
Prevalence of erm methylase genes in clinical isolates of non-pigmented,

rapidly growing mycobacteria

J. Esteban1, N. Z. Martı́n-de-Hijas1, D. Garcı́a-Almeida1, Á. Bodas-Sánchez2, I. Gadea1 and R. Fernández-Roblas1
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Abstract

The aim of this study was to determine the frequency of erm genes coding for macrolide resistance among clinical isolates of non-pig-

mented rapidly growing mycobacteria (NPRGM) and to evaluate their importance in phenotypic resistance. Broth microdilution suscep-

tibility testing was performed for all NPRGM tested. A PCR assay with consensus primers was used to evaluate the presence of erm

genes among the 167 clinical isolates studied, which belonged to nine species of NPRGM; erm genes were detected in all nine species

and 109 strains were erm-positive. The highest percentage of erm-positive isolates was found among Mycobacterium mageritense (100%)

and the lowest among Mycobacterium mucogenicum (14%). The MICs of macrolides were found to be lower for erm-negative isolates

(MIC90: 2 mg/L) than for erm-positive isolates (MIC90: 16 mg/L), although in some cases high MICs were found for erm-negative isolates.

The finding that erm methylases are present in the majority of the species of NPRGM analysed in this study is not in agreement with

conventional susceptibility studies. It therefore appears necessary to use a combination therapy to treat infections caused by NPRGM.
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Introduction

Treatment of infections caused by non-tuberculous mycobac-

teria is complicated because each species requires a different

therapeutic approach [1]. Among these organisms, non-pig-

mented rapidly growing mycobacteria (NPRGM) have specific

susceptibility characteristics. Treatment modalities for infec-

tions with NPRGM include antimicrobials different from

those commonly used to treat infections caused by other

bacteria (i.e. quinolones, b-lactams or aminoglycosides other

than streptomycin) [2–4]. Macrolides are among the antibiot-

ics most commonly used for NPRGM infections [4,5]. These

drugs have been used either alone or in combination with

other drugs (especially amikacin). However, resistance

against these drugs has been described and, in some cases,

resistance can develop during monotherapy [6–8].

A recent report examined the molecular mechanisms

involved in macrolide resistance among these mycobacteria,

in which different erm genes appear to be common and

methylase production appears to be inducible [9]; the lack of

correlation between phenotypic resistance and molecular

detection of erm was also described.

Here, we report the evaluation of the presence of erm

genes among clinical isolates of NPRGM and the correlation

between the presence of these determinants and the suscep-

tibility phenotype.

Materials and Methods

Clinical isolates of NPRGM were studied. Species identifica-

tion was achieved using several biochemical tests (nitrate

reduction, 3-day arylsulphatase, growth on McConkey agar

without crystal violet, use of citrate, mannitol, inositol, sorbi-

tol and rhamnose as carbon sources, and growth in the pres-

ence of NaCl (5%)) and PCR-restriction enzyme analysis

(PRA) of the hsp65 gene. Collection strains Mycobacterium

fortuitum ATCC 6841T, Mycobacterium chelonae ATCC

35752T, Mycobacterium abscessus DSM 44196T, Mycobacterium

peregrinum ATCC 14467T, Mycobacterium mucogenicum DSM

44124, Mycobacterium septicum ATCC 700731T, Mycobacte-

rium mageritense ATCC 700351T, Mycobacterium porcinum
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ATCC 33776T and Mycobacterium alvei ATCC 51304T were

included in the study as controls. The results of all biochemi-

cal tests as well as of the PRA profiles were considered nec-

essary to definitive identification. If results of identification

were considered doubtful or atypical, or if an isolate was of

an uncommon species (all species represented by less than

three isolates), the isolate was sent to the Mycobacteria

Reference Laboratory at the Centro Nacional de Microbio-

logı́a (Majadahonda, Spain) to confirm the identification.

Susceptibility tests were performed according to Clinical

Laboratory Standards Institute (CLSI) standards. Clarithromy-

cin was acquired from Abbott Laboratories, Inc. (Abbott Park,

IL, USA), erithromycin from Sigma-Aldrich, Inc. (St Louis,

MO, USA) and azithromycin from Pfizer, Inc. (Groton, CT,

USA). Concentration ranges were 0.03–64 mg/L. The CLSI

breakpoints for clarithromycin are: £ 2 mg/L for susceptible;

4 mg/L for intermediate, and ‡ 8 mg/L for resistant.

PCR analysis was performed using the consensus primers

CME-1Y (ACG TGG TGG TGG GCA AYCC TG) and

CME-2 (AAT TCG AAC CAC GGC CAC CAC T), as

described by Nash et al. [9]. The PCR protocol included the

following steps: 94 �C for 2 min, followed by 25 cycles at

94 �C for 30 seconds, 60 �C for 30 seconds and 72 �C for

30 seconds, followed by 5 min at 72 �C. The reaction gave

an amplification product of 175 bp. A negative control, with

PCR reaction mix and DNA-free sterile distilled water

(Sigma-Aldrich, Inc.), was included for every 20 reactions.

The amplified fragments were purified using the Montage

Genomics PCR Cleanup Kit (Millipore Corp., Billerica, MA,

USA). The purified fragments were sequenced in an auto-

mated sequencer (Secugen SL, Madrid, Spain). Results were

analysed using National Center for Biotechnology Informa-

tion (NCBI) nucleotide BLAST.

To calculate the correlation between phenotypic resis-

tance and the presence of erm genes we used Pearson’s cor-

relation coefficient. Calculations were performed with SPSS

Version 15.0 for Windows (SPSS, Inc., Chicago, IL, USA).

Results

A total of 167 clinical isolates belonging to nine species were

included in the study (M. abscessus (9), M. alvei (2), M. chelo-

nae (30), M. fortuitum (89), M. mageritense (5), M. mucogeni-

cum (7), M. peregrinum (23), M. porcinum (1), M. septicum

(1)). The MICs for, and erm status of, all isolates are shown

in Table 1. The highest percentage of erm-positive isolates

was found among M. mageritense (100%) and the lowest

among M. mucogenicum (14%). The results for the con-

trol strains were as follows: erm genes were detected in

TABLE 1. MICs (mg/L) for clinical isolates of non-pigmented

rapidly growing mycobacteria and erm gene status

Strain Species ERY CLA AZY erm

F193 M. abscessus 0.5 £ 0.03 0.12 neg
M70 M. abscessus 2 £ 0.03 0.5 neg
M83 M. abscessus 1 £ 0.03 £ 0.03 neg
M86 M. abscessus 2 £ 0.03 2 neg
M25 M. abscessus 0.06 £ 0.03 2 pos
M24 M. abscessus 0.12 £ 0.03 0.5 pos
F95 M. abscessus > 64 32 16 pos
M1 M. abscessus 0.5 £ 0.03 0.25 pos
F64 M. abscessus 8 0.25 1 pos
M40 M. alvei > 64 4 16 neg
F108 M. alvei 32 16 > 64 pos
F172 M. chelonae 0.25 0.06 0.06 pos
F25 M. chelonae £ 0.03 0.06 0.06 neg
F43 M. chelonae 0.06 £ 0.03 0.06 neg
F176 M. chelonae 0.06 £ 0.03 0.06 neg
F82 M. chelonae 1 0.12 0.12 neg
F109 M. chelonae 32 4 1 pos
M32 M. chelonae 1 0.25 0.12 neg
M4 M. chelonae 0.25 0.06 0.25 neg
M61 M. chelonae 0.25 0.06 0.25 neg
M52 M. chelonae 0.5 0.06 0.25 neg
F51 M. chelonae 0.25 £ 0.03 0.25 neg
F44 M. chelonae 0,12 0.06 0.5 neg
F29 M. chelonae 2 0.25 0.5 neg
F83 M. chelonae 0.06 £ 0.03 0.5 neg
M16 M. chelonae 0.5 £ 0.03 2 pos
F184 M. chelonae 4 4 16 pos
M59 M. chelonae > 64 8 16 pos
F63 M. chelonae £ 0.03 £ 0.03 0.5 neg
F237 M. chelonae 1 0.06 1 neg
F224 M. chelonae 1 0.12 1 neg
M31 M. chelonae 2 0.25 1 neg
F211 M. chelonae 0.25 < 0.03 4 neg
M80 M. chelonae 0.25 £ 0.03 £ 0.03 neg
F45 M. chelonae > 64 32 > 64 pos
M94 M. chelonae 4 £ 0.03 4 pos
M30 M. chelonae 4 2 32 pos
M93 M. chelonae 16 0.25 0.5 pos
F4 M. chelonae 16 2 16 pos
F5 M. chelonae 64 2 4 pos
M14 M. chelonae £ 0.03 £ 0.03 £ 0.03 pos
M27 M. fortuitum 0.06 £ 0.03 0.5 pos
M33 M. fortuitum 0.12 0.06 1 pos
M90 M. fortuitum 0.25 £ 0.03 0.5 pos
M35 M. fortuitum 0.25 £ 0.03 1 pos
F206 M. fortuitum 1 0.12 0.25 pos
M92 M. fortuitum 1 0.06 4 pos
F207 M. fortuitum 1 0.25 £ 0.03 pos
F22 M. fortuitum 4 0.12 0.06 neg
M36 M. fortuitum 2 1 32 pos
F36 M. fortuitum 4 2 0.06 pos
F191 M. fortuitum 8 0.5 0.06 pos
M50 M. fortuitum 8 1 8 pos
F236 M. fortuitum 1 0.06 0.5 neg
M42 M. fortuitum 16 0.06 2 pos
M41 M. fortuitum 16 0.06 4 pos
M43 M. fortuitum 16 0.5 4 pos
M65 M. fortuitum > 64 4 4 pos
F5A M. fortuitum 64 16 4 pos
M75 M. fortuitum 0.5 0.12 0.5 neg
F156 M. fortuitum 32 2 0.5 neg
F233 M. fortuitum 1 £ 0.03 0.5 neg
F239 M. fortuitum 16 2 32 pos
F232 M. fortuitum 4 0.12 1 neg
M28 M. fortuitum 16 0.5 £ 0.03 pos
M23 M. fortuitum 32 2 0.12 pos
F221 M. fortuitum 32 1 0.25 pos
F250 M. fortuitum 32 2 2 pos
F295 M. fortuitum 32 2 2 pos
F24 M. fortuitum 64 4 8 pos
F92 M. fortuitum 64 4 8 pos
F257 M. fortuitum 64 4 8 pos
M51 M. fortuitum 64 4 8 pos
F8 M. fortuitum > 64 4 8 pos
F69 M. fortuitum 64 8 8 pos
F84 M. fortuitum 64 8 8 pos
F259 M. fortuitum 64 8 8 pos
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M. fortuitum ATCC 6841T, M. mageritense ATCC 700351T,

M. porcinum ATCC 33776T and M. septicum ATCC 700731T,

but not in M. abscessus DSM 44196T, M. chelonae ATCC

35752T, M. peregrinum ATCC 14467T, M. mucogenicum DSM

44124T or M. alvei ATCC 51304T. As Table 1 shows, MICs

were lower for the erm-negative isolates, although for some

isolates high MICs were observed. When the CLSI break-

points for clarithromycin are considered, five erm-negative

isolates (one M. alvei and four M. fortuitum) were intermedi-

ate (three isolates) or resistant (two isolates). By contrast,

60 erm-positive isolates appeared to be clarithromycin-sus-

ceptible, according to the previously cited criteria (four

M. abscessus, eight M. chelonae, 37 M. fortuitum, three

M. mageritense, seven M. peregrinum, and one M. septicum).

However, MICs of erythromycin were ‡ 8 mg/L for 38 of

these isolates and MICs of azithromycin were ‡ 8 mg/L for

21 isolates. The MICs of all tested macrolides were < 4 mg/

L for only 18 erm-positive isolates.

The bacterial resistance mechanisms of many bacteria have

been known for a number of years, especially for Streptococ-

cus spp. [10]. However, some resistance mechanisms among

other genera, such as mycobacteria, have been described

only recently. Although the intrinsic resistance of Mycobacte-

rium tuberculosis against macrolides is well known, the corre-

sponding molecular mechanism has been described in detail

only in the last decade [11].

It was believed that this resistance was caused by

permeability problems involving the special nature of the

mycobacterial cell wall. However, the detection of an erm

methylase (erm(37)) changes this view. Other erm methylases

have been described among various species of mycobacteria,

including NPRGM [9]. Development of resistance during

monotherapy has been described in M. chelonae, in which it

results from mutations in the peptidyltransferase region of

23S rRNA [7,8]. More recently, erm methylases have been

described in many of the species of NPRGM, including Myco-

bacterium boenickei, Mycobacterium houstonense, Mycobacterium

TABLE 1. (Continued).

Strain Species ERY CLA AZY erm

M20 M. fortuitum 32 2 2 pos
F240 M. fortuitum 4 0.25 1 neg
M17 M. fortuitum 32 1 4 pos
F242 M. fortuitum 32 4 16 pos
M15 M. fortuitum > 64 4 16 pos
M53 M. fortuitum > 64 4 16 pos
M55 M. fortuitum > 64 4 16 pos
F58 M. fortuitum > 64 8 16 pos
F255 M. fortuitum > 64 8 16 pos
F258 M. fortuitum > 64 8 16 pos
F3 M. fortuitum > 64 16 16 pos
F256 M. fortuitum 32 2 8 pos
M29 M. fortuitum 32 2 8 pos
M57 M. fortuitum 8 4 32 pos
M39 M. fortuitum 4 0.5 4 neg
M64 M. fortuitum > 64 4 16 neg
M19 M. fortuitum 64 4 32 pos
M54 M. fortuitum > 64 4 32 pos
F20 M. fortuitum 64 8 32 pos
M5 M. fortuitum > 64 8 32 pos
M9 M. fortuitum > 64 32 32 pos
F40P M. fortuitum 32 4 64 pos
F175 M. fortuitum > 64 16 64 pos
F241 M. fortuitum > 64 16 64 pos
M2 M. fortuitum > 64 16 64 pos
M66 M. fortuitum > 64 2 32 neg
M11 M. fortuitum > 64 64 32 neg
M7 M. fortuitum > 64 32 64 pos
M60 M. fortuitum > 64 4 64 neg
M8 M. fortuitum > 64 32 64 pos
M89 M. fortuitum 64 0.5 4 pos
M74 M. fortuitum 64 1 8 pos
M38 M. fortuitum 64 8 > 64 neg
M22 M. fortuitum 64 2 8 pos
F61 M. fortuitum 32 8 > 64 pos
F260 M. fortuitum > 64 8 > 64 pos
M78 M. fortuitum > 64 8 > 64 pos
M82 M. fortuitum > 64 8 > 64 pos
F56 M. fortuitum 32 16 > 64 pos
M87 M. fortuitum 0.5 £ 0.03 £ 0.03 neg
F55 M. fortuitum 64 16 > 64 pos
F194 M. fortuitum > 64 32 > 64 pos
M13 M. fortuitum > 64 32 > 64 pos
M77 M. fortuitum 64 2 8 pos
M76 M. fortuitum 64 2 16 pos
F230 M. fortuitum 64 2 32 pos
F247 M. fortuitum 64 2 64 pos
F65 M. fortuitum 64 2 > 64 pos
M91 M. fortuitum > 64 1 8 pos
M72 M. fortuitum > 64 2 16 pos
F37 M. fortuitum > 64 2 32 pos
F267 M. fortuitum > 64 2 > 64 pos
M79 M. fortuitum > 64 2 > 64 pos
M58 M. mageritense 32 2 4 pos
M69 M. mageritense 32 2 8 pos
M21 M. mageritense 64 4 16 pos
M56 M. mageritense 64 8 16 pos
M45 M. mageritense > 64 2 2 pos
M18 M. mucogenicum 0.06 £ 0.03 0.06 neg
F19 M. mucogenicum 0.06 £ 0.03 1 neg
F187 M. mucogenicum 0.06 £ 0.03 1 neg
M71 M. mucogenicum 0.5 £ 0.03 1 neg
F218 M. mucogenicum £ 0.03 £ 0.03 £ 0.03 neg
F155 M. mucogenicum 0.06 £ 0.03 £ 0.03 neg
F18 M. mucogenicum 32 16 > 64 pos
M6 M. peregrinum 0.25 £ 0.03 0.25 pos
F46 M. peregrinum 1 0.06 0.25 pos
F15 M. peregrinum 2 0.25 0.25 pos
M44 M. peregrinum 8 0.12 0.06 pos
F81 M. peregrinum 8 2 > 64 pos
M10 M. peregrinum 16 0.12 0.5 pos
F48 M. peregrinum 0.12 0.06 0.25 neg
F26 M. peregrinum 0.06 0.25 0.25 neg
M81 M. peregrinum 8 £ 0.03 0.25 neg
F272 M. peregrinum 2 0.12 0.5 neg
M12 M. peregrinum 32 0.12 0.5 neg
F53 M. peregrinum 0.5 0.06 1 neg
F213 M. peregrinum 1 0.06 1 neg
F223 M. peregrinum 2 0.25 1 neg
F274 M. peregrinum 2 0.25 1 neg

TABLE 1. (Continued).

Strain Species ERY CLA AZY erm

F273 M. peregrinum 0.12 £ 0.03 1 neg
F271 M. peregrinum 0.06 0.06 2 neg
F94 M. peregrinum 4 2 64 neg
F85 M. peregrinum 0.25 0.06 £ 0.03 neg
M3 M. peregrinum > 64 16 > 64 pos
F10 M. peregrinum 0.06 £ 0.03 £ 0.03 neg
M49 M. peregrinum 1 £ 0.03 £ 0.03 neg
M46 M. peregrinum £ 0.03 £ 0.03 £ 0.03 pos
F40G M. porcinum > 64 8 32 pos
M95 M. septicum 2 £ 0.03 0.5 pos

ERY, erithromycin; CLA, clarithromycin; AZY, azithromycin; pos, erm-positive;
neg, erm-negative.
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goodii, Mycobacterium neworleansense, M. porcinum, Mycobacte-

rium wolinskyi, M. fortuitum and Mycobacterium smegmatis [9].

These enzymes appeared to be inducible [9,12] and, in some

cases, as observed in this study, in vitro susceptibility tests

gave low MICs for these strains.

A consensus PCR based on the published erm sequences

was used. As no data are available in the literature about the

sensitivity of the PCR using these primers, and as erm

sequences differ by c. 70% [9], it is possible that other genes

coding for this type of enzyme cannot be detected with this

primer set. Apart from this uncertainty, this report includes

a higher number of clinical isolates than other reports and

presents some interesting findings.

Firstly, erm genes were detected in all species studied,

including three that have been reported as erm-negative [9]

(M. abscessus, M. chelonae and M. peregrinum) and two spe-

cies not previously studied (M. alvei and M. septicum), a find-

ing that may reflect several causes. The sequencing of the

PCR fragments from M. abscessus revealed a nucleotide

sequence identity of 90–100% with erm(39), of 83–84% with

erm(38) and of 82–85% with erm(40). In M. chelonae, identity

was 94–99% with erm(39), 73–99% with erm(38) and 84%

with erm(40); in M. peregrinum it was 95–100% with erm(39)

and 95% with erm(38), according to the data obtained from

the NCBI website (http://www.ncbi.nlm.nih.gov/). This finding

is especially relevant for M. abscessus isolates because no

erm-positive isolate was reported by Nash et al. [9] and

because no orthologue of NPRGM erm genes appeared in

the recent genome sequence of the M. abscessus type strain

(Genbank accession no. CU458896) (Mycobacterium abscessus

chromosome: complete sequence; http://www.ncbi.nlm.

nih.gov/entrez/viewer.fcgi?db=nucleotide&val=NC_010397)

and our M. abscessus collection strain was erm-negative.

Several explanations can be suggested for this discrepancy.

There may be local or regional differences between strains,

as there are in other aspects of the epidemiology of these

mycobacteria. Another explanation may be that strains lose

genetic information, even resistance genes, through common

laboratory manipulations [13] (i.e. storage for long periods at

low temperatures [14]), and collection strains (including type

strains) may have fewer genes than clinical isolates. A low

number of clinical isolates, as tested by Nash et al. [9], may

also explain negative results. Finally, it may be possible that

consensus primers lack specificity and yield false-positive

PCR results. Further experiments will be needed to resolve

the discrepant results.

The presence of erm genes varied among species; it was

more frequent in the clinically relevant species M. fortuitum,

M. abscessus and M. chelonae and in M. mageritense, a spe-

cies in which enzyme production seems to be constitutive

[9]. This finding may be extremely relevant because mac-

rolides are recommended antibiotics for the therapy of

infections caused by M. chelonae and M. abscessus

[2,3,5,15], and because in some cases the presence of erm

genes was not correlated with high MIC values. In these

cases, because these enzymes are inducible, monotherapy

with macrolides may be ineffective, despite in vitro suscep-

tibility of the strains observed with standardized methods.

This, combined with the possibility that resistance may

develop through other mechanisms, makes it necessary to

treat infections caused by M. chelonae and M. abscessus

with a combination of antibiotics to which they have

proved susceptible.

Although this assumption must be confirmed clinically,

according to our data a high MIC of erythromycin correlates

with the presence of erm methylases (Pearson’s correlation

coefficient 0.563) better than high MICs of either clarithromy-

cin (Pearson’s correlation coefficient 0.370) or azithromycin

(Pearson’s correlation coefficient 0.525) do.

Otherwise, high MICs for strains in which no erm genes

are detected can be taken as unexplained as a result of low

PCR sensitivity, but they can also reflect the presence of

other resistance mechanisms, such as mutations in domain V

of the 23S RNA or mutations in the ribosomal proteins L4

and L22 (i.e. the absence of erm genes does not necessarily

imply macrolide susceptibility)[16].

In conclusion, erm methylases were present in all species

of NPRGM analysed in our study. This finding does not agree

with the results of conventional susceptibility studies. It is

therefore of great therapeutic importance to use a combina-

tion of several antibiotics that have been shown to be active

against the relevant clinical isolates in order to avoid the

development of resistance in vivo as a result of the presence

of these enzymes.
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