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a b s t r a c t

We describe the eigenpairs of special kinds of tridiagonal matrices related to problems on
traffic on a one-lane road. Some numerical examples are provided.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The n-by-n tridiagonal matrix

Qρ =


0 ρ

1− ρ
. . .

. . .

. . .
. . . ρ
1− ρ 0 ρ

1 0

 ,
where ρ is an arbitrary real number in (0, 1), is of fundamental importance in understanding the dynamics of Newtonian
particles in a chain with (generally) asymmetric nearest neighbor interactions, presuming n to be large.
For an eigenvector v of Qρ associated with the eigenvalue r , i.e., for an eigenpair {r, v}, {1− r, v} is an eigenpair of I−Qρ .

Thematrix Qρ derives its importance from the fact that I−Q is the directed graph Laplacian (cf. e.g. [1–4,8]) associated with
an important system of linear differential equations, modeling a simple instance of flocking behavior related to studies of
automated traffic on a single-lane road. In this note we provide some expressions for the eigenvalues and eigenvectors of
the matrix Qρ . For that purpose, for a positive real number κ , we first analyze the location of the zeros of the polynomial

f (x) def= g(x)− g(h(x)), (1.1)

where

g(x) def= xn+1 − xn−1 and h(x) def=
κ

x
.
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The method presented here relies on the observation that the eigenvalue equation for Qρ can be rewritten as a two-
dimensional recursive system with appropriate boundary condition near 0 and n indexes. This procedure can be found for
instance in [5]. This case can also be seen from the perspective of the orthogonal polynomials theory as in [6].

2. The zeros of a polynomial

The main tool in analyzing the eigenvalues of the matrix Qρ is the analysis of the location of the zeros of the polynomial
f (x) defined in (1.1). Henceforth, the square root stands for the root in the upper half-plane minus the negative real axis.
In the statement of Theorem 2.1 we use the following equation, where κ > 0 and φ are real variables:

(1− κ)
(1+ κ)

cotφ = cot nφ. (2.1)

For example, if κ = 1, this is equivalent to cos nφ = 0, and its solutions are given by φ` = ± (2`+1)π
2n , for ` = 0, . . . , n− 1.

Theorem 2.1. For any positive real number κ , the Eq. (1.1) has 2n+2 roots. Two of these are the fixed points of h given by±
√
κ .

The remaining 2n roots have period 2 under the involution h and are given as follows:

(i) If κ ≥ 1: n roots are given by
√
κeiφ` , where φ` ∈

(
`π
n ,

(`+1)π
n

)
, for ` ∈ {0, . . . , n− 1}, solves (2.1); the remaining roots

are the images under h of these or
√
κe−iφ` .

(ii) If κ ∈ [ n−1n+1 , 1): Identical to (i).

(iii) If κ ∈ (0, n−1n+1 ): n− 2 roots are given by
√
κ eiφ` , where φ` ∈

(
`π
n ,

(`+1)π
n

)
, for ` ∈ {1, . . . , n− 2}, solves (2.1); n− 2 are

images of these under h; the remaining roots are x0 ∈ (
√
κ, 1) and its images under h and multiplication by −1. We have

x0 = 1− 1
2 (1− κ

2)κn−1 + O(κ2n−2).

Note that when κ = n−1
n+1 , the fixed points of h coincide with other roots, thus having higher multiplicity (namely 2).

When multiple roots are present, we count them with (algebraic) multiplicity.

Proof. We have xn+1f (x) = (x2n+2−κn+1)− x2(x2n−2−κn−1). This polynomial has exactly 2n+2 non-zero roots and these
are also the roots of the equation f (x) = 0 (always counting multiplicity). Two roots are given by the only fixed points of h,
namely±

√
κ . Our strategy here is to then find n roots of f (x) in the upper half-plane. Since h is an involution the remaining

n roots are then found by taking their image under h to get the roots in the lower half-plane.
If we substitute x =

√
κ eiφ into the equation f (x) = 0 we get κ sin(n+ 1)φ − sin(n− 1)φ = 0, which is equivalent to

κ (sin nφ cosφ + cos nφ sinφ) = sin nφ cosφ − cos nφ sinφ. Collecting similar terms then gives

(1− κ) sin nφ cosφ = (1+ κ) cos nφ sinφ. (2.2)

This in turn gives Eq. (2.1) upon division by (1+ κ) sin nφ sinφ.
To prove (i), first note that the case κ = 1 follows directly from Eq. (2.1). In the remaining cases the coefficient 1−κ1+κ is

negative. A straightforward graphical inspection of Eq. (2.1) (see Fig. 4.2, first figure) establishes the existence of n solutions
φ`, one in each interval

(
`π
n ,

(`+1)π
n

)
, for ` = 0, 1, . . . , n− 1 .

Now we prove (ii). In this case the coefficient in Eq. (2.1) is greater than zero. We see upon inspecting the graphical
solution (Fig. 4.2, second figure) that in the interval (0, π), Eq. (2.1) has n − 2 natural solutions, one in each interval(
`π
n ,

(`+1)π
n

)
, for ` = 1, . . . , n− 2. To see whether there are roots in the remaining two intervals for ` = 0 and ` = n− 1,

divide Eq. (2.2) by (1− κ) cos nφ cosφ. We then get

(1+ κ)
(1− κ)

tanφ = tan nφ.

This equation has a solution (not equal to 0 or π ) in each of the two intervals if

∂

∂φ

∣∣∣∣
φ=0

1+ κ
1− κ

tanφ >
∂

∂φ

∣∣∣∣
φ=0
tan nφ,

which is equivalent to

κ >
n− 1
n+ 1

.

Since the roots of a polynomial are continuous functions of the coefficients, we get roots of multiplicity 2 at ±
√
κ , when

κ = n−1
n+1 .
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The proof of (iii) runs parallel to the previous one except that now there are no solutions (other than 0 and π ) in the
intervals labeled ` = 0 and ` = n− 1. These solutions plus their images under h give us 2n− 2 roots of f . Straightforward
arguments (f (

√
κ) = 0, f (1) > 0, and f ′(

√
κ) < 0) lead to the insight that there is a new real positive root in (

√
κ, 1). Its

image under h then yields a root in (κ,
√
κ). Since xn+1f (x) is even, we can multiply these roots by−1 to get two more.

Applying Newton’s Method to the starting point 1, we get for one of the roots (up to O(κ2n−2))

x̄ = 1−
f (1)
f ′(1)

= 1−
(1− κ2)κn−1

2(1+ κn−1)
≈ 1−

1
2
(1− κ2)κn−1.

The precise estimate follows from the fact that Newton’s Method converges quadratically. The other roots are obtained by
taking the images under h and multiplication by−1. �

3. The eigenpairs of Qρ

In this section, we establish formulas for the eigenpairs ofQρ . It turns out that Theorem 2.1 can be translated rather easily
to give our result here.
In the statement of Theorem 3.1 we use the following equation, where ρ ∈ (0, 1) and φ are real variables:

(2ρ − 1) cotφ = cot nφ. (3.1)

Theorem 3.1. For any real number ρ ∈ (0, 1), the matrix Qρ has n eigenvalues (countingmultiplicity). They are given as follows:

(i) If ρ ∈ (0, 12 ]: The n eigenvalues are given by 2
√
ρ(1− ρ) cosφ`, where φ` ∈

(
`π
n ,

(`+1)π
n

)
, for ` ∈ {0, . . . , n− 1}, solves

(3.1).
(ii) If ρ ∈ ( 12 ,

n+1
2n ]: Identical to (i).

(iii) If ρ ∈ ( n+12n , 1): n−2 eigenvalues are given by 2
√
ρ(1− ρ) cosφ`, whereφ` ∈

(
`π
n ,

(`+1)π
n

)
, for ` ∈ {1, . . . , n−2}, solves

(3.1); the remaining two are given by±
(
1− (2ρ−1)2

2ρ2

(
1−ρ
ρ

)n−1)
, with an error O

((
1−ρ
ρ

)2n−2)
as n tends to infinity.

It is well known (cf., e.g., [7, p. 28]) that if Qρ is irreducible, then the eigenvalues are all distinct, and in the case where
Qρ is sign-symmetric, they are all real.

Proof. Let v = (v1, . . . , vn)T ∈ Cn be an eigenvector of Qρ associated with the eigenvalue r ∈ C. The idea is to replace the
equation Qρv = rv by a local version modified by adequate boundary conditions. This (equivalent) local reformulation of
the eigenpair equation for Qρ is

For j = 1, . . . , n :
(
vj
vj+1

)
= C j

(
v0
v1

)
and

{
v0 = 0

vn+1 = vn−1.
(3.2)

Here the matrix C is defined by

C =

 0 1

−
1− ρ
ρ

r
ρ

 ,
andwewill refer to the last two conditions as boundary conditions 1 and 2, respectively. The aim is then to find n pairs {r, v}
satisfying (3.2).
Let h : C→ C be the involution given by h(x) = 1−ρ

ρ x . The eigenvalues x± of C satisfy

x± = h(x∓) and r = ρ tr C = ρ(x+ + h(x+)). (3.3)

Since the assumption of x+ = h(x+) yields a procedure that produces all n distinct pairs {r, v} satisfying (3.2), we can
consequently omit that case. Hence, let us assume that x+ 6= h(x+). In this case C is diagonalizable, with eigenvectors
(1, x±)T. Denote by x either of the two eigenvalues. Any solution of the recursion (3.2) can be written as

vj = c+xj + c−h(x)j.

Boundary condition 1 implies that c− = −c+ (and vj is non-zero if x 6= h(x)). We can take c+ = 1 without loss of generality.
Boundary condition 2 becomes

xn+1 − xn−1 −
(
h(x)n+1 − h(x)n−1

)
= 0. (3.4)

After setting κ = 1−ρ
ρ
this is equivalent to Eq. (1.1).

Finding the spectrum ofQρ is equivalent to getting n values for ρ(x+h(x)) (countingmultiplicity), where x is determined
as (3.4). Hence, from Theorem 2.1, we may establish the result. �
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Fig. 4.1. The eigenvalues of Qρ as function of ρ for n = 5 and n = 6.

Fig. 4.2. When κ > 1 (first figure) Eq. (2.1) has 2n solutions in (−π, π). When 0 < κ < 1, there are only 2n − 2 (see the second figure). Here the only
solutions in (0, π) are shown. In this figure n = 4.

As regards the eigenvectors of Qρ , we may conclude the following proposition.

Corollary 3.2. The eigenvectors of Qρ are given by vj = xj − h(x)j, where x satisfies (3.4).

For the case ofρ = 1/2,we conclude that if v = (v1, . . . , vn) is an eigenvector associatedwith the eigenvalue cos (2`+1)π2n ,
with ` ∈ {0, . . . , n− 1}, then

vj = sin
(2`− 1)j
2n

π

for j = 1, . . . , n.

4. Numerical examples

To end this note, we present below two graphs of the set of eigenvalues ofQρ that were evaluated usingMAPLE, for n = 5
and n = 6, and for ρ in (0, 1). We also present a sketch of the solution of Eq. (2.1) for two cases (see Fig. 4.1).
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