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Abstract

In this paper we study the equationL(u) := k(y)uxx − ∂y(	(y)uy ) + a(x, y)ux +
b(x, y)uy = f (x, y,u), wherek(y) > 0, 	(y) > 0 for y > 0, k(0)= 	(0)= 0; it is strictly
hyperbolic fory > 0 and its order degenerates on the liney = 0. Consider the boundary
value problemLu= f (x, y,u) in G, u|AC = 0, whereG is a simply connected domain in
R2 with piecewise smooth boundary∂G = AB ∪ AC ∪ BC; AB = {(x,0): 0 � x � 1},
AC: x = F(y) = ∫ y

0 (k(t)/	(t))
1/2dt andBC: x = 1 − F(y) are characteristic curves. If

f (x, y,u) = g(x, y,u)− r(x, y)u|u|ρ , ρ � 0, we obtain existence of generalized solution
by a finite element method. The uniqueness problem is considered under less restrictive
assumptions onf . Namely, we prove that iff satisfies Carathéodory condition and
|f (x, y, z1) − f (x, y, z2)| � C(|z1|β + |z2|β)|z1 − z2| with some constantsC > 0 and
β � 0 then there exists at most one generalized solution.
 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

Boundary value problems for degenerated hyperbolic equations in the plane
have been studied by many authors (see [3,4,16,17] and the bibliography therein),
but mainly in the case where the type (but not the order) of the corresponding
differential operator degenerates. The case of order degeneration (where the entire
principal part of the differential operator vanishes on the line of degeneration)
is not studied so well. Bitsadze [3] observed that boundary value problems for
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hyperbolic equations with order degeneration deserve a special attention and
require a special treatment. For such equations the classical boundary value
problems are not well posed, and moreover the coefficients of lower order terms
determine whether a given boundary value problem is well posed (see [2,7,8,14,
15] and the literature cited therein).

Consider the equation

L(u) := k(y)uxx − ∂y
(
	(y)uy

) + a(x, y)ux + b(x, y)uy = f (x, y,u), (1)

where k(y) > 0, 	(y) > 0 for y > 0, k(0) = 	(0) = 0 and limy→0 k(y)/	(y)

exists. Equation (1) is strictly hyperbolic fory > 0 and its principal part
degenerates on the liney = 0.

Let G be a simply connected domain on the(x, y) plane with piecewise
smooth boundary∂G= AB ∪ AC ∪ BC, whereAB = {(x,0): 0 � x � 1}, and
AC: x = F(y)= ∫ y

0 (k(t)/	(t))
1/2dt andBC: x = 1 − F(y) are characteristics

of (1) issued from the pointC(1/2, Y ), where the constantY > 0 is determined
by F(Y )= 1/2.

We consider the following boundary value problem.

Problem B. Find in the domainG a solution of (1) satisfying the boundary
conditionu= 0 onAC.

Set

(u, v)0 =
∫
G

u(x, y)v(x, y) dx dy, ‖u‖0 = (u,u)1/20

and

(u, v)1 =
∫
G

[uxvx + uyvy + uv]dx dy, ‖u‖1 = (u,u)1/21 .

LetCpAC(G) andCpBC(G),p = 1,2, . . . ,∞, be the sets of functionsu,v ∈ Cp(G)
such that, respectively,u|AC = 0 orv|BC = 0. Denote, respectively, byH 1,H 1

AC ,
H 1
BC the corresponding Sobolev spaces defined as completions of the spaces

C∞(G), C∞
AC(G) andC∞

BC(G) with respect to the norm‖ · ‖1.
Let

B[u,v] =
∫
G

{−kuxvx + 	uyvy + auxv + buyv}dx dy.

Definition 1. A functionu ∈H 1
AC is called generalized solution of Problem B if

the identity

B[u,v] =
∫
G

f (x, y,u)v dx dy (2)
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holds for everyv ∈H 1
BC .

Definition 2. A functionu ∈H 1
AC is called strong solution of Problem B if there

exists a sequence(un)∞n=1, un ∈ C∞
AC(G) such that

‖un − u‖1 → 0,
∥∥Lun − f (

x, y,un(x, y)
)∥∥

0 → 0 asn→ ∞.

The paper consists of 4 sections. We obtain by energy-integral method
(see [13]) the necessary a priori estimates in Section 2. For technical reason
we use weighted norms defined by the weight exp(−λx), λ > 0. Although the
corresponding weighted norms are equivalent, respectively, to the norms‖ · ‖0

and‖ · ‖1, they play an important role in proving our uniqueness result.
In Section 3 we assume thatf (x, y,u)= g(x, y,u)− r(x, y)u|u|ρ, ρ � 0, and

prove by a finite element method existence of generalized solution of Problem B
(Theorem 3.1).

In Section 4 we obtain under very mild restriction onf that each generalized
solution of Problem B is a strong solution of the same problem (Theorem 4.2).
This fact is used in Theorem 4.3 to prove that Problem B has at most one
generalized solution under the assumption

|f (x, y, z1)− f (x, y, z2)| � C
(|z1|β + |z2|β

)|z1 − z2|, C > 0, β � 0.

Observe that we do not require the constantC to be “sufficiently small”; it is an
arbitrary positive constant.

Results on existence and uniqueness of generalized solution of Problem B have
been obtained in [15], but in the case whereb(x, y)≡ 0 and the right-hand side
f of the corresponding equation is only “weakly nonlinear” in the sense that
f is satisfying the Carathéodory condition,|f (x, y,u)| � Q(x,y) + C|u| with
Q(x,y) ∈L2(G) and|f (x, y, z1)− f (x, y, z2)| � C|z1 − z2|, C = const> 0.

In the following lemma we formulate a partial case of the well known
multiplicative inequality (see, e.g., Theorem 7.3 in Chapter 1 of [10]).

Lemma 1.1. IfG⊂R2 is a bounded domain with the uniform cone property then
for every p > 2

‖u‖Lp(G) � C0‖u‖(p−2)/p
1 ‖u‖2/p

0 , u ∈H 1(G),

where the constant C0 depends only on G.

Remark. Since we assume that the limit limy→0 k(y)/	(y) exists our domainG
has the uniform cone property.
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2. A priori estimates

Consider for anyλ > 0 the following norms:

‖u‖0,λ = ‖e−(λ/2)xu‖0, ‖u‖1,λ =
(∫
G

e−λx
[
u2
x + u2

y + u2]dx dy)1/2

.

Obviously, for every fixedλ these norms are equivalent respectively to‖u‖0 and
‖u‖1.

Lemma 2.1. Suppose k(y), 	(y) ∈ C1[0, Y ], a(x, y), b(x, y)∈C(G) and

	′(0) > 0, a(x,0) > 0, b(x,0)= 0 for x ∈ [0,1].
Then there exist constants m> 0 and λ0> 0 such that for λ� λ0

m‖u‖1,λ � ‖Lu‖0,λ, ∀u ∈ C∞
AC

(
G

)
.

Proof. Let λ andµ be positive constants. By Green’s formula,

(
2Lu, e−λx(µux − uy)

)
0 =

∫
G

(2Lu)e−λx(µux − uy) dx dy

= I (λ)+
∫
∂G

e−λx
[[−(

ku2
x + 	u2

y

) + 2µ	uxuy
]
dx

+ [
µ

(
ku2
x + 	u2

y

) − 2kuxuy
]
dy

]
,

where

I (λ)=
∫
G

e−λx
[
A(x,y)u2

x + 2B(x, y)uxuy +C(x, y)u2
y

]
dx dy, (3)

with

A(x,y)= λµk − k′ + 2µa, B(x, y)= −λk − a +µb,
C(x, y)= λµ	+ 	′ − 2b.

The line integral
∫
∂G

= ∫
AB

+ ∫
BC

+ ∫
CA

is nonnegative. Indeed,
∫
AB

= 0
becausek(0) = 	(0) = 0. On BC: x = 1 − F(y) we havedx = −√

k/	dy,
therefore

∫
BC

=
Y∫

0

e−λ(1−F(y))(µ+ √
k/	

)(√
kux − √

	uy
)2
dy � 0.
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OnAC: x = F(y) we havedx = √
k/	 dy, and, in addition,u≡ 0 onAC implies√

kux + √
	uy = 0 onAC, therefore

∫
CA

=
0∫
Y

e−λF (y)
(
µ− √

k/	
)(√

kux + √
	uy

)2
dy = 0.

Hence(
2Lu, e−λx(µux − uy)

)
0 � I (λ).

Taking into account that

−2auxuy � − 2a2

	′(0)
u2
x − 	′(0)

2
u2
y,

2(−λk+µb)uxuy � −(λk +µ|b|)(u2
x + u2

y

)
we obtain

I (λ)�
∫
G

e−λx
[
A1(x, y)u

2
x +C1(x, y)u

2
y

]
dx dy, (4)

where

A1(x, y)= λk(y)(µ− 1)− k′(y)+µ(
2a(x, y)− |b(x, y)|)

− 2a2(x, y)/	′(0),
C1(x, y)= λ[µ	(y)− k(y)] + 	′(y)− 	′(0)/2−µ|b(x, y)|.

By k(0)= 	(0)= 0 andb(x,0)= 0 for x ∈ [0,1] we have

A1(x,0)= −k′(0)+ 2µa(x,0)− 2a2(x,0)/	′(0),
C1(x,0)= 	′(0)/2.

Since the functiona(x,0) has a strictly positive lower bound on[0,1] (because
it is continuous anda(x,0) > 0) there existsµ> 0 such thatA1(x,0)� 	′(0)/2,
x ∈ [0,1]. Fix the constantµ so thatµ� 2+ supG k/	.

Taking into account that the functionsk, 	, a, b are continuous, so uniformly
continuous inG, one can easily see that there existsδ > 0 such that ifG1

δ =
{(x, y) ∈ G: 0 � y � δ} then for λ > 0 and (x, y) ∈ G1

δ we haveA1(x, y) �
	′(0)/4,C1(x, y)� 	′(0)/4.

Next we considerG2
δ = {(x, y) ∈ G: δ � y}. By the choice ofµ we have

µ − k/	 � 1 andµ − 1 � 1. Since the functionsk(y) and	(y) are continuous
and strictly positive fory � δ it is easy to see that there existsλ0 such that for
λ > λ0 and(x, y) ∈G2

δ we haveA1(x, y)� 	′(0)/4, C1(x, y)� 	′(0)/4. Hence
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for λ > λ0 it holds

I (λ)�
(
	′(0)/4

)∫
G

e−λx
(
u2
x + u2

y

)
dx dy.

On the other hand, we have

0�
∫
∂G

e−λxu2dy =
∫
G

∂x
(
e−λxu2)dx dy

=
∫
G

(−λe−λxu2 + e−λx2uux
)
dx dy

�
∫
G

e−λx
(−λu2 + u2 + u2

x

)
dx dy.

Therefore

(λ− 1)
∫
G

e−λxu2dx dy �
∫
G

e−λxu2
x dx dy,

so forλ� λ0> 2 it holds∫
G

e−λxu2dx dy �
∫
G

e−λxu2
x dx dy.

Hence

I (λ)�
(
	′(0)/8

)‖u‖2
1,λ (5)

and we obtain(
	′(0)/8

)‖u‖2
1,λ �

(
2Lu, e−λx(µux − uy)

)
0 � ‖2Lu‖0,λ‖µux − uy‖0,λ

� 4µ‖Lu‖0,λ‖u‖1,λ,

which impliesm‖u‖1,λ � ‖Lu‖0,λ with m= 	′(0)/(32µ). ✷
The following simple observation will be useful.

Lemma 2.2. If λ > 0 and u ∈H 1
AC(G) then (λ/2)‖u‖0,λ � ‖u‖1,λ.

Proof. Obviously, it is enough to prove the claim foru ∈ C∞
AC(G). Then we have

by Cauchy inequality∫
G

e−λx∂x
(
u2/2

)
dx dy =

∫
G

e−λxuux dx dy � ‖u‖0,λ‖u‖1,λ.

On the other hand, since
∫
∂G e

−λxu2dy � 0, we obtain by Green’s formula
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∫
G

e−λx∂x
(
u2/2

)
dx dy = 1

2

∫
∂G

e−λxu2 dy + λ

2

∫
G

e−λxu2dx dy

� λ

2
‖u‖2

0,λ,

which completes the proof.✷
We need also the following technical statement.

Lemma 2.3. If v,w ∈ Ls(G) ∀s � 2 and there exists a constant C > 0 such that
‖v‖Ls (G) � C for all s � s0 � 2, then ‖vw‖0,λ � C‖w‖0,λ.

Proof. By Cauchy inequality we obtain (using induction onk)

‖vw‖0,λ �
(∫
G

e−λxv4w2dx dy

)1/4(∫
G

e−λxw2 dx dy

)1/4

= ∥∥v2w
∥∥1/2

0,λ‖w‖1/2
0,λ �

∥∥v4w
∥∥1/4

0,λ‖w‖3/4
0,λ � · · ·

�
∥∥v2kw

∥∥2−k
0,λ ‖w‖1−2−k

0,λ � ‖v‖
L2k+2

(G)
‖w‖2−k

L4(G)
‖w‖1−2−k

0,λ .

Therefore, fork so large that 2k+2 � s0 we have

‖vw‖0,λ � C‖w‖2−k
L4(G)

‖w‖1−2−k
0,λ .

Thus, lettingk→ ∞ we obtain the claim. ✷
Lemma 2.4. If k, 	 ∈ C1[0, Y ] and v ∈ C∞

BC(G) then for µ > 0 the boundary
problem

h(u) := e−λx(µux − uy)= v in G, u|AC = 0,

has a unique solution u ∈C1
AC(G)∩C2(G \ {A}).

Proof. Fix v ∈ C∞
BC(G) and setṽ(x, y) = −eλxv(x, y). Then we have to find

u(x, y) ∈ C1
AC(G) such that

−µux + uy = ṽ(x, y). (6)

Consider one parameter family of lines	c given by

ξ = −µt + c, η= t, c ∈ R.

Suppose thatu(x, y) satisfies (6) and for somec the line 	c has a nonempty
intersection withG. Then

d

dt
[u(−µt + c, t)] = −µux + uy = ṽ(−µt + c, t).
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Observe that ifϕ(s) is the inverse function of the functionµt + F(t) then for
each point(x, y) ∈ G the line 	c with c = x + µy passes through the point
(x, y), intersects the characteristicsAC into a point with a second coordinate
ϕ(c)= ϕ(x + µy) and fort ∈ [y,ϕ(c)] the corresponding segment of the line	c
lies insideG. Therefore we obtain

u(x, y)=
y∫

ϕ(x+µy)
ṽ(−µt + x +µy, t) dt.

Conversely, ifu(x, y) is defined by the above formula then it is easy to see that
u ∈ C1

AC(G)∩ C2(G \ {A}) and (6) holds. Second derivatives ofu may not exist
atA= (0,0) becauseF ′′(0) (and as wellϕ′′(0)) may not exist. ✷
Remark. Nevertheless second derivatives ofu may not exist at the pointA =
(0,0), we can apply Green’s formula in Lemma 2.5 to some expression that
involves second derivatives ofu. One can easily see that by applying Green’s
formula to domainsGε =G ∩ {y > ε}, ε > 0, and passing to a limit asε→ 0.

Next we are going to prove a priori estimate corresponding to the nonlinear
termf (x, y,u)= −r(x, y)u|u|ρ + g(x, y,u), ρ � 0.

Set

B1[u,v] := B[u,v] −
∫
G

f
(
x, y,u(x, y)

)
v(x, y) dx dy.

Lemma 2.5. Suppose the assumptions of Lemma 2.1 hold, r(x, y) ∈ C1(G) and
g(x, y, z) ∈ C1(G×R). In addition, let g(x, y,u) satisfy

|g| � C + q(x, y)|u|p−1, |gx | + |gy | � C1 +C2|u|p−1, (7)

where C,C1,C2 are positive constants, p = ρ + 2, q(x, y) ∈C(G) and

inf
G

[r(x, y)− q(x, y)] = r0> 0. (8)

Then there exist µ > 0 and λ0 > 0 such that for λ � λ0 we have for v ∈
C∞
BC(G) and u related to v as in Lemma 2.4

B1[u,v] = B1[u,h(u)] �m0‖u‖2
1,λ −D, (9)

where m0 = 	′(0)/16 and the constant D > 0 depends on the choice of µ and λ,
but does not depend on u.

Proof. Supposev ∈ C∞
BC(G) and u is related tov as in Lemma 2.4, that is

v = h(u)= exp(−λx)(µux − uy). We have

B1[u,h(u)] = B[u,h(u)] + I1 − I2,



R. Semerdjieva / J. Math. Anal. Appl. 273 (2002) 637–653 645

where

I1 =
∫
G

e−λxr|u|ρu(µux − uy) dx dy,

I2 =
∫
G

e−λxg(x, y,u)(µux − uy) dx dy.

By Green’s formula,

B[u,h(u)] = 1

2
I (λ)+ 1

2

∫
∂G

e−λx
(
	u2
y − ku2

x

)
(µdy + dx),

where I (λ) is given by (3). The linear integral
∫
∂G = ∫

AB + ∫
BC + ∫

CA is
nonnegative. Indeed,

∫
AB = 0 becausek(0)= 	(0)= 0. OnBC: x = 1 − F(y),

sodx = −√
k/	 dy and

∫
BC

=
Y∫

0

e−λ(1−F(y))(	u2
y − ku2

x

)(
µ− √

k/	
)
dy.

Sinceµux − uy = v exp(λx)≡ 0 onBC we have

∫
BC

=
Y∫

0

e−λ(1−F(y))(	µ2 − k)(µ− √
k/	

)
u2
x dy

=
Y∫

0

e−λ(1−F(y))	(µ+ √
k/	

(
µ− √

k/	
)2
u2
x dy � 0.

Finally
∫
CA

= 0 becauseu≡ 0 onCA impliesux
√
k/	+ uy = 0 onCA. Hence

from (5) it follows

B[u,h(u)] �m0‖u‖2
1,λ, m0 = 	′(0)/16. (10)

By Green’s formula

I1 =
∫
G

r(x, y)|u|ρue−λx(µux − uy) dx dy

= 1

p

∫
∂G

e−λxr|u|p(dx +µdy)+ 1

p

∫
G

e−λx |u|p(λµr −µrx + ry) dx dy

� 1

p

∫
∂G

e−λxr|u|p(dx +µdy)

+ 1

p

∫
G

e−λx |u|p(λµr −µ|rx | − |ry |) dx dy.
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Next we consider the integralI2. Set

g̃(x, y, z) :=
z∫

0

g(x, y, t) dt.

Then we have

∂x
[
g̃
(
x, y,u(x, y)

)] = g̃x
(
x, y,u(x, y)

)+ g(x, y,u(x, y))ux,
∂y

[
g̃
(
x, y,u(x, y)

)] = g̃y
(
x, y,u(x, y)

)+ g(x, y,u(x, y))uy.
Therefore by Green’s formula we obtain

I2 =
∫
G

g(x, y,u)e−λx(µux − uy) dx dy

=
∫
∂G

e−λxg̃(x, y,u)(dx +µdy)+
∫
G

e−λx(λµg̃ −µg̃x + g̃y) dx dy.

Sinceµ − k/	 > 0 (by the choice ofµ) it is easy to see that for any function
ψ(x, y) with nonnegative values

∫
∂G
ψ(x, y)(dx +µdy)� 0. Therefore∫

∂G

e−λxg̃(x, y,u)(dx +µdy)�
∫
∂G

e−λx|g̃(x, y,u)|(dx+µdy).

From (7) it follows (with someε > 0 that will be fixed later)

|g̃| � C|u| + q(x, y)|u|p/p � C2/ε+ ε|u|2 + q(x, y)|u|p/p,
|g̃x | + |g̃y | � C1|u| +C2|u|p/p � C2

1/ε+ ε|u|2 +C2|u|p/p,
thus

I2 �
∫
∂G

e−λx |g̃(x, y,u)|(dx +µdy)

+
∫
G

e−λx
(
λµ|g̃| +µ|g̃x | + |g̃y |

)
dx dy

�D +
∫
∂G

e−λx
(
ε|u|2 + q(x, y)|u|p/p)

(dx +µdy)

+
∫
G

e−λx
[
λµ

(
ε|u|2 + q(x, y)|u|p/p)

+µ(
ε|u|2 +C2|u|p/p

)]
dx dy,
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where

D = (µ/ε)
∫
G

e−λx
(
λC2 +C2

1

)
dx dy + (C2/ε)

∫
∂G

e−λx(dx +µdy).

Combining the estimates forI1 andI2 we obtain (due to (8))

I1 − I2 � −D − εJ0 + (1/p)J1 + (1/p)J2,

where

J0 =
∫
∂G

e−λxu2(dx +µdy)+
∫
G

e−λx(λµ+µ)u2 dx dy,

J1 =
∫
∂G

e−λx |u|p[r(x, y)− q(x, y)](dx+µdy)

�
∫
∂G

e−λx |u|pr0(dx +µdy)� 0,

J2 =
∫
G

e−λx |u|pµ[
λ[r(x, y)− q(x, y)] − (|rx | + |ry | +C2)

]
dx dy � 0

for λ� λ0 � (1/r0)supG(|rx | + |ry | +C2).
In order to estimateJ0 observe that∫
∂G

e−λxu2(dx +µdy)=
∫
G

e−λx
[−λµu2 + 2µuux − 2uuy

]
dx dy

�
∫
G

e−λx
[−λµu2 +µ2u2 + u2

x + u2 + u2
y

]
dx dy,

therefore

J0 �
∫
G

e−λx
[
(µ2 +µ+ 1)u2 + u2

x + u2
y

]
dx dy � (µ2 +µ+ 1)‖u‖2

1,λ.

Hence by (10) we obtainB1(u, v) � [m0 − ε(µ2 + µ + 1)]‖u‖2
1,λ − D, so the

claim holds withm=m0/2 if ε is fixed so thatε(µ2 +µ+ 1) < m0/2. ✷

3. Existence of generalized solution

Theorem 3.1. Suppose

1. k(y), 	(y) ∈ C1[0, Y ], a(x, y), b(x, y)∈C(G) and

	′(0) > 0, a(x,0) > 0, b(x,0)= 0 for x ∈ [0,1];
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2. r(x, y) ∈C1(G),g(x, y, z) ∈C1(G×R) and

|g| � C + q(x, y)|u|p−1, |gx | + |gy | �C1 +C2|u|p−1, (11)

where C,C1,C2 are positive constants, p = ρ + 2, q(x, y) ∈C(G) and

inf
G

[r(x, y)− q(x, y)] = r0> 0. (12)

Then there exists a generalized solution of Problem B.

Proof. For convenience we divide the proof into several steps.
Step 1. Since the spaceH 1

BC is separable we can choose a linearly independent
sequence of functions(vj )∞j=1, vj ∈C∞

BC(G) which linear span is dense inH 1
BC.

Let uj ∈ C1
AC(G) ∩ C2

AC(G \ {A}), j = 1,2, . . . , corresponds tovj as in
Lemma 2.4, that ish(uj )= e−λx(µ∂xuj − ∂yuj )= vj , j = 1,2, . . . .

We claim that for eachn ∈ N there exist constantscnj , j = 1, . . . , n, such that

un =
n∑
j=1

cnj uj (13)

satisfies the system of equations

B1[un, vi ] = B1

[
n∑
j=1

cnj uj , vi

]
= 0, i = 1, . . . , n. (14)

Indeed, fixn ∈N and set for anyc= (c1, . . . , cn) ∈ Rn

u(c)=
n∑
j=1

cjuj ;

then obviouslyh(u(c)) = ∑n
j=1 cjh(uj ) = ∑n

j=1 cj vj . Consider a mapping
P :Rn →Rn defined byP(c)= (B1[u(c), vi])ni=1. ObviouslyP is continuous.

Fix constantsµ,λ,D as in Lemma 2.5. Then, by a priori estimate (9) proved
in Lemma 2.5 it follows

n∑
i=1

B1[u(c), vi ] · ci = B1
[
u(c),h

(
u(c)

)]
�m‖u(c)‖2

1,λ −D. (15)

The norms‖c‖λ := ‖u(c)‖1,λ and‖c‖ := (∑n
j=1 c

2
j )

1/2 are equivalent (since any
two norms inRn are equivalent), so from (15) we obtain

(
P(c), c

) =
n∑
i=1

B1[u(c), vi ] · ci � 0 if ‖c‖ � const> 0.

Hence, by well-known Sharp-Angle Lemma (see, e.g., Lemma 4.3 in Chapter 1
of [12]) there existsc ∈ R such thatP(c)= 0.
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Step 2. The sequence(un)∞n=1 from Step 1 is bounded in the spaceH 1
AC.

Indeed, fromB1[un,h(un)] = ∑n
i=1B1[un, vi ] · cni = 0, and a priori estimate (9)

it follows

m‖un‖2
1,λ �D, n= 1,2, . . . .

Since every bounded set in the (Hilbert) spaceH 1
AC is weakly compact there exists

a subsequence(unk ) and an elementu ∈H 1
AC such that

unk → u weakly inH 1
AC. (16)

On the other hand, by Relich’s Theorem about compact embedding of the
Sobolev spaceW1,2(G) into L2(G) (see [1]), we can assume without loss of
generality that the subsequence(unk ) converges inL2(G) to some functionw ∈
L2(G). Moreover, due to a well-known property of strong convergence inL2(G)

we can assume that the subsequence(unk ) converges tow almost everywhere
in G.

Since weak convergence inH 1 implies weak convergence inL2(G), the
subsequence(unk ) converges tou weakly inL2(G), thusw= u and

unk → u almost everywhere inG. (17)

Observe also that in view of Lemma 1.1 the subsequence(unk ) is bounded in
the spaceLp(G), that is there exists a constantCp > 0 such that

‖unk‖p =
(∫
G

|unk (x, y)|p dx dy
)1/p

� Cp. (18)

Step 3. We shall prove that the functionu is a generalized solution of
Problem B.

Since the linear span of the systemvi , i = 1,2, . . . , is dense inH 1
BC and

B1[u,v] is linear with respect to its second argument it is enough to show that
B1[u,vi ] = 0 for i = 1,2, . . . . By Step 1 we haveB1[unk , vi ] = 0 for nk > i, so it
is enough to prove that

B1[unk , vi ] →B1[u,vi] ask→ ∞. (19)

For every fixedvi the linear functionalB[·, vi] is continuous in the spaceH 1,
thusB[unk , vi ] →B[u,vi ] ask→ ∞.

It remains to consider the nonlinear terms inB1[unk , vi ]. Put

wk(x, y) := g
(
x, y,unk(x, y)

) − r(x, y)|unk |ρunk ,
w(x, y)= g(x, y,u(x, y)) − r(x, y)|u|ρu.

We are going to show for everyi = 1,2, . . . that∫
G

wk(x, y)vi(x, y) dx dy→
∫
G

w(x, y)vi(x, y) dx dy. (20)
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From (17) it follows

wk(x, y)→w(x,y) almost everywhere inG. (21)

In addition, in view of (11) and (18) we have fors = p/(p− 1)

|wk(x, y)|s � C3 +C4|unk (x, y)|p � C3 +C4C
p
p ,

where the constantsC3 andC4 depend onC and supG q(x, y), so the sequence
(wk) is bounded in the spaceLs(G). Now (20) follows from Lemma 1.3 in
Chapter 1 of [12], which says that if the sequence(wk) is bounded inLs(G)
then (21) implies thatwk →w weakly inLs(G). ✷

4. Strong solutions and uniqueness theorem

After Friedrichs [5,6] coincidence of weak (or generalized) and strong
solutions has been proven (under some restrictions on the corresponding domain)
for various linear boundary value problems. In the case of our linear Problem B
the following statement holds.

Proposition 4.1. If k(y) ∈C[0, Y ], 	(y) ∈ C1[0, Y ] and a(x, y), b(x, y)∈ C1(G)

then every generalized solution of linear Problem B is also a strong solution of
linear Problem B.

We omit the proof because the same statement (but withb(x, y)≡ 0) has been
proven in [15, Proposition 1] (see also Lemmas 5 and 6 there).

In the next theorem we prove under very mild restriction on the right-hand
sidef (x, y,u) that each generalized solution of nonlinear Problem B is a strong
solution of the same problem. Similar result has been obtained in [11] for a
nonlinear Tricomi Problem and the related evolution problem.

Recall that a functionf (x, y, z) :G× R → R satisfiesCarathéodory condi-
tion (e.g., [9]) if for any fixedz ∈ R it is measurable function onG and for almost
all (x, y) ∈G the functionf is continuous with respect toz ∈ R.

Theorem 4.2. Suppose k(y), 	(y) ∈ C1[0, Y ] and a(x, y), b(x, y)∈C1(G). If the
function f (x, y, z) satisfies Carathéodory condition and

|f (x, y, z)| �Q(x,y)+ α|z|γ , (22)

where Q(x,y) ∈ L2(G) and α,γ are nonnegative constants, then every general-
ized solution of Problem B is a strong solution of Problem B.

Proof. Supposeu ∈ H 1
AC is a generalized solution of Problem B. Thenu is a

generalized solution of the following linear problem:

Lu= f̂ (x, y) := f (
x, y,u(x, y)

)
, u|AC = 0.
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Thus by Proposition 4.1 there exists a sequence(un)
∞
n=1, un ∈ C∞

AC(G) such that

‖un − u‖1 + ‖Lun − f̂ ‖0 → 0 asn→ ∞.
Obviously, to prove the theorem it is enough to show that there exists a

subsequence(unk )
∞
k=1 such that‖f (x, y,unk (x, y)) − f̂ (x, y)‖0 → 0 ask →

∞. Since‖un − u‖1 → 0 one can choose a subsequence(unk )
∞
k=1 such that∑

k ‖unk+1 − unk‖1 < ∞. In view of Lemma 1.1 for everys � 2 we have∑
k ‖unk+1 −unk‖Ls(G) <∞. So from well known properties of the spacesLs(G),

s � 2 it follows:

(i) the series

Φ(x,y) := |un1(x, y)| +
∞∑
k=1

|unk+1(x, y)− unk (x, y)|

is convergent almost everywhere inG andΦ ∈Ls(G) for everys � 2;
(ii) unk (x, y)→ u(x, y) ask→ ∞ almost everywhere inG;
(iii) |unk (x, y)| � |Φ(x,y)| almost everywhere inG.

Now by Carathéodory condition

f
(
x, y,unk(x, y)

) → f
(
x, y,u(x, y)

) = f̂ (x, y)
almost everywhere inG,

thus|f (x, y,unk(x, y))− f̂ (x, y)|2 → 0 ask→ ∞ almost everywhere inG.
On the other hand (iii) and (22) imply∣∣f (

x, y,unk(x, y)
)∣∣ �Q(x,y)+ αΦγ (x, y)

almost everywhere inG. Lettingk→ ∞ we obtain∣∣f̂ (x, y)∣∣ �Q(x,y)+ αΦγ (x, y),
thus ∣∣f (

x, y,unk(x, y)
) − f̂ (x, y)∣∣2 � 8Q2(x, y)+ 8αΦ2γ (x, y) ∈L1(G)

almost everywhere inG. Hence by Lebesgue Theorem∥∥f (
x, y,unk (x, y)

) − f̂ (x, y)∥∥2
0

=
∫
G

∣∣f (
x, y,unk(x, y)

) − f̂ (x, y)∣∣2dx dy→ 0 ask→ ∞,

which proves the claim. ✷
Theorem 4.3. Suppose k(y), 	(y) ∈ C1[0, Y ], a(x, y), b(x, y) ∈ C1(G) and
	′(0) > 0, a(x,0) > 0, b(x,0)= 0 for x ∈ [0,1].
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If the function f (x, y, z) satisfies Carathéodory condition and there exist
constants C > 0 and β � 0 such that for all z1, z2 ∈ R

|f (x, y, z1)− f (x, y, z2)| �C
(|z1|β + |z2|β

)|z1 − z2|, (x, y) ∈G, (23)

then Problem B has at most one generalized solution.

Proof. It is easy to see that the assumptions of Theorem 4.2 hold. Supposeu(1)

andu(2) are two generalized solutions of Problem B. By Theorem 4.2 they are also
strong solutions. Let(u(1)n ) and(u(2)n ) be corresponding sequences of functions in
C∞
AC(G) such that∥∥u(i)n − u(i)∥∥1 + ∥∥Lu(i)n − f (

x, y,u(i)n
)∥∥

0 → 0 asn→ ∞, i = 1,2.

From (23) it follows withvn = |u(1)n |β + |u(2)n |β andwn = |u(2)n − u(1)n |∥∥f (
x, y,u(2)n

) − f (
x, y,u(1)n

)∥∥
0,λ � C‖vnwn‖0,λ.

The sequences(u(1)n ) and(u(2)n ) are convergent inH 1
AC , therefore there exists a

constantC1> 0 such that∥∥u(1)n ∥∥
1 � C1,

∥∥u(2)n ∥∥
1 � C1, n= 1,2, . . . .

Thus in view of Lemma 1.1 we have∥∥u(1)n ∥∥
Ls(G)

�C0C1,
∥∥u(2)n ∥∥

Ls(G)
� C0C1 ∀s � 2.

Therefore, in caseβ > 0 we obtain fors � 2/β

‖vn‖Ls(G) �
∥∥∣∣u(1)n ∣∣β∥∥

Ls(G)
+ ∥∥∣∣u(2)n ∣∣β∥∥

Ls(G)
� 2(C0C1)

β , ∀n.
Thus by Lemma 2.3∥∥f (

x, y,u(2)n
) − f (

x, y,u(1)n
)∥∥

0,λ � 2C(C0C1)
β
∥∥u(2)n − u(1)n

∥∥
0,λ. (24)

Obviously the same estimate holds forβ = 0.
By Lemma 2.1 there exist constantsm> 0 andλ0> 0 such that

m
∥∥u(2)n − u(1)n

∥∥
1,λ �

∥∥Lu(2)n −Lu(1)n
∥∥

0,λ, ∀λ� λ0.

Therefore from (24) it follows

m
∥∥u(2)n − u(1)n

∥∥
1,λ �

∥∥Lu(2)n − f (
x, y,u(2)n

)∥∥
0,λ

+ 2C(C0C1)
β
∥∥u(2)n − u(1)n

∥∥
0,λ

+ ∥∥f (
x, y,u(1)n

) −Lu(1)n
∥∥

0,λ.

Lettingn→ ∞ we obtain

m
∥∥u(2) − u(1)∥∥1,λ � 2C(C0C1)

β
∥∥u(2) − u(1)∥∥0,λ.

Hence, by Lemma 2.2,

m(λ/2)
∥∥u(2) − u(1)∥∥0,λ � 2C(C0C1)

β
∥∥u(2) − u(1)∥∥0,λ,

so choosingλ > (4/m)C(C0C1)
β we prove thatu(2) = u(1). ✷
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