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The main goal of this work is to introduce the relation between the partial boolean
derivatives of an n-variable boolean function and their directional boolean derivatives.
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1. Introduction and preliminaries

Let Fn
2 be the n-dimensional vector space over the Galois field F2 = {0, 1}, and set {e1, . . . , en} as its standard basis,

that is,

e1 = (1, 0, . . . , 0) , e2 = (0, 1, 0, . . . , 0) , . . . , en = (0, . . . , 0, 1) . (1)

For two vectors x = (x1, . . . , xn) ∈ Fn
2 and y = (y1, . . . , yn) ∈ Fn

2, we can define the XOR addition operation as follows:

x ⊕ y = (x1 ⊕ y1, . . . , xn ⊕ yn) ∈ Fn
2. (2)

An n-variable boolean function is a map of the form f : Fn
2 → F2. The set of all n-variable boolean functions is denoted

by BF n and its cardinality is |BF n| = 22n . The vector

tf = (f (v0) , f (v1) , . . . , f (v2n−1)) ∈ F2n
2 , (3)

where v0 = (0, . . . , 0) , v1 = (0, . . . , 0, 1) , . . . , v2n−1 = (1, . . . , 1), is called the truth table of f . Note that for 1 ≤ i ≤

2n
− 1, vi is the binary representation of i written as a vector of length 2n.
The usual representation of a boolean function f is by means of its algebraic normal form (ANF for short) which is the

n-variable polynomial representation over F2, that is,

f (x1, . . . , xn) = a0 ⊕


1≤k≤n

1≤i1,i2,...,ik≤n

ai1,i2,...ik , xi1 , xi2 , . . . , xik , (4)

where a0, ai1,...,ik ∈ F2. The degree of the ANF is the algebraic degree of the function. The simplest boolean functions,
considering their ANF, are the affine boolean functions: f (x1, . . . , xn) = a0⊕a1x1⊕a2x2⊕· · ·⊕anxn, where a0, a1, . . . , an ∈

F2. If a0 = 0, we have the linear boolean functions and they are denoted by la (x) with a = (a1, . . . , an) ∈ Fn
2.
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The Hamming weight of a boolean vector x is denoted by wt (x) and is defined as the number of ones in the vector x. In
this sense, the Hamming weight of a boolean function f is the Hamming weight of its truth table tf . An n-variable boolean
function f is said to be balanced if its weight is exactly 2n−1, that is, if the number of ones equals the number of zeros of its
truth table.

2. The partial derivative of a boolean function

The notion of the boolean derivative was introduced by Vichniac (see [1]) and it is defined as follows:

Definition 1. The partial derivative of an n-variable boolean function f with respect to the ith variable xi is another
n-variable boolean function, Dif , defined as follows:

Dif : Fn
2 → F2

x → Dif (x) = f (x) ⊕ f (x ⊕ ei) ,
(5)

that is,

Dif (x) = f (x1, . . . , xi, . . . , xn) ⊕ f (x1, . . . , xi ⊕ 1, . . . , xn) . (6)

The notion of the boolean derivative is very important and useful in, for example, cryptography (see [2]).

Example 1. Let us consider the four-variable boolean function whose ANF is f (x1, x2, x3, x4) = 1 ⊕ x3 ⊕ x1x2 ⊕ x2x3 ⊕

x1x2x3 ⊕ x2x3x4; then, as simple CALCULATIONS show, D1f (x1, x2, x3, x4) = x2 ⊕ x2x3.

This definition allows one to state a derivation rule similar to the derivation rule for multivariate polynomials over real
numbers:

Lemma 1. Let f be an n-variable boolean function whose ANF is (4). Then for each variable xi we have

f (x) = gi (x ⊕ xiei) ⊕ xihi (x ⊕ xiei) , (7)

where hi and gi are (n − 1)-variable boolean functions which do not depend on the variable xi. Moreover, if f does not depend
on the variable xi then hi = 0.

Proof. Set 1 ≤ i ≤ n; then the n-variable boolean function f can be factored by taking the common factor xi, and
consequently f can be written as follows:

f (x) = gi (x1, . . . ,xi, . . . , xn) ⊕ xihi (x1, . . . ,xi, . . . , xn) , (8)

where gi and hi are (n − 1)-variable boolean functions which do not depend on xi. For the sake of simplicity we set
x ⊕ xiei = (x1, . . . ,xi, . . . , xn); then,

f (x) = gi (x ⊕ xiei) ⊕ xihi (x ⊕ xiei) , (9)

thus finishing the proof. �

Example 2. Let us consider the four-variable boolean function whose ANF is f (x1, x2, x3, x4) = x1 ⊕ x2x3 ⊕ x3x4 ⊕ x2x3x4.
Then,

f (x1, x2, x3, x4) = x2x3 ⊕ x3x4 ⊕ x2x3x4 ⊕ x1
= x1 ⊕ x3x4 ⊕ x2 (x3 ⊕ x3x4)
= x1 ⊕ x3 (x2 ⊕ x4 ⊕ x2x4)
= x1 ⊕ x2x3 ⊕ x4 (x3 ⊕ x2x3) . (10)

Proposition 1. Let f be an n-variable boolean function. Then,

Dif (x) = hi (x ⊕ xiei) . (11)

Proof. By definition, Dif (x) = f (x) ⊕ f (x ⊕ ei), and taking into account the last lemma, this yields

Dif (x) = gi (x ⊕ xiei) ⊕ xihi (x ⊕ xiei) ⊕ gi (x ⊕ xiei) ⊕ (xi ⊕ 1) hi (x ⊕ xiei) = hi (x ⊕ xiei) , (12)

thus finishing the proof. �

As a consequence, the partial derivative (with respect to one variable) reduces the algebraic degree of the boolean
function by 1.
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Example 3. The partial derivatives of the four-variable boolean function f (x1, x2, x3, x4) = x1 ⊕ x2x3 ⊕ x3x4 ⊕ x2x3x4 with
respect to its four variables are

D1f (x) = 1, (13)
D2f (x) = x3 ⊕ x3x4, (14)
D3f (x) = x2 ⊕ x4 ⊕ x2x4, (15)
D4f (x) = x3 ⊕ x2x3. (16)

Definition 2. The composition of partial derivatives of an n-variable boolean function f with respect to the ith and jth
variables is defined as follows:

Di ◦ Dj

f (x) = Di


Djf


(x) = Djf (x) ⊕ Djf (x ⊕ ei)

= f (x) ⊕ f

x ⊕ ej


⊕ f (x ⊕ ei) ⊕ f


x ⊕ ei ⊕ ej


. (17)

Furthermore,
Di1 ◦ Di2 ◦ · · · ◦ Dik


f (x) = Di1


Di2


· · ·Dik (f )


(x). (18)

Consequently, the following result holds:

Proposition 2. The composition of boolean partial derivatives commutes:
Di ◦ Dj


f (x) =


Dj ◦ Di


f (x) . (19)

Example 4. Set the four-variable boolean function f (x1, x2, x3, x4) = x1 ⊕ x2x3 ⊕ x3x4 ⊕ x2x3x4; then,

(D2 ◦ D3) f (x) = D2 (x2 ⊕ x4 ⊕ x2x4) = 1 ⊕ x4, (20)
(D3 ◦ D2) f (x) = D3 (x3 ⊕ x3x4) = 1 ⊕ x4. (21)

We can extend the notion of a partial derivative to that of a directional derivative as follows:

Definition 3. The directional derivative of the n-variable boolean function f with respect to b ∈ Fn
2 is another n-variable

boolean function defined as follows:

Dbf : Fn
2 → F2

x → Dbf (x) = f (x) ⊕ f (x ⊕ b) .
(22)

Note that if wt (b) = k then b ∈ Fn
2 has k non-zero coefficients placed at positions 1 ≤ i1 < · · · < ik ≤ n; consequently

b = ei1 ⊕ · · · ⊕ eik ∈ Fn
2. In this sense, for the sake of simplicity, we take

Dbf (x) = Dei1⊕···⊕eik
f (x) = Di1,...,ik f (x) . (23)

Example 5. Set the four-variable boolean function f (x1, x2, x3, x4) = x1 ⊕ x2x3 ⊕ x3x4 ⊕ x2x3x4 and b = (0, 1, 1, 0); then,

Dbf (x) = D23f (x) = f (x) ⊕ f (x ⊕ b)
= x1 ⊕ x2x3 ⊕ x3x4 ⊕ x2x3x4 ⊕ x1 (x2 ⊕ 1) (x3 ⊕ 1) ⊕ (x3 ⊕ 1) x4 ⊕ (x2 ⊕ 1) (x3 ⊕ 1) x4
= 1 ⊕ x2 ⊕ x3 ⊕ x2x4 ⊕ x3x4. (24)

3. The relation between partial and directional boolean derivatives

The relation between partial boolean derivatives and directional boolean derivatives is stated in the following.

Theorem 1. Let f be an n-variable boolean function and set

1 ≤ i1 < i2 < · · · < ik ≤ n (25)

with k ≤ n; then,
Di1 ◦ · · · ◦ Dik


f (x) =


1≤l≤k

j1<···<jl
j1,...,jl∈{i1,...,ik}

Dj1,...,jl f (x) . (26)
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Proof. We prove the statement by induction on k. For k = 2 the formula is true:
Di1 ◦ Di2


f (x) = Di2 f (x) ⊕ Di2 f


x ⊕ ei1


= f (x) ⊕ f


x ⊕ ei2


⊕ f


x ⊕ ei1


⊕ f


x ⊕ ei2 ⊕ ei1


= f (x) ⊕


Di2 f (x) ⊕ f (x)


⊕


Di1 f (x) ⊕ f (x)


⊕


Dei1⊕ei2

f (x) ⊕ f (x)


= Di1 f (x) ⊕ Di2 f (x) ⊕ Di1,i2 f (x) . (27)

For k = 3, the statement of the proposition is also true:
Di1 ◦ Di2 ◦ Di3


f (x) =


Di1 ◦


Di2 ◦ Di3


f (x)

=

Di2 ◦ Di3


f (x) ⊕


Di2 ◦ Di3


f

x ⊕ ei1


= Di2 f (x) ⊕ Di3 f (x) ⊕ Di2,i3 f (x) ⊕ Di2 f


x ⊕ ei1


⊕ Di3 f


x ⊕ ei1


⊕ Di2,i3 f


x ⊕ ei1


= Di2 f (x) ⊕ Di3 f (x) ⊕ Di2,i3 f (x) ⊕ f


x ⊕ ei1


⊕ f


x ⊕ ei1 ⊕ ei2


⊕ f


x ⊕ ei1


⊕ f


x ⊕ ei1 ⊕ ei3


⊕ f


x ⊕ ei1


⊕ f


x ⊕ ei1 ⊕ ei2 ⊕ ei3


= Di2 f (x) ⊕ Di3 f (x) ⊕ Di2,i3 f (x) ⊕ Di1 f (x) ⊕ Di1,i2 f (x) ⊕ Di1 f (x) ⊕ Di1,i3 f (x)

⊕Di1 f (x) ⊕ Di1,i2,i3 f (x)

= Di1 f (x) ⊕ Di2 f (x) ⊕ Di3 f (x) ⊕ Di1,i2 f (x) ⊕ Di1,i3 f (x) ⊕ Di2,i3 f (x) ⊕ Di1,i2,i3 f (x) . (28)

Assume that the statement is true for k ≤ m; then for k = m + 1,
Di1 ◦ · · · ◦ Dim+1


f (x) =


Di1 ◦


Di2 ◦ · · · ◦ Dim+1


f (x) . (29)

Now, by induction, this yields
Di1 ◦ · · · ◦ Dim+1


f (x) =


Di2 ◦ · · · ◦ Dim+1


f (x) ⊕


Di2 ◦ · · · ◦ Dim+1


f

x ⊕ ei1


. (30)

As 
Di2 ◦ · · · ◦ Dim+1


f

x ⊕ ei1


=


1≤l≤m
j1<···<jl

j1,...,jl∈{i2,...,im+1}

Dj1,...,jl f

x ⊕ ei1



=


1≤l≤m
j1<···<jl

j1,...,jl∈{i2,...,im+1}

f

x ⊕ ei1


⊕ f


x ⊕ ei1 ⊕ eij1 ⊕ · · · ⊕ eijl



=


1≤l≤m
j1<···<jl

j1,...,jl∈{i2,...,im+1}

Di1 f (x) ⊕ Di1,j1,...,jl f (x) ,

then 
Di1 ◦ · · · ◦ Dim+1


f (x) =


Di2 ◦ · · · ◦ Dim+1


f (x) ⊕


Di2 ◦ · · · ◦ Dim+1


f

x ⊕ ei1


=


1≤l≤m
j1<···<jl

j1,...,jl∈{i2,...,im+1}

Dj1,...,jl f (x) ⊕


1≤l≤m
j1<···<jl

j1,...,jl∈{i2,...,im+1}

Di1 f (x) ⊕ Di1,j1,...,jl f (x)

=


1≤l≤m+1
j1<···<jl

j1,...,jl∈{i1,...,im+1}

Dj1,...,jl f (x) , (31)

thus finishing the proof. �

Example 6. Let us consider the four-variable boolean function f (x1, x2, x3, x4) = x1 ⊕ x2x3 ⊕ x3x4 ⊕ x2x3x4; then,

(D2 ◦ D3) f (x) = D2 (x) ⊕ D3 (x) ⊕ D23 (x)
= (x3 ⊕ x3x4) ⊕ (x2 ⊕ x4 ⊕ x2x4) ⊕ (1 ⊕ x2 ⊕ x3 ⊕ x2x4 ⊕ x3x4)
= 1 ⊕ x4. (32)
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Corollary 1. Taking into account Theorem 1, simple calculus shows the following results:

1. The directional derivative can be given in terms of the composition of partial derivatives as follows:

Di1,...,ik f (x) =


1≤l≤k

j1<···<jl
j1,...,jl∈{i1,...,ik}


Dj1 ◦ · · · ◦ Djl


f (x) . (33)

2. The directional derivative reduces the algebraic degree of the boolean function to be applied by, at least, 1.
3. If k = n, then

(D1 ◦ · · · ◦ Dn) f (x) =


b∈Fn

2

Dbf (x) . (34)

4. If σ is a permutation of n elements, then

(D1 ◦ · · · ◦ Dn) f (x) =

Dσ(1) ◦ · · · ◦ Dσ(n)


f (x) . (35)

4. Cryptographic applications

The boolean derivative plays an important role in the study of cryptographic properties of boolean functions such as
the strict avalanche criterion (SAC for short) and its generalization: the propagation criterion (PC for brevity), and the non-
existence of non-linear structures.

It is well-known (see, for example, [2]) that f ∈ BF n
2 is SAC if and only if f (x) changes with probability 0.5 whenever

a single input bit of x is complemented, that is, if changing only one bit in the input yields the output being changed for
exactly 2n−2 vectors with the changed input bit. The characterization of SAC is terms of boolean derivatives was introduced
in [3] and it is as follows: f is SAC if Dbf is a balanced n-variable boolean function for every b ∈ Fn

2 such that wt (b) = 1, that
is, using the notation introduced in Section 1, f ∈ BF n

2 is SAC if Dif is a balanced function for 1 ≤ i ≤ n.
The notion of SAC can be generalized to the concept of a propagation criterion as follows: f satisfies the propagation

criterion of degree k (f is PC(k) for short) if f (x) changes with a probability of 0.5 whenever i (1 ≤ i ≤ k) bits of the input x
are complemented, i.e., if changing any i (1 ≤ i ≤ k) of the n bits in the input results in the output being changed for exactly
2n−2 vectors with the changed input bit. As in the previous case, a characterization in terms of derivatives was stated as
follows: A boolean function f ∈ BF n

2 is PC(k) if and only if Di1,...,im f are balanced functions for 1 ≤ m ≤ k.
Furthermore, the following are very interesting results (see [2]):

Lemma 2. Every affine boolean function is a balanced boolean function.

Lemma 3. If f is an n-variable boolean function which is PC(k) for some k, 1 ≤ k ≤ n, then so is f ⊕ g, where g is any affine
function in n variables.

An n-variable boolean function is said to be a bent function if it is PC(n). Bent functions have been extensively studied for
their applications in cryptography since they are as different as possible from all linear and affine functions. Such functions
have also been applied in areas such as the spread spectrum, coding theory, and combinatorial design.

Then, taking into account Theorem 1 and the result 1 from Corollary 1, we obtain:

Proposition 3. An n-variable boolean function is a bent function if
1≤l≤k

j1<···<jl
j1,...,jl∈{i1,...,ik}


Dj1 ◦ · · · ◦ Djl


f (x) (36)

are balanced functions for 1 ≤ k ≤ n.

5. Conclusions

In this work the notion of a boolean derivative is revisited, stating a derivation rule similar to the traditional derivation
rule for a multivariate polynomial over R. Moreover, the relation between the composition of boolean derivatives with
respect to one variable and the directional derivatives with respect to a suitable boolean vector is shown. In this sense, some
applications of this theoretical result to the characterization of cryptographic boolean functions are stated. Future work
will aim at studying more detailed cryptographic implications of this result in relation to the strict avalanche criterion,
propagation criterion and extended propagation criterion.
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