 

Every topological space X occurring in the sequel is assumed to be 
non-void. 

3. The special case of non-atomic Borel measures 

Definition 1. Let X be a compact metric space, fl a Borel measure 
on X, and s a positive real number. An (X, fl, s)-quasicover is a finite 
collection C={CI ,C2, ... ,Cn}C~(X) with the following properties: 

(Q1) Ct is compact, and d(Ct)<s, for l~i~n. 

(Q2) flCt>O and flb(Ct)=O, for l~i~n. 

(Q3) CtO nCjo=0 if i=lj, l~i,j~n. 

(Q4) fl(X \ U C) = 0. 

Remark. It follows from (Q2) that Ct0 =l0 for all i. 

Lemma 1. Let X be a compact metric space, fl a Borel measure on 
X, and 8>0. There exists an (X, fl' s)-quasicover. 

Proof. Let e denote the metric of X. If x E X and 15>0, we denote 
by Vo(x) and Uo(x) the following sets: 

(1) 

(2) 

Vo(x) = {y EX: e(x, y)<b}; 

Uo(x) = {y EX: e(x, y) = b}. 

Let aI, a2, ... , am be a finite number of points in X such that 
m 

XC U V e/2(at}. 
i=l 
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For each i, l~i~m, let th be a real number such that e/2<b i <e and 
flU6/at) = O. (Such a bi certainly exists, for if each of the uncountably 
many disjoint sets U6(ai), 13/2 < b < 13, would have a positive measure, the 
measure of the compact space X could not be finite.) 

Now consider all sets of the form Ai n A2 n ... n Am, where each Ai 
is either V6 .(ai) or X\ V6 .(ai). Let Cl, C2, ... , Cn be those among these sets 

• • 
which have a positive measure. Then C={C1, C2, ... , Cn} is an (X, fl, 13)-

quasicover. 

In the description of our constructions below it will be useful to work 
with certain partially ordered index sets. We will call them D-sets; they 
are obtained in the following way. 

Let L be the set of all finite sequences nl, n2, ... , nk of non-negative 
integers. The length of a sequence a E L will be denoted by L(a). If 
al ELand a2 E L, say al =nl, n2, ... , nh and a2=ml, m2, ... , mk, we put 

(3) 

The relation ~ defined in this way partially orders L. Each a E E of 
length L(a) > 1 has exactly one immediate predecessor, denoted by p(a) 
and denumerably many immediate successors, constituting a set S(a). 

A D-set is a subset Ll of L enjoying the following properties: 

(D 1) 0 ELl, and 0 is the only element of Ll of length 1. 

(D2) If a ELl and L(a) > 1, then p(a) ELl. 

(D3) If a ELl, then O*card (S(a) n Ll)<No. 

If Ll is a D-set and kEN, we will denote by Llk the set 

(4) Llk = {a ELl: L(a) = k}. 

Definition 2. Let X be a compact metric space, It a normed Borel 
measure on X, and Ll a D-set. A Ll-sieve on X is a map C/J: Ll --+ ~(X) 

with the following properties: 

(Sl) C/JO=X. 

(S2) If a ELl, and if S(a) n Ll = {ai, a2, ... , ak}, L(a) =n, then 
{C/Jal' C/Ja2, ... , C/Jak} is a (C/Ja, fl, 1/2n )-quasicover. 

Lemma 2. Let X be a compact metric space and fl a Borel measure 
on X. There exists aLl-sieve C/J on X, for a suitable D-set Ll. 

Proof. We will construct successively Lll and C/JILll' Ll2 and C/JILl2' etc. 
Let Lll={O} and C/J(O)=X. Suppose now that Llk and C/JILl k are already 
defined. For each a E Llk there exists, by lemma 1, a (C/Ja, fl, 1/2k)-quasicover 
(CaO' Cal' ... , Can). Let Llk+l consist of all sequences ai with a E Llk and 

a 
O~i~na, and let C/JILlk+l be defined by putting C/J(ai)=Cai. Clearly 

00 

Ll = U Llk is a D-set, and the map C/J is a Ll-sieve on X. 
k=l 
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Lemma 3. Let X be a compact metric space, fl a normed Borel 
measure on X, and (jJ a L1-sieve on X. There exists a map lJI: L1 -+ ~(I) 

enjoying the following properties: 

(i) lJI(a) is a segment, for each a E L1, and lJI(O) =1. 

(ii) U{lJI(r):TEL1 nS(a)}=lJI(a), for each aEL1. 

(iii) )'lJI(a) = fl(jJ(a) , for each a E L1. 

Proof. We define lJI/L1l by putting lJI(O) =1. Suppose lJIlL1i is already 
defined for 1 ~ i ~ k in such a way that the requirements (i), (ii), (iii) are 
met, and let a E L1 k+1. Writing T for p(a), we know then that lJIT is a 
subsegment [a, b] of I and that b-a=fl((jJT). Suppose 

(5) 

with nl<n2< ... <nr ; say a=Tni. We put 

(6) 

~ [a,a+fl((jJa)] in case i=l; 

lJIa= ~ [a+ :~>(jJ(Tnj), a+ itfl(jJ(Tnj )] if 2~i~r. 

The mapping lJI defined in this way satisfies the conditions. 

Lemma 4. Let X be a compact metric space, fl a normed Borel 
measure on X, and suppose in addition that fl is non-atomic (i.e. fl({X}) = 0 

for every x E X). Then there exists in X a fl-well distributed sequence. 

Proof. Let (jJ be a L1-sieve on X, and let lJI: L1 -+ ~(I) meet the 
requirements of lemma 3. We put 

00 

(7) Xl = n (U {((jJa)o: a E L1 k}); 
k~l 

clearly flXl = flX = 1. 
If x E Xl, then for every natural number k there is exactly one a = ak E L1 

such that L( ak) = k and x E (jJak (by condition (Q3) in definition 1); 
moreover, we know that (jJak+l C (jJak for all k. As fl is non-atomic, 
fl(jJak -+ 0 for k -+ 00 (we use here the fact that every Borel measure on 
a separable locally compact space is a Baire measure and hence is regular; 
cf. [2] chapter X). It follows that lJIak+1 C lJIak for all k, and that )'lJIak -+ 0 
for k -+ 00 (as )'lJIak=fl(jJak; lemma 3, (iii)). Consequently there exists 
exactly one Y E I such that Y E lJIak for all k; this y we will denote by I(x). 

Let h=IXl={tX: x EXl}. We assert that II is dense in I. Assume to 
the contrary that IV 1 contains an open set U. As every Y E I is the common 
point of a descending chain of sets lJIa, a E L1, there exists a a E L1 such 
that lJIa CU. By (S2) and (Q2), fl(jJa> 0; hence, as fl(X\X1)=0, there 
exists an x E Xl n (jJa. For this x we have I(x) E II and on the other hand 
I(x) E lJIa C U, which is impossible. 

Now it is well-known that there exist ),-well distributed sequences in I 
(e.g. the sequences of the form (nO - [nO])nEN, 0 irrational), and it follows 
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easily that every dense subset of I contains a sequence which is A-well 
distributed in I (cf. [6,9]; see also [4]). Let (Yn)nEN be a A-well distributed 
sequence in I such that Yn E h for all n; for each n EN, let Xn E Xl be 
chosen in such a way that tXn=Yn. We assert that (Xn)nEN is ,u-well 
distributed in X. 

Let cP be an arbitrary real-valued continuous function on X, and let 
8>0. We have to show that there exists an Mo=Mo(8, cp), such that 

(8) I ~ m~l cp(xm+k) -,u(cp) 1<8 

for all M;;;;,.MO(8, cp), uniformly in kEN. 
As cp is uniformly continuous on the compact space X, there exists a 

15>0 such that Icpx-CPYI <8/4 whenever e(x, y)<b (e denoting the metric 
of X) . We fix an r E N such that 1/2' < 15, and for each a E Llr we choose 

an arbitrary but fixed Za E <1>a. Let 'YJ = -i . (1 + ~ Icp(za)I)-l. 
G€Lfr 

If a E Llr, then 

(9) 1,u<1>a- ~ m~l X4la(xm+k) I = I APa- ~ m~l XPa(Ym+k) I; 
hence, as the sequence (Yn)nEN is A-well distributed in I, there exists an 
M l =Ml (8, a), independent of k, such that 

(10) I ,u<1>a- ~ m~l X4la(xm+k) I < 'YJ 

for all M;;;;,.M l . Let Mo= max Ma; Mo depends on 8 (and on cp), but 
not on k, and 

whenever M ;;;;,. Mo. 
Next, we consider the expression 

(12) I ~ X4la(Xm+k)·CP(Za)-CP(Xm+k)l· 
a ELl, 

As each Xn (n EN) is contained in exactly one <1>a, a E Llr, (12) may be 
reduced to the form 

(13) 

with Xm+k E <1>ao. Consequently, its value is at most 8/4 (by the choice 
of r), and we find that, for all M, 

(14) I ~ m~l rr~. X4la(xm+k) ·CP(za) - ~ m~l cp(Xm+k) I < ~. 
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Finally we remark that 

(15) 

Combining (11), (14) and (15) we arrive at (8). 

4. Proof of the main result 

Theorem. Let X be a compact space satisfying the second axiom of 
countability, and let fl, be a normed Borel measure on X. There exists 
in X a fl,-well distributed sequence. 

Proof. It follows from Urysohn's metrization theorem (cf. e.g. [8] 
chapter 4) that the space X is metrizable. Therefore the assertion follows 
from lemma 4 in case the set 

(16) Xo={X EX: fl,({x}»O} 

is empty. Let us suppose now that Xo+0. We remark that X o, being 
countable, is a Borel set. 

We first assume fl,Xo+ 1. In that case we define a new normed Borel 
measure ')I on X in the following way: if B is an arbitrary Borel set in X, 
then 

(17) B - fl,(B\Xo) 
')I - fl,(X\Xo)' 

According to lemma 4, there exists in X a ')I-well distributed sequence 
(Xn)nEN. 

Let {Zl, Z2, Z3, ... } be an enumeration of X o, and let 

10 =[0, I-fl,Xo],h=[1-fl,Xo, I-fl,XO+fl,({ZI})], 

12 = [1- fl,Xo + fl,( {ZI}), 1- fl,Xo + fl,( {ZI}) + fl,( {Z2})], etc. 

Let (Yn)nEN be a A-well distributed sequence in I such that no Yn is an 
endpoint of one of the intervals 10, II, 12, ... , and let (YnihEN be its sub­
sequence consisting of all Yn E 10. 

We now define a new sequence (Un)nEN in X as follows. If n=nt, for 
some i, we put Un=Xi; if n+ni but, say, Yn E h, we put Un=Zk. We will 
show that this sequence (Un)nEN is fl,-well distributed in X. 

For arbitrary n, k, MEN we define 

(18) 

Let 13> ° be arbitrary, and let cfo be a continuous real-valued function on X. 
As Lfl,({zn})<I<=, there exists an no~l, depending only on 13 and cfo, 

" such that 

(19) (1 + max 
'"EX 

13 
jcfo(x)j)' L fl,({Zn}) < S· 

n>no 
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As (yn)nEN is Il-well distributed, there exists an Ml, depending only on 
sand cp, such that, for all n;;2no and all M~Ml' 

(20) I~in(k, M)-llInl <s·(1+ 4no· ~E~X Icp(x)I)-1, 

uniformly in k. In particular it follows that in(lc, .111) -+ <Xl if M -+ <Xl, 

for all n;;2 no and uniformly in k, and also that there exists a K> 0 such 
that 

(21) 

for all n;;2no, all k and all M. 
LetJ= U In; by (19), llJ<sj8.(1+ max Icp(x)l)-l.Applyingthegood 

n>no ::tEX 

distribution of (Yn)nEN to XJ we find that there exists an M2(S) such that 

(22) I ~ L in(k, M) -1lJ I < ~ (l + max I cp(x) 1)-1, 
n>no ~EX 

whenever M~M2 (again, uniformly in k). It follows that 

I L ~ in(k, M) I < ~ (1 + max I cp(x)i)-l 
n>no a::EX 

(23) 

for all M~M2 and all k. 
As (Xn)nEN is v-well distributed in X, there exists an M3(S, cp) such that 

(24) 

uniformly in k, if M~M3(S). Let Mo be such that Mo~max (Ml, M 2, M 3) 
while moreover io(k, M»M3(S) for all M~Mo, uniformly in k. Such an 
M 0 exists, and it depends only on sand cp but not on k. Then - if we 
write Li for sums over 8 consecutive values of the parameter i-we have: 

• 

- L S cp(x) dftl ;;21 io(~ M) 1·1. (kI M) Lijo(k,M)CP(Xt) -v(cp) I + 
n>n, {Znl Jo , 

+ lio(k,M) - llIo l'lv(CP)I+! lin(k,M) -IlInl'lcp(zn)1 + 
M n~l M 

+ I n~. in(~ M) I· ~E~X I cp(x) I + n~:({Zn}) . ~EaXx I cp(x) 1;;2 

<~ ~ ~ ~ ~= 
= 8 + 4 + 4 + 4 + 8 s, 

whenever M~Mo(s, cp), uniformly in k. 
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There remains the case flXo = 1. In this case we can use practically the 
same proof as outlined above; all terms containing jo(k, M) must, however, 
be omitted. 

Amsterdam, Mathematical Oentre 
Prague, Mathematical Institute of 
the Oaroline University 

REFERENOES 

1. BAAYEN, P. O. and G. HELMBERG, On families of equi.uniformly distributed 
sequences in compact spaces. Preliminary report WN 14, Mathe­
matical Oentre, Amsterdam, 1964. 

2. HALMOS, P. R., Measure Theory, Princeton (New Jersey), 1950. 
3. HEDRLiN, Z., On integration in compact metric spaces. Oomm. Mathern. Univ. 

Oar. 2, 4, 17-19 (1961). 
4. ----, Remark on integration in compact metric spaces. Oomm. Mathern. 

Univ. Oar. 3, 1, 31 (1962). 
5. HELMBERG, G. and A_ B. PAALMAN-DE MIRANDA, Almost no sequence is well­

distributed. Proc. Kon. Ned. Akad. v. Wetensch. 
6. HLAWKA, E., Zur formalen Theorie der Gleichverteilung in kompakten Gruppen. 

Rend. Oirc. mat. Palermo 4, 33-47 (1955). 
7. , Folgen auf kompakten Raumen. Abh. math. Sem. Univ. Hamburg 

20, 223-241 (1956). 
8. KELLEY, J. L. General topology. Princeton (New Jersey), 1955. 
9. KEOGH, F. R., B. LAWTON and G. M. PETERSEN, Well distributed sequences 

modulo 1, Oanad. Journal of Math. 10, 572-576 (1958). 
10. PETERSEN, G., Almost convergence and uniformly distributed sequences. 

Quart. J. Math., Oxford, 2 ser., 7, 188-191 (1956). 




