PRESS

A boundary value problem for nonlinear hyperbolic equations with order degeneration

Rossitza Semerdjieva
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, P.O. Box 17, Mladost-4, 1715 Sofia, Bulgaria

Received 24 October 2001
Submitted by N.S. Trudinger

Abstract

In this paper we study the equation $L(u):=k(y) u_{x x}-\partial_{y}\left(\ell(y) u_{y}\right)+a(x, y) u_{x}+$ $b(x, y) u_{y}=f(x, y, u)$, where $k(y)>0, \ell(y)>0$ for $y>0, k(0)=\ell(0)=0$; it is strictly hyperbolic for $y>0$ and its order degenerates on the line $y=0$. Consider the boundary value problem $L u=f(x, y, u)$ in $G,\left.u\right|_{A C}=0$, where G is a simply connected domain in \mathcal{R}^{2} with piecewise smooth boundary $\partial G=A B \cup A C \cup B C ; A B=\{(x, 0): 0 \leqslant x \leqslant 1\}$, $A C: x=F(y)=\int_{0}^{y}(k(t) / \ell(t))^{1 / 2} d t$ and $B C: x=1-F(y)$ are characteristic curves. If $f(x, y, u)=g(x, y, u)-r(x, y) u|u|^{\rho}, \rho \geqslant 0$, we obtain existence of generalized solution by a finite element method. The uniqueness problem is considered under less restrictive assumptions on f. Namely, we prove that if f satisfies Carathéodory condition and $\left|f\left(x, y, z_{1}\right)-f\left(x, y, z_{2}\right)\right| \leqslant C\left(\left|z_{1}\right|^{\beta}+\left|z_{2}\right|^{\beta}\right)\left|z_{1}-z_{2}\right|$ with some constants $C>0$ and $\beta \geqslant 0$ then there exists at most one generalized solution. © 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

Boundary value problems for degenerated hyperbolic equations in the plane have been studied by many authors (see [3,4,16,17] and the bibliography therein), but mainly in the case where the type (but not the order) of the corresponding differential operator degenerates. The case of order degeneration (where the entire principal part of the differential operator vanishes on the line of degeneration) is not studied so well. Bitsadze [3] observed that boundary value problems for
hyperbolic equations with order degeneration deserve a special attention and require a special treatment. For such equations the classical boundary value problems are not well posed, and moreover the coefficients of lower order terms determine whether a given boundary value problem is well posed (see [2,7,8,14, 15] and the literature cited therein).

Consider the equation

$$
\begin{equation*}
L(u):=k(y) u_{x x}-\partial_{y}\left(\ell(y) u_{y}\right)+a(x, y) u_{x}+b(x, y) u_{y}=f(x, y, u) \tag{1}
\end{equation*}
$$

where $k(y)>0, \ell(y)>0$ for $y>0, k(0)=\ell(0)=0$ and $\lim _{y \rightarrow 0} k(y) / \ell(y)$ exists. Equation (1) is strictly hyperbolic for $y>0$ and its principal part degenerates on the line $y=0$.

Let G be a simply connected domain on the (x, y) plane with piecewise smooth boundary $\partial G=A B \cup A C \cup B C$, where $A B=\{(x, 0): 0 \leqslant x \leqslant 1\}$, and $A C: x=F(y)=\int_{0}^{y}(k(t) / \ell(t))^{1 / 2} d t$ and $B C: x=1-F(y)$ are characteristics of (1) issued from the point $C(1 / 2, Y)$, where the constant $Y>0$ is determined by $F(Y)=1 / 2$.

We consider the following boundary value problem.
Problem B. Find in the domain G a solution of (1) satisfying the boundary condition $u=0$ on $A C$.

Set

$$
(u, v)_{0}=\int_{G} u(x, y) v(x, y) d x d y, \quad\|u\|_{0}=(u, u)_{0}^{1 / 2}
$$

and

$$
(u, v)_{1}=\int_{G}\left[u_{x} v_{x}+u_{y} v_{y}+u v\right] d x d y, \quad\|u\|_{1}=(u, u)_{1}^{1 / 2}
$$

Let $C_{A C}^{p}(\bar{G})$ and $C_{B C}^{p}(\bar{G}), p=1,2, \ldots, \infty$, be the sets of functions $u, v \in C^{p}(\bar{G})$ such that, respectively, $\left.u\right|_{A C}=0$ or $\left.v\right|_{B C}=0$. Denote, respectively, by $H^{1}, H_{A C}^{1}$, $H_{B C}^{1}$ the corresponding Sobolev spaces defined as completions of the spaces $C^{\infty}(\bar{G}), C_{A C}^{\infty}(\bar{G})$ and $C_{B C}^{\infty}(\bar{G})$ with respect to the norm $\|\cdot\|_{1}$.

Let

$$
B[u, v]=\int_{G}\left\{-k u_{x} v_{x}+\ell u_{y} v_{y}+a u_{x} v+b u_{y} v\right\} d x d y
$$

Definition 1. A function $u \in H_{A C}^{1}$ is called generalized solution of Problem B if the identity

$$
\begin{equation*}
B[u, v]=\int_{G} f(x, y, u) v d x d y \tag{2}
\end{equation*}
$$

holds for every $v \in H_{B C}^{1}$.

Definition 2. A function $u \in H_{A C}^{1}$ is called strong solution of Problem B if there exists a sequence $\left(u_{n}\right)_{n=1}^{\infty}, u_{n} \in C_{A C}^{\infty}(\bar{G})$ such that

$$
\left\|u_{n}-u\right\|_{1} \rightarrow 0, \quad\left\|L u_{n}-f\left(x, y, u_{n}(x, y)\right)\right\|_{0} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

The paper consists of 4 sections. We obtain by energy-integral method (see [13]) the necessary a priori estimates in Section 2. For technical reason we use weighted norms defined by the weight $\exp (-\lambda x), \lambda>0$. Although the corresponding weighted norms are equivalent, respectively, to the norms $\|\cdot\|_{0}$ and $\|\cdot\|_{1}$, they play an important role in proving our uniqueness result.

In Section 3 we assume that $f(x, y, u)=g(x, y, u)-r(x, y) u|u|^{\rho}, \rho \geqslant 0$, and prove by a finite element method existence of generalized solution of Problem B (Theorem 3.1).

In Section 4 we obtain under very mild restriction on f that each generalized solution of Problem B is a strong solution of the same problem (Theorem 4.2). This fact is used in Theorem 4.3 to prove that Problem B has at most one generalized solution under the assumption

$$
\left|f\left(x, y, z_{1}\right)-f\left(x, y, z_{2}\right)\right| \leqslant C\left(\left|z_{1}\right|^{\beta}+\left|z_{2}\right|^{\beta}\right)\left|z_{1}-z_{2}\right|, \quad C>0, \beta \geqslant 0
$$

Observe that we do not require the constant C to be "sufficiently small"; it is an arbitrary positive constant.

Results on existence and uniqueness of generalized solution of Problem B have been obtained in [15], but in the case where $b(x, y) \equiv 0$ and the right-hand side f of the corresponding equation is only "weakly nonlinear" in the sense that f is satisfying the Carathéodory condition, $|f(x, y, u)| \leqslant Q(x, y)+C|u|$ with $Q(x, y) \in L^{2}(G)$ and $\left|f\left(x, y, z_{1}\right)-f\left(x, y, z_{2}\right)\right| \leqslant C\left|z_{1}-z_{2}\right|, C=$ const >0.

In the following lemma we formulate a partial case of the well known multiplicative inequality (see, e.g., Theorem 7.3 in Chapter 1 of [10]).

Lemma 1.1. If $G \subset \mathcal{R}^{2}$ is a bounded domain with the uniform cone property then for every $p>2$

$$
\|u\|_{L^{p}(G)} \leqslant C_{0}\|u\|_{1}^{(p-2) / p}\|u\|_{0}^{2 / p}, \quad u \in H^{1}(G)
$$

where the constant C_{0} depends only on G.

Remark. Since we assume that the $\operatorname{limit} \lim _{y \rightarrow 0} k(y) / \ell(y)$ exists our domain G has the uniform cone property.

2. A priori estimates

Consider for any $\lambda>0$ the following norms:

$$
\|u\|_{0, \lambda}=\left\|e^{-(\lambda / 2) x} u\right\|_{0}, \quad\|u\|_{1, \lambda}=\left(\int_{G} e^{-\lambda x}\left[u_{x}^{2}+u_{y}^{2}+u^{2}\right] d x d y\right)^{1 / 2}
$$

Obviously, for every fixed λ these norms are equivalent respectively to $\|u\|_{0}$ and $\|u\|_{1}$.

Lemma 2.1. Suppose $k(y), \ell(y) \in C^{1}[0, Y], a(x, y), b(x, y) \in C(\bar{G})$ and

$$
\ell^{\prime}(0)>0, \quad a(x, 0)>0, \quad b(x, 0)=0 \quad \text { for } x \in[0,1]
$$

Then there exist constants $m>0$ and $\lambda_{0}>0$ such that for $\lambda \geqslant \lambda_{0}$

$$
m\|u\|_{1, \lambda} \leqslant\|L u\|_{0, \lambda}, \quad \forall u \in C_{A C}^{\infty}(\bar{G}) .
$$

Proof. Let λ and μ be positive constants. By Green's formula,

$$
\begin{aligned}
& \left(2 L u, e^{-\lambda x}\left(\mu u_{x}-u_{y}\right)\right)_{0}=\int_{G}(2 L u) e^{-\lambda x}\left(\mu u_{x}-u_{y}\right) d x d y \\
& \quad=I(\lambda)+\int_{\partial G} e^{-\lambda x}\left[\left[-\left(k u_{x}^{2}+\ell u_{y}^{2}\right)+2 \mu \ell u_{x} u_{y}\right] d x\right. \\
& \left.\quad+\left[\mu\left(k u_{x}^{2}+\ell u_{y}^{2}\right)-2 k u_{x} u_{y}\right] d y\right]
\end{aligned}
$$

where

$$
\begin{equation*}
I(\lambda)=\int_{G} e^{-\lambda x}\left[A(x, y) u_{x}^{2}+2 B(x, y) u_{x} u_{y}+C(x, y) u_{y}^{2}\right] d x d y \tag{3}
\end{equation*}
$$

with

$$
\begin{aligned}
& A(x, y)=\lambda \mu k-k^{\prime}+2 \mu a, \quad B(x, y)=-\lambda k-a+\mu b, \\
& C(x, y)=\lambda \mu \ell+\ell^{\prime}-2 b .
\end{aligned}
$$

The line integral $\int_{\partial G}=\int_{A B}+\int_{B C}+\int_{C A}$ is nonnegative. Indeed, $\int_{A B}=0$ because $k(0)=\ell(0)=0$. On $B C: x=1-F(y)$ we have $d x=-\sqrt{k / \ell} d y$, therefore

$$
\int_{B C}=\int_{0}^{Y} e^{-\lambda(1-F(y))}(\mu+\sqrt{k / \ell})\left(\sqrt{k} u_{x}-\sqrt{\ell} u_{y}\right)^{2} d y \geqslant 0 .
$$

On $A C: x=F(y)$ we have $d x=\sqrt{k / \ell} d y$, and, in addition, $u \equiv 0$ on $A C$ implies $\sqrt{k} u_{x}+\sqrt{\ell} u_{y}=0$ on $A C$, therefore

$$
\int_{C A}=\int_{Y}^{0} e^{-\lambda F(y)}(\mu-\sqrt{k / \ell})\left(\sqrt{k} u_{x}+\sqrt{\ell} u_{y}\right)^{2} d y=0
$$

Hence

$$
\left(2 L u, e^{-\lambda x}\left(\mu u_{x}-u_{y}\right)\right)_{0} \geqslant I(\lambda)
$$

Taking into account that

$$
\begin{aligned}
& -2 a u_{x} u_{y} \geqslant-\frac{2 a^{2}}{\ell^{\prime}(0)} u_{x}^{2}-\frac{\ell^{\prime}(0)}{2} u_{y}^{2} \\
& 2(-\lambda k+\mu b) u_{x} u_{y} \geqslant-(\lambda k+\mu|b|)\left(u_{x}^{2}+u_{y}^{2}\right)
\end{aligned}
$$

we obtain

$$
\begin{equation*}
I(\lambda) \geqslant \int_{G} e^{-\lambda x}\left[A_{1}(x, y) u_{x}^{2}+C_{1}(x, y) u_{y}^{2}\right] d x d y \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
A_{1}(x, y)= & \lambda k(y)(\mu-1)-k^{\prime}(y)+\mu(2 a(x, y)-|b(x, y)|) \\
& -2 a^{2}(x, y) / \ell^{\prime}(0), \\
C_{1}(x, y)= & \lambda[\mu \ell(y)-k(y)]+\ell^{\prime}(y)-\ell^{\prime}(0) / 2-\mu|b(x, y)| .
\end{aligned}
$$

By $k(0)=\ell(0)=0$ and $b(x, 0)=0$ for $x \in[0,1]$ we have

$$
\begin{aligned}
& A_{1}(x, 0)=-k^{\prime}(0)+2 \mu a(x, 0)-2 a^{2}(x, 0) / \ell^{\prime}(0) \\
& C_{1}(x, 0)=\ell^{\prime}(0) / 2
\end{aligned}
$$

Since the function $a(x, 0)$ has a strictly positive lower bound on $[0,1]$ (because it is continuous and $a(x, 0)>0)$ there exists $\mu>0$ such that $A_{1}(x, 0) \geqslant \ell^{\prime}(0) / 2$, $x \in[0,1]$. Fix the constant μ so that $\mu \geqslant 2+\sup _{G} k / \ell$.

Taking into account that the functions k, ℓ, a, b are continuous, so uniformly continuous in \bar{G}, one can easily see that there exists $\delta>0$ such that if $G_{\delta}^{1}=$ $\{(x, y) \in \bar{G}: 0 \leqslant y \leqslant \delta\}$ then for $\lambda>0$ and $(x, y) \in G_{\delta}^{1}$ we have $A_{1}(x, y) \geqslant$ $\ell^{\prime}(0) / 4, C_{1}(x, y) \geqslant \ell^{\prime}(0) / 4$.

Next we consider $G_{\delta}^{2}=\{(x, y) \in \bar{G}: \delta \leqslant y\}$. By the choice of μ we have $\mu-k / \ell \geqslant 1$ and $\mu-1 \geqslant 1$. Since the functions $k(y)$ and $\ell(y)$ are continuous and strictly positive for $y \geqslant \delta$ it is easy to see that there exists λ_{0} such that for $\lambda>\lambda_{0}$ and $(x, y) \in G_{\delta}^{2}$ we have $A_{1}(x, y) \geqslant \ell^{\prime}(0) / 4, C_{1}(x, y) \geqslant \ell^{\prime}(0) / 4$. Hence
for $\lambda>\lambda_{0}$ it holds

$$
I(\lambda) \geqslant\left(\ell^{\prime}(0) / 4\right) \int_{G} e^{-\lambda x}\left(u_{x}^{2}+u_{y}^{2}\right) d x d y .
$$

On the other hand, we have

$$
\begin{aligned}
0 & \leqslant \int_{\partial G} e^{-\lambda x} u^{2} d y=\int_{G} \partial_{x}\left(e^{-\lambda x} u^{2}\right) d x d y \\
& =\int_{G}\left(-\lambda e^{-\lambda x} u^{2}+e^{-\lambda x} 2 u u_{x}\right) d x d y \\
& \leqslant \int_{G} e^{-\lambda x}\left(-\lambda u^{2}+u^{2}+u_{x}^{2}\right) d x d y
\end{aligned}
$$

Therefore

$$
(\lambda-1) \int_{G} e^{-\lambda x} u^{2} d x d y \leqslant \int_{G} e^{-\lambda x} u_{x}^{2} d x d y
$$

so for $\lambda \geqslant \lambda_{0}>2$ it holds

$$
\int_{G} e^{-\lambda x} u^{2} d x d y \leqslant \int_{G} e^{-\lambda x} u_{x}^{2} d x d y
$$

Hence

$$
\begin{equation*}
I(\lambda) \geqslant\left(\ell^{\prime}(0) / 8\right)\|u\|_{1, \lambda}^{2} \tag{5}
\end{equation*}
$$

and we obtain

$$
\begin{aligned}
\left(\ell^{\prime}(0) / 8\right)\|u\|_{1, \lambda}^{2} & \leqslant\left(2 L u, e^{-\lambda x}\left(\mu u_{x}-u_{y}\right)\right)_{0} \leqslant\|2 L u\|_{0, \lambda}\left\|\mu u_{x}-u_{y}\right\|_{0, \lambda} \\
& \leqslant 4 \mu\|L u\|_{0, \lambda}\|u\|_{1, \lambda},
\end{aligned}
$$

which implies $m\|u\|_{1, \lambda} \leqslant\|L u\|_{0, \lambda}$ with $m=\ell^{\prime}(0) /(32 \mu)$.
The following simple observation will be useful.
Lemma 2.2. If $\lambda>0$ and $u \in H_{A C}^{1}(\bar{G})$ then $(\lambda / 2)\|u\|_{0, \lambda} \leqslant\|u\|_{1, \lambda}$.
Proof. Obviously, it is enough to prove the claim for $u \in C_{A C}^{\infty}(\bar{G})$. Then we have by Cauchy inequality

$$
\int_{G} e^{-\lambda x} \partial_{x}\left(u^{2} / 2\right) d x d y=\int_{G} e^{-\lambda x} u u_{x} d x d y \leqslant\|u\|_{0, \lambda}\|u\|_{1, \lambda} .
$$

On the other hand, since $\int_{\partial G} e^{-\lambda x} u^{2} d y \geqslant 0$, we obtain by Green's formula

$$
\begin{aligned}
\int_{G} e^{-\lambda x} \partial_{x}\left(u^{2} / 2\right) d x d y & =\frac{1}{2} \int_{\partial G} e^{-\lambda x} u^{2} d y+\frac{\lambda}{2} \int_{G} e^{-\lambda x} u^{2} d x d y \\
& \geqslant \frac{\lambda}{2}\|u\|_{0, \lambda}^{2}
\end{aligned}
$$

which completes the proof.
We need also the following technical statement.

Lemma 2.3. If $v, w \in L^{s}(G) \forall s \geqslant 2$ and there exists a constant $C>0$ such that $\|v\|_{L^{s}(G)} \leqslant C$ for all $s \geqslant s_{0} \geqslant 2$, then $\|v w\|_{0, \lambda} \leqslant C\|w\|_{0, \lambda}$.

Proof. By Cauchy inequality we obtain (using induction on k)

$$
\begin{aligned}
\|v w\|_{0, \lambda} & \leqslant\left(\int_{G} e^{-\lambda x} v^{4} w^{2} d x d y\right)^{1 / 4}\left(\int_{G} e^{-\lambda x} w^{2} d x d y\right)^{1 / 4} \\
& =\left\|v^{2} w\right\|_{0, \lambda}^{1 / 2}\|w\|_{0, \lambda}^{1 / 2} \leqslant\left\|v^{4} w\right\|_{0, \lambda}^{1 / 4}\|w\|_{0, \lambda}^{3 / 4} \leqslant \cdots \\
& \leqslant\left\|v^{2^{k}} w\right\|_{0, \lambda}^{2^{-k}}\|w\|_{0, \lambda}^{1-2^{-k}} \leqslant\|v\|_{L^{2^{k+2}(G)}}\|w\|_{L^{4}(G)}^{2^{-k}}\|w\|_{0, \lambda}^{1-2^{-k}} .
\end{aligned}
$$

Therefore, for k so large that $2^{k+2} \geqslant s_{0}$ we have

$$
\|v w\|_{0, \lambda} \leqslant C\|w\|_{L^{4}(G)}^{2^{-k}}\|w\|_{0, \lambda}^{1-2^{-k}}
$$

Thus, letting $k \rightarrow \infty$ we obtain the claim.
Lemma 2.4. If $k, \ell \in C^{1}[0, Y]$ and $v \in C_{B C}^{\infty}(\bar{G})$ then for $\mu>0$ the boundary problem

$$
h(u):=e^{-\lambda x}\left(\mu u_{x}-u_{y}\right)=v \quad \text { in } G,\left.\quad u\right|_{A C}=0,
$$

has a unique solution $u \in C_{A C}^{1}(\bar{G}) \cap C^{2}(\bar{G} \backslash\{A\})$.
Proof. Fix $v \in C_{B C}^{\infty}(\bar{G})$ and set $\tilde{v}(x, y)=-e^{\lambda x} v(x, y)$. Then we have to find $u(x, y) \in C_{A C}^{1}(\bar{G})$ such that

$$
\begin{equation*}
-\mu u_{x}+u_{y}=\tilde{v}(x, y) \tag{6}
\end{equation*}
$$

Consider one parameter family of lines ℓ_{c} given by

$$
\xi=-\mu t+c, \quad \eta=t, \quad c \in \mathcal{R}
$$

Suppose that $u(x, y)$ satisfies (6) and for some c the line ℓ_{c} has a nonempty intersection with G. Then

$$
\frac{d}{d t}[u(-\mu t+c, t)]=-\mu u_{x}+u_{y}=\tilde{v}(-\mu t+c, t) .
$$

Observe that if $\varphi(s)$ is the inverse function of the function $\mu t+F(t)$ then for each point $(x, y) \in G$ the line ℓ_{c} with $c=x+\mu y$ passes through the point (x, y), intersects the characteristics $A C$ into a point with a second coordinate $\varphi(c)=\varphi(x+\mu y)$ and for $t \in[y, \varphi(c)]$ the corresponding segment of the line ℓ_{c} lies inside \bar{G}. Therefore we obtain

$$
u(x, y)=\int_{\varphi(x+\mu y)}^{y} \tilde{v}(-\mu t+x+\mu y, t) d t
$$

Conversely, if $u(x, y)$ is defined by the above formula then it is easy to see that $u \in C_{A C}^{1}(\bar{G}) \cap C^{2}(\bar{G} \backslash\{A\})$ and (6) holds. Second derivatives of u may not exist at $A=(0,0)$ because $F^{\prime \prime}(0)$ (and as well $\varphi^{\prime \prime}(0)$) may not exist.

Remark. Nevertheless second derivatives of u may not exist at the point $A=$ $(0,0)$, we can apply Green's formula in Lemma 2.5 to some expression that involves second derivatives of u. One can easily see that by applying Green's formula to domains $G_{\varepsilon}=G \cap\{y>\varepsilon\}, \varepsilon>0$, and passing to a limit as $\varepsilon \rightarrow 0$.

Next we are going to prove a priori estimate corresponding to the nonlinear term $f(x, y, u)=-r(x, y) u|u|^{\rho}+g(x, y, u), \rho \geqslant 0$.

Set

$$
B_{1}[u, v]:=B[u, v]-\int_{G} f(x, y, u(x, y)) v(x, y) d x d y
$$

Lemma 2.5. Suppose the assumptions of Lemma 2.1 hold, $r(x, y) \in C^{1}(\bar{G})$ and $g(x, y, z) \in C^{1}(\bar{G} \times \mathcal{R})$. In addition, let $g(x, y, u)$ satisfy

$$
\begin{equation*}
|g| \leqslant C+q(x, y)|u|^{p-1}, \quad\left|g_{x}\right|+\left|g_{y}\right| \leqslant C_{1}+C_{2}|u|^{p-1} \tag{7}
\end{equation*}
$$

where C, C_{1}, C_{2} are positive constants, $p=\rho+2, q(x, y) \in C(\bar{G})$ and

$$
\begin{equation*}
\inf _{\bar{G}}[r(x, y)-q(x, y)]=r_{0}>0 . \tag{8}
\end{equation*}
$$

Then there exist $\mu>0$ and $\lambda_{0}>0$ such that for $\lambda \geqslant \lambda_{0}$ we have for $v \in$ $C_{B C}^{\infty}(\bar{G})$ and u related to v as in Lemma 2.4

$$
\begin{equation*}
B_{1}[u, v]=B_{1}[u, h(u)] \geqslant m_{0}\|u\|_{1, \lambda}^{2}-D, \tag{9}
\end{equation*}
$$

where $m_{0}=\ell^{\prime}(0) / 16$ and the constant $D>0$ depends on the choice of μ and λ, but does not depend on u.

Proof. Suppose $v \in C_{B C}^{\infty}(\bar{G})$ and u is related to v as in Lemma 2.4, that is $v=h(u)=\exp (-\lambda x)\left(\mu u_{x}-u_{y}\right)$. We have

$$
B_{1}[u, h(u)]=B[u, h(u)]+I_{1}-I_{2},
$$

where

$$
\begin{aligned}
& I_{1}=\int_{G} e^{-\lambda x} r|u|^{\rho} u\left(\mu u_{x}-u_{y}\right) d x d y \\
& I_{2}=\int_{G} e^{-\lambda x} g(x, y, u)\left(\mu u_{x}-u_{y}\right) d x d y
\end{aligned}
$$

By Green's formula,

$$
B[u, h(u)]=\frac{1}{2} I(\lambda)+\frac{1}{2} \int_{\partial G} e^{-\lambda x}\left(\ell u_{y}^{2}-k u_{x}^{2}\right)(\mu d y+d x),
$$

where $I(\lambda)$ is given by (3). The linear integral $\int_{\partial G}=\int_{A B}+\int_{B C}+\int_{C A}$ is nonnegative. Indeed, $\int_{A B}=0$ because $k(0)=\ell(0)=0$. On $B C: x=1-F(y)$, so $d x=-\sqrt{k / \ell} d y$ and

$$
\int_{B C}=\int_{0}^{Y} e^{-\lambda(1-F(y))}\left(\ell u_{y}^{2}-k u_{x}^{2}\right)(\mu-\sqrt{k / \ell}) d y .
$$

Since $\mu u_{x}-u_{y}=v \exp (\lambda x) \equiv 0$ on $B C$ we have

$$
\begin{aligned}
\int_{B C} & =\int_{0}^{Y} e^{-\lambda(1-F(y))}\left(\ell \mu^{2}-k\right)(\mu-\sqrt{k / \ell}) u_{x}^{2} d y \\
& =\int_{0}^{Y} e^{-\lambda(1-F(y))} \ell\left(\mu+\sqrt{k / \ell}(\mu-\sqrt{k / \ell})^{2} u_{x}^{2} d y \geqslant 0 .\right.
\end{aligned}
$$

Finally $\int_{C A}=0$ because $u \equiv 0$ on $C A$ implies $u_{x} \sqrt{k / \ell}+u_{y}=0$ on $C A$. Hence from (5) it follows

$$
\begin{equation*}
B[u, h(u)] \geqslant m_{0}\|u\|_{1, \lambda}^{2}, \quad m_{0}=\ell^{\prime}(0) / 16 \tag{10}
\end{equation*}
$$

By Green's formula

$$
\begin{aligned}
I_{1}= & \int_{G} r(x, y)|u|^{\rho} u e^{-\lambda x}\left(\mu u_{x}-u_{y}\right) d x d y \\
= & \frac{1}{p} \int_{\partial G} e^{-\lambda x} r|u|^{p}(d x+\mu d y)+\frac{1}{p} \int_{G} e^{-\lambda x}|u|^{p}\left(\lambda \mu r-\mu r_{x}+r_{y}\right) d x d y \\
\geqslant & \frac{1}{p} \int_{\partial G} e^{-\lambda x} r|u|^{p}(d x+\mu d y) \\
& +\frac{1}{p} \int_{G} e^{-\lambda x}|u|^{p}\left(\lambda \mu r-\mu\left|r_{x}\right|-\left|r_{y}\right|\right) d x d y
\end{aligned}
$$

Next we consider the integral I_{2}. Set

$$
\tilde{g}(x, y, z):=\int_{0}^{z} g(x, y, t) d t
$$

Then we have

$$
\begin{aligned}
& \partial_{x}[\tilde{g}(x, y, u(x, y))]=\tilde{g}_{x}(x, y, u(x, y))+g(x, y, u(x, y)) u_{x}, \\
& \partial_{y}[\tilde{g}(x, y, u(x, y))]=\tilde{g}_{y}(x, y, u(x, y))+g(x, y, u(x, y)) u_{y} .
\end{aligned}
$$

Therefore by Green's formula we obtain

$$
\begin{aligned}
I_{2} & =\int_{G} g(x, y, u) e^{-\lambda x}\left(\mu u_{x}-u_{y}\right) d x d y \\
& =\int_{\partial G} e^{-\lambda x} \tilde{g}(x, y, u)(d x+\mu d y)+\int_{G} e^{-\lambda x}\left(\lambda \mu \tilde{g}-\mu \tilde{g}_{x}+\tilde{g}_{y}\right) d x d y
\end{aligned}
$$

Since $\mu-k / \ell>0$ (by the choice of μ) it is easy to see that for any function $\psi(x, y)$ with nonnegative values $\int_{\partial G} \psi(x, y)(d x+\mu d y) \geqslant 0$. Therefore

$$
\int_{\partial G} e^{-\lambda x} \tilde{g}(x, y, u)(d x+\mu d y) \leqslant \int_{\partial G} e^{-\lambda x}|\tilde{g}(x, y, u)|(d x+\mu d y) .
$$

From (7) it follows (with some $\varepsilon>0$ that will be fixed later)

$$
\begin{aligned}
& |\tilde{g}| \leqslant C|u|+q(x, y)|u|^{p} / p \leqslant C^{2} / \varepsilon+\varepsilon|u|^{2}+q(x, y)|u|^{p} / p, \\
& \left|\tilde{g}_{x}\right|+\left|\tilde{g}_{y}\right| \leqslant C_{1}|u|+C_{2}|u|^{p} / p \leqslant C_{1}^{2} / \varepsilon+\varepsilon|u|^{2}+C_{2}|u|^{p} / p,
\end{aligned}
$$

thus

$$
\begin{aligned}
I_{2} \leqslant & \int_{\partial G} e^{-\lambda x}|\tilde{g}(x, y, u)|(d x+\mu d y) \\
& +\int_{G} e^{-\lambda x}\left(\lambda \mu|\tilde{g}|+\mu\left|\tilde{g}_{x}\right|+\left|\tilde{g}_{y}\right|\right) d x d y \\
\leqslant & D+\int_{\partial G} e^{-\lambda x}\left(\varepsilon|u|^{2}+q(x, y)|u|^{p} / p\right)(d x+\mu d y) \\
& +\int_{G} e^{-\lambda x}\left[\lambda \mu\left(\varepsilon|u|^{2}+q(x, y)|u|^{p} / p\right)\right. \\
& \left.+\mu\left(\varepsilon|u|^{2}+C_{2}|u|^{p} / p\right)\right] d x d y
\end{aligned}
$$

where

$$
D=(\mu / \varepsilon) \int_{G} e^{-\lambda x}\left(\lambda C^{2}+C_{1}^{2}\right) d x d y+\left(C^{2} / \varepsilon\right) \int_{\partial G} e^{-\lambda x}(d x+\mu d y)
$$

Combining the estimates for I_{1} and I_{2} we obtain (due to (8))

$$
I_{1}-I_{2} \geqslant-D-\varepsilon J_{0}+(1 / p) J_{1}+(1 / p) J_{2}
$$

where

$$
\begin{aligned}
J_{0} & =\int_{\partial G} e^{-\lambda x} u^{2}(d x+\mu d y)+\int_{G} e^{-\lambda x}(\lambda \mu+\mu) u^{2} d x d y \\
J_{1} & =\int_{\partial G} e^{-\lambda x}|u|^{p}[r(x, y)-q(x, y)](d x+\mu d y) \\
& \geqslant \int_{\partial G} e^{-\lambda x}|u|^{p} r_{0}(d x+\mu d y) \geqslant 0, \\
J_{2} & =\int_{G} e^{-\lambda x}|u|^{p} \mu\left[\lambda[r(x, y)-q(x, y)]-\left(\left|r_{x}\right|+\left|r_{y}\right|+C_{2}\right)\right] d x d y \geqslant 0
\end{aligned}
$$

for $\lambda \geqslant \lambda_{0} \geqslant\left(1 / r_{0}\right) \sup _{G}\left(\left|r_{x}\right|+\left|r_{y}\right|+C_{2}\right)$.
In order to estimate J_{0} observe that

$$
\begin{aligned}
\int_{\partial G} e^{-\lambda x} u^{2}(d x+\mu d y) & =\int_{G} e^{-\lambda x}\left[-\lambda \mu u^{2}+2 \mu u u_{x}-2 u u_{y}\right] d x d y \\
& \leqslant \int_{G} e^{-\lambda x}\left[-\lambda \mu u^{2}+\mu^{2} u^{2}+u_{x}^{2}+u^{2}+u_{y}^{2}\right] d x d y
\end{aligned}
$$

therefore

$$
J_{0} \leqslant \int_{G} e^{-\lambda x}\left[\left(\mu^{2}+\mu+1\right) u^{2}+u_{x}^{2}+u_{y}^{2}\right] d x d y \leqslant\left(\mu^{2}+\mu+1\right)\|u\|_{1, \lambda}^{2}
$$

Hence by (10) we obtain $B_{1}(u, v) \geqslant\left[m_{0}-\varepsilon\left(\mu^{2}+\mu+1\right)\right]\|u\|_{1, \lambda}^{2}-D$, so the claim holds with $m=m_{0} / 2$ if ε is fixed so that $\varepsilon\left(\mu^{2}+\mu+1\right)<m_{0} / 2$.

3. Existence of generalized solution

Theorem 3.1. Suppose

1. $k(y), \ell(y) \in C^{1}[0, Y], a(x, y), b(x, y) \in C(\bar{G})$ and

$$
\ell^{\prime}(0)>0, \quad a(x, 0)>0, \quad b(x, 0)=0 \quad \text { for } x \in[0,1] ;
$$

2. $r(x, y) \in C^{1}(\bar{G}), g(x, y, z) \in C^{1}(\bar{G} \times \mathcal{R})$ and

$$
\begin{equation*}
|g| \leqslant C+q(x, y)|u|^{p-1}, \quad\left|g_{x}\right|+\left|g_{y}\right| \leqslant C_{1}+C_{2}|u|^{p-1} \tag{11}
\end{equation*}
$$

where C, C_{1}, C_{2} are positive constants, $p=\rho+2, q(x, y) \in C(\bar{G})$ and

$$
\begin{equation*}
\inf _{\bar{G}}[r(x, y)-q(x, y)]=r_{0}>0 . \tag{12}
\end{equation*}
$$

Then there exists a generalized solution of Problem B.
Proof. For convenience we divide the proof into several steps.
Step 1. Since the space $H_{B C}^{1}$ is separable we can choose a linearly independent sequence of functions $\left(v_{j}\right)_{j=1}^{\infty}, v_{j} \in C_{B C}^{\infty}(\bar{G})$ which linear span is dense in $H_{B C}^{1}$.

Let $u_{j} \in C_{A C}^{1}(\bar{G}) \cap C_{A C}^{2}(\bar{G} \backslash\{A\}), j=1,2, \ldots$, corresponds to v_{j} as in Lemma 2.4, that is $h\left(u_{j}\right)=e^{-\lambda x}\left(\mu \partial_{x} u_{j}-\partial_{y} u_{j}\right)=v_{j}, j=1,2, \ldots$.

We claim that for each $n \in \mathcal{N}$ there exist constants $c_{j}^{n}, j=1, \ldots, n$, such that

$$
\begin{equation*}
u^{n}=\sum_{j=1}^{n} c_{j}^{n} u_{j} \tag{13}
\end{equation*}
$$

satisfies the system of equations

$$
\begin{equation*}
B_{1}\left[u^{n}, v_{i}\right]=B_{1}\left[\sum_{j=1}^{n} c_{j}^{n} u_{j}, v_{i}\right]=0, \quad i=1, \ldots, n \tag{14}
\end{equation*}
$$

Indeed, fix $n \in \mathcal{N}$ and set for any $\bar{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathcal{R}^{n}$

$$
u(\bar{c})=\sum_{j=1}^{n} c_{j} u_{j}
$$

then obviously $h(u(\bar{c}))=\sum_{j=1}^{n} c_{j} h\left(u_{j}\right)=\sum_{j=1}^{n} c_{j} v_{j}$. Consider a mapping $P: \mathcal{R}^{n} \rightarrow \mathcal{R}^{n}$ defined by $P(\bar{c})=\left(B_{1}\left[u(\bar{c}), v_{i}\right]\right)_{i=1}^{n}$. Obviously P is continuous.

Fix constants μ, λ, D as in Lemma 2.5. Then, by a priori estimate (9) proved in Lemma 2.5 it follows

$$
\begin{equation*}
\sum_{i=1}^{n} B_{1}\left[u(\bar{c}), v_{i}\right] \cdot c_{i}=B_{1}[u(\bar{c}), h(u(\bar{c}))] \geqslant m\|u(\bar{c})\|_{1, \lambda}^{2}-D . \tag{15}
\end{equation*}
$$

The norms $\|\bar{c}\|_{\lambda}:=\|u(\bar{c})\|_{1, \lambda}$ and $\|\bar{c}\|:=\left(\sum_{j=1}^{n} c_{j}^{2}\right)^{1 / 2}$ are equivalent (since any two norms in \mathcal{R}^{n} are equivalent), so from (15) we obtain

$$
(P(\bar{c}), \bar{c})=\sum_{i=1}^{n} B_{1}\left[u(\bar{c}), v_{i}\right] \cdot c_{i} \geqslant 0 \quad \text { if }\|\bar{c}\| \geqslant \text { const }>0 .
$$

Hence, by well-known Sharp-Angle Lemma (see, e.g., Lemma 4.3 in Chapter 1 of [12]) there exists $\bar{c} \in \mathcal{R}$ such that $P(\bar{c})=0$.

Step 2. The sequence $\left(u^{n}\right)_{n=1}^{\infty}$ from Step 1 is bounded in the space $H_{A C}^{1}$. Indeed, from $B_{1}\left[u^{n}, h\left(u^{n}\right)\right]=\sum_{i=1}^{n} B_{1}\left[u^{n}, v_{i}\right] \cdot c_{i}^{n}=0$, and a priori estimate (9) it follows

$$
m\left\|u^{n}\right\|_{1, \lambda}^{2} \leqslant D, \quad n=1,2, \ldots .
$$

Since every bounded set in the (Hilbert) space $H_{A C}^{1}$ is weakly compact there exists a subsequence ($u^{n_{k}}$) and an element $u \in H_{A C}^{1}$ such that

$$
\begin{equation*}
u^{n_{k}} \rightarrow u \quad \text { weakly in } H_{A C}^{1} . \tag{16}
\end{equation*}
$$

On the other hand, by Relich's Theorem about compact embedding of the Sobolev space $W^{1,2}(G)$ into $L^{2}(G)$ (see [1]), we can assume without loss of generality that the subsequence $\left(u^{n_{k}}\right)$ converges in $L^{2}(G)$ to some function $w \in$ $L^{2}(G)$. Moreover, due to a well-known property of strong convergence in $L^{2}(G)$ we can assume that the subsequence $\left(u^{n_{k}}\right)$ converges to w almost everywhere in G.

Since weak convergence in H^{1} implies weak convergence in $L^{2}(G)$, the subsequence ($u^{n_{k}}$) converges to u weakly in $L^{2}(G)$, thus $w=u$ and

$$
\begin{equation*}
u^{n_{k}} \rightarrow u \quad \text { almost everywhere in } G \tag{17}
\end{equation*}
$$

Observe also that in view of Lemma 1.1 the subsequence $\left(u^{n_{k}}\right)$ is bounded in the space $L^{p}(G)$, that is there exists a constant $C_{p}>0$ such that

$$
\begin{equation*}
\left\|u^{n_{k}}\right\|_{p}=\left(\int_{G}\left|u^{n_{k}}(x, y)\right|^{p} d x d y\right)^{1 / p} \leqslant C_{p} \tag{18}
\end{equation*}
$$

Step 3. We shall prove that the function u is a generalized solution of Problem B.

Since the linear span of the system $v_{i}, i=1,2, \ldots$, is dense in $H_{B C}^{1}$ and $B_{1}[u, v]$ is linear with respect to its second argument it is enough to show that $B_{1}\left[u, v_{i}\right]=0$ for $i=1,2, \ldots$. By Step 1 we have $B_{1}\left[u^{n_{k}}, v_{i}\right]=0$ for $n_{k}>i$, so it is enough to prove that

$$
\begin{equation*}
B_{1}\left[u^{n_{k}}, v_{i}\right] \rightarrow B_{1}\left[u, v_{i}\right] \quad \text { as } k \rightarrow \infty . \tag{19}
\end{equation*}
$$

For every fixed v_{i} the linear functional $B\left[\cdot, v_{i}\right]$ is continuous in the space H^{1}, thus $B\left[u^{n_{k}}, v_{i}\right] \rightarrow B\left[u, v_{i}\right]$ as $k \rightarrow \infty$.

It remains to consider the nonlinear terms in $B_{1}\left[u^{n_{k}}, v_{i}\right]$. Put

$$
\begin{aligned}
& w_{k}(x, y):=g\left(x, y, u^{n_{k}}(x, y)\right)-r(x, y)\left|u^{n_{k}}\right|^{\rho} u^{n_{k}}, \\
& w(x, y)=g(x, y, u(x, y))-r(x, y)|u|^{\rho} u .
\end{aligned}
$$

We are going to show for every $i=1,2, \ldots$ that

$$
\begin{equation*}
\int_{G} w_{k}(x, y) v_{i}(x, y) d x d y \rightarrow \int_{G} w(x, y) v_{i}(x, y) d x d y . \tag{20}
\end{equation*}
$$

From (17) it follows

$$
\begin{equation*}
w_{k}(x, y) \rightarrow w(x, y) \quad \text { almost everywhere in } G . \tag{21}
\end{equation*}
$$

In addition, in view of (11) and (18) we have for $s=p /(p-1)$

$$
\left|w_{k}(x, y)\right|^{s} \leqslant C_{3}+C_{4}\left|u^{n_{k}}(x, y)\right|^{p} \leqslant C_{3}+C_{4} C_{p}^{p}
$$

where the constants C_{3} and C_{4} depend on C and $\sup _{G} q(x, y)$, so the sequence $\left(w_{k}\right)$ is bounded in the space $L^{s}(G)$. Now (20) follows from Lemma 1.3 in Chapter 1 of [12], which says that if the sequence $\left(w_{k}\right)$ is bounded in $L^{s}(G)$ then (21) implies that $w_{k} \rightarrow w$ weakly in $L^{s}(G)$.

4. Strong solutions and uniqueness theorem

After Friedrichs [5,6] coincidence of weak (or generalized) and strong solutions has been proven (under some restrictions on the corresponding domain) for various linear boundary value problems. In the case of our linear Problem B the following statement holds.

Proposition 4.1. If $k(y) \in C[0, Y], \ell(y) \in C^{1}[0, Y]$ and $a(x, y), b(x, y) \in C^{1}(\bar{G})$ then every generalized solution of linear Problem B is also a strong solution of linear Problem B.

We omit the proof because the same statement (but with $b(x, y) \equiv 0$) has been proven in [15, Proposition 1] (see also Lemmas 5 and 6 there).

In the next theorem we prove under very mild restriction on the right-hand side $f(x, y, u)$ that each generalized solution of nonlinear Problem B is a strong solution of the same problem. Similar result has been obtained in [11] for a nonlinear Tricomi Problem and the related evolution problem.

Recall that a function $f(x, y, z): G \times \mathcal{R} \rightarrow \mathcal{R}$ satisfies Carathéodory condition (e.g., [9]) if for any fixed $z \in \mathcal{R}$ it is measurable function on G and for almost all $(x, y) \in G$ the function f is continuous with respect to $z \in \mathcal{R}$.

Theorem 4.2. Suppose $k(y), \ell(y) \in C^{1}[0, Y]$ and $a(x, y), b(x, y) \in C^{1}(\bar{G})$. If the function $f(x, y, z)$ satisfies Carathéodory condition and

$$
\begin{equation*}
|f(x, y, z)| \leqslant Q(x, y)+\alpha|z|^{\gamma} \tag{22}
\end{equation*}
$$

where $Q(x, y) \in L^{2}(G)$ and α, γ are nonnegative constants, then every generalized solution of Problem B is a strong solution of Problem B.

Proof. Suppose $u \in H_{A C}^{1}$ is a generalized solution of Problem B. Then u is a generalized solution of the following linear problem:

$$
L u=\hat{f}(x, y):=f(x, y, u(x, y)),\left.\quad u\right|_{A C}=0
$$

Thus by Proposition 4.1 there exists a sequence $\left(u_{n}\right)_{n=1}^{\infty}, u_{n} \in C_{A C}^{\infty}(\bar{G})$ such that $\left\|u_{n}-u\right\|_{1}+\left\|L u_{n}-\hat{f}\right\|_{0} \rightarrow 0$ as $n \rightarrow \infty$.

Obviously, to prove the theorem it is enough to show that there exists a subsequence $\left(u_{n_{k}}\right)_{k=1}^{\infty}$ such that $\left\|f\left(x, y, u_{n_{k}}(x, y)\right)-\hat{f}(x, y)\right\|_{0} \rightarrow 0$ as $k \rightarrow$ ∞. Since $\left\|u_{n}-u\right\|_{1} \rightarrow 0$ one can choose a subsequence $\left(u_{n_{k}}\right)_{k=1}^{\infty}$ such that $\sum_{k}\left\|u_{n_{k+1}}-u_{n_{k}}\right\|_{1}<\infty$. In view of Lemma 1.1 for every $s \geqslant 2$ we have $\sum_{k}\left\|u_{n_{k+1}}-u_{n_{k}}\right\|_{L^{s}(G)}<\infty$. So from well known properties of the spaces $L^{s}(G)$, $s \geqslant 2$ it follows:
(i) the series

$$
\Phi(x, y):=\left|u_{n_{1}}(x, y)\right|+\sum_{k=1}^{\infty}\left|u_{n_{k+1}}(x, y)-u_{n_{k}}(x, y)\right|
$$

is convergent almost everywhere in G and $\Phi \in L^{s}(G)$ for every $s \geqslant 2$;
(ii) $u_{n_{k}}(x, y) \rightarrow u(x, y)$ as $k \rightarrow \infty$ almost everywhere in G;
(iii) $\left|u_{n_{k}}(x, y)\right| \leqslant|\Phi(x, y)|$ almost everywhere in G.

Now by Carathéodory condition

$$
f\left(x, y, u_{n_{k}}(x, y)\right) \rightarrow f(x, y, u(x, y))=\hat{f}(x, y)
$$

almost everywhere in G,
thus $\left|f\left(x, y, u_{n_{k}}(x, y)\right)-\hat{f}(x, y)\right|^{2} \rightarrow 0$ as $k \rightarrow \infty$ almost everywhere in G.
On the other hand (iii) and (22) imply

$$
\left|f\left(x, y, u_{n_{k}}(x, y)\right)\right| \leqslant Q(x, y)+\alpha \Phi^{\gamma}(x, y)
$$

almost everywhere in G. Letting $k \rightarrow \infty$ we obtain

$$
|\hat{f}(x, y)| \leqslant Q(x, y)+\alpha \Phi^{\gamma}(x, y)
$$

thus

$$
\left|f\left(x, y, u_{n_{k}}(x, y)\right)-\hat{f}(x, y)\right|^{2} \leqslant 8 Q^{2}(x, y)+8 \alpha \Phi^{2 \gamma}(x, y) \in L^{1}(G)
$$

almost everywhere in G. Hence by Lebesgue Theorem

$$
\begin{aligned}
& \left\|f\left(x, y, u_{n_{k}}(x, y)\right)-\hat{f}(x, y)\right\|_{0}^{2} \\
& \quad=\int_{G}\left|f\left(x, y, u_{n_{k}}(x, y)\right)-\hat{f}(x, y)\right|^{2} d x d y \rightarrow 0 \quad \text { as } k \rightarrow \infty
\end{aligned}
$$

which proves the claim.
Theorem 4.3. Suppose $k(y), \ell(y) \in C^{1}[0, Y], a(x, y), b(x, y) \in C^{1}(\bar{G})$ and $\ell^{\prime}(0)>0, a(x, 0)>0, b(x, 0)=0$ for $x \in[0,1]$.

If the function $f(x, y, z)$ satisfies Carathéodory condition and there exist constants $C>0$ and $\beta \geqslant 0$ such that for all $z_{1}, z_{2} \in \mathcal{R}$

$$
\begin{equation*}
\left|f\left(x, y, z_{1}\right)-f\left(x, y, z_{2}\right)\right| \leqslant C\left(\left|z_{1}\right|^{\beta}+\left|z_{2}\right|^{\beta}\right)\left|z_{1}-z_{2}\right|, \quad(x, y) \in G \tag{23}
\end{equation*}
$$

then Problem B has at most one generalized solution.
Proof. It is easy to see that the assumptions of Theorem 4.2 hold. Suppose $u^{(1)}$ and $u^{(2)}$ are two generalized solutions of Problem B. By Theorem 4.2 they are also strong solutions. Let $\left(u_{n}^{(1)}\right)$ and $\left(u_{n}^{(2)}\right)$ be corresponding sequences of functions in $C_{A C}^{\infty}(\bar{G})$ such that

$$
\left\|u_{n}^{(i)}-u^{(i)}\right\|_{1}+\left\|L u_{n}^{(i)}-f\left(x, y, u_{n}^{(i)}\right)\right\|_{0} \rightarrow 0 \quad \text { as } n \rightarrow \infty, \quad i=1,2 .
$$

From (23) it follows with $v_{n}=\left|u_{n}^{(1)}\right|^{\beta}+\left|u_{n}^{(2)}\right|^{\beta}$ and $w_{n}=\left|u_{n}^{(2)}-u_{n}^{(1)}\right|$

$$
\left\|f\left(x, y, u_{n}^{(2)}\right)-f\left(x, y, u_{n}^{(1)}\right)\right\|_{0, \lambda} \leqslant C\left\|v_{n} w_{n}\right\|_{0, \lambda} .
$$

The sequences $\left(u_{n}^{(1)}\right)$ and $\left(u_{n}^{(2)}\right)$ are convergent in $H_{A C}^{1}$, therefore there exists a constant $C_{1}>0$ such that

$$
\left\|u_{n}^{(1)}\right\|_{1} \leqslant C_{1}, \quad\left\|u_{n}^{(2)}\right\|_{1} \leqslant C_{1}, \quad n=1,2, \ldots
$$

Thus in view of Lemma 1.1 we have

$$
\left\|u_{n}^{(1)}\right\|_{L^{s}(G)} \leqslant C_{0} C_{1}, \quad\left\|u_{n}^{(2)}\right\|_{L^{s}(G)} \leqslant C_{0} C_{1} \quad \forall s \geqslant 2
$$

Therefore, in case $\beta>0$ we obtain for $s \geqslant 2 / \beta$

$$
\left\|v_{n}\right\|_{L^{s}(G)} \leqslant\left\|\left|u_{n}^{(1)}\right|^{\beta}\right\|_{L^{s}(G)}+\left\|\left|u_{n}^{(2)}\right|^{\beta}\right\|_{L^{s}(G)} \leqslant 2\left(C_{0} C_{1}\right)^{\beta}, \quad \forall n
$$

Thus by Lemma 2.3

$$
\begin{equation*}
\left\|f\left(x, y, u_{n}^{(2)}\right)-f\left(x, y, u_{n}^{(1)}\right)\right\|_{0, \lambda} \leqslant 2 C\left(C_{0} C_{1}\right)^{\beta}\left\|u_{n}^{(2)}-u_{n}^{(1)}\right\|_{0, \lambda} . \tag{24}
\end{equation*}
$$

Obviously the same estimate holds for $\beta=0$.
By Lemma 2.1 there exist constants $m>0$ and $\lambda_{0}>0$ such that

$$
m\left\|u_{n}^{(2)}-u_{n}^{(1)}\right\|_{1, \lambda} \leqslant\left\|L u_{n}^{(2)}-L u_{n}^{(1)}\right\|_{0, \lambda}, \quad \forall \lambda \geqslant \lambda_{0} .
$$

Therefore from (24) it follows

$$
\begin{aligned}
m\left\|u_{n}^{(2)}-u_{n}^{(1)}\right\|_{1, \lambda} \leqslant & \left\|L u_{n}^{(2)}-f\left(x, y, u_{n}^{(2)}\right)\right\|_{0, \lambda} \\
& +2 C\left(C_{0} C_{1}\right)^{\beta}\left\|u_{n}^{(2)}-u_{n}^{(1)}\right\|_{0, \lambda} \\
& +\left\|f\left(x, y, u_{n}^{(1)}\right)-L u_{n}^{(1)}\right\|_{0, \lambda} .
\end{aligned}
$$

Letting $n \rightarrow \infty$ we obtain

$$
m\left\|u^{(2)}-u^{(1)}\right\|_{1, \lambda} \leqslant 2 C\left(C_{0} C_{1}\right)^{\beta}\left\|u^{(2)}-u^{(1)}\right\|_{0, \lambda} .
$$

Hence, by Lemma 2.2,

$$
m(\lambda / 2)\left\|u^{(2)}-u^{(1)}\right\|_{0, \lambda} \leqslant 2 C\left(C_{0} C_{1}\right)^{\beta}\left\|u^{(2)}-u^{(1)}\right\|_{0, \lambda},
$$

so choosing $\lambda>(4 / m) C\left(C_{0} C_{1}\right)^{\beta}$ we prove that $u^{(2)}=u^{(1)}$.

References

[1] R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[2] A.V. Bitsadze, Theory of equations of mixed type, whose order degenerates along the line of change of type, in: Continuous Medium Mechanics and Related Problems of Analysis, 1972, pp. 47-52.
[3] A.V. Bitsadze, Some Classes of Partial Differential Equations, Gordon and Breach Science, New York, 1988.
[4] R.W. Carroll, R.E. Showalter, Singular and Degenerate Cauchy Problems, Academic Press, New York, 1976.
[5] K. Friedrichs, On the identity of weak and strong extensions of differential operators, Trans. Amer. Math. Soc. 55 (1944) 132-151.
[6] K. Friedrichs, Symmetric positive systems, Pure Appl. Math. 11 (1958) 333-418.
[7] N.Yu. Kapustin, Solvability in the class L^{2} of a characteristic problem for a hyperbolic equation with order degeneration, Dokl. Acad. Nauk USSR 311 (1990) 784-788.
[8] N.Yu. Kapustin, Solvability in the class L^{2} of a problem with a boundary condition on the characteristic for a hyperbolic equation with order degeneration, Differentsial'nye Uravneniya 26 (1990) 66-75.
[9] M.A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press, Oxford, 1964.
[10] O.A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Springer-Verlag, New York, 1985.
[11] N.A. Lar'kin, M. Schneider, Uniqueness theorems for a nonlinear Tricomi problem and the related evolution problem, Math. Methods Appl. Sci. 18 (1995) 591-601.
[12] J.L. Lions, Some Methods of Solving Nonlinear Boundary Value Problems, 1972 (in Russian).
[13] M. Schneider, Funktionalanalytische Methoden zur Behandlung von linearen partiellen Differentialgleichungen vom gemischten Typ, Überbl. Math. 7 (1974) 219-265.
[14] R.I. Semerdjieva, Solvability of a boundary value problem for a nonlinear degenerated hyperbolic equation, Differentsial'nye Uravneniya 28 (1992) 1145-1153.
[15] R.I. Semerdjieva, Existence and uniqueness of strong solutions for a class of quasi-linear hyperbolic equations with order degeneration, Math. Nachr. 237 (2002) 89-104.
[16] M.M. Smirnov, Degenerated Hyperbolic Equations, Vysshaya Skola, Minsk, 1977.
[17] S.A. Tersenov, Introduction to the Theory of Equations Degenerating on the Boundary, Novosibirsk State University, Novosibirsk, 1973.

