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Abstract

In this paper we study the equatidi(u) := k(y)uxx — 3y(£(Y)uy) + alx, y)uy +
b(x,y)uy = f(x,y,u), wherek(y) >0, £(y) > 0 fory > 0, k(0) = £(0) = 0; it is strictly
hyperbolic fory > 0 and its order degenerates on the line- 0. Consider the boundary
value problenLu = f(x, y,u) in G, u|s4c =0, whereG is a simply connected domain in
R2 with piecewise smooth boundaf\G = ABU AC U BC; AB = {(x,0): 0<x < 1},
AC: x=F(y) = [§(k(t)/£))Y/?dt and BC: x =1 — F(y) are characteristic curves. If
fx,y,u) =g(x,y,u) —r(x, y)ulul|?, p > 0, we obtain existence of generalized solution
by a finite element method. The uniqueness problem is considered under less restrictive
assumptions onf. Namely, we prove that iff satisfies Carathéodory condition and
If(x,y,21) — f(x, v, 22)| < C(1z1/8 + |z21#)|z1 — z2| with some constant§ > 0 and
B > 0 then there exists at most one generalized solution.

0 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

Boundary value problems for degenerated hyperbolic equations in the plane
have been studied by many authors (see [3,4,16,17] and the bibliography therein),
but mainly in the case where the type (but not the order) of the corresponding
differential operator degenerates. The case of order degeneration (where the entire
principal part of the differential operator vanishes on the line of degeneration)
is not studied so well. Bitsadze [3] observed that boundary value problems for
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hyperbolic equations with order degeneration deserve a special attention and
require a special treatment. For such equations the classical boundary value
problems are not well posed, and moreover the coefficients of lower order terms
determine whether a given boundary value problem is well posed (see [2,7,8,14,
15] and the literature cited therein).

Consider the equation

L(u) = k(y)uxx — 3y (Cuy) +alx, Yux +b(x, Yuy = f(x, y,u), (1)

wherek(y) > 0,£4(y) > 0 for y > 0, k(0) = £(0) =0 and lim,_ok(y)/€(y)
exists. Equation (1) is strictly hyperbolic foy > 0 and its principal part
degenerates on the line= 0.

Let G be a simply connected domain on tlie, y) plane with piecewise
smooth boundaryG = AB U AC U BC, whereAB = {(x,0): 0 < x <1}, and
AC: x = F(y) = [§(k(t)/€(t))Y/?dt andBC: x = 1— F(y) are characteristics
of (1) issued from the poinf'(1/2, Y), where the constarit > O is determined
by F(Y) =1/2.

We consider the following boundary value problem.

Problem B. Find in the domainG a solution of (1) satisfying the boundary
conditionu =0 onAC.

Set
1/2
(u,v)o=/u(x,y)v(x,y)dxdy, lullo= (u, u)g
G
and
1/2
v = [l + 0, +uvldrdy, =G
G

LetC}~(G)andCL.(G), p=1,2,..., 00, be the sets of functions v € C”(G)
such that, respectively|sc = 0 orv|gc = 0. Denote, respectively, b/, H3 .,
Héc the corresponding Sobolev spaces defined as completions of the spaces
C*®(G), C5%(G) andC3% (G) with respect to the norrif - ||1.
Let

Blu,v]= /{—kuxvx +luyvy +auyv+buyvidx dy.
G

Definition 1. A functionu € Hjc is called generalized solution of Problem B if
the identity

B[u,v]:/f(x,y,u)vdxdy (2)
G
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holds for every € Hj ..

Definition 2. A functionu € H3 . is called strong solution of Problem B if there
exists a sequena@,),” ;, un € CXOC(G) such that

lun —ulls >0, || Lup — f(x.y,un(x. )|, —>0 asn— oc.

The paper consists of 4 sections. We obtain by energy-integral method
(see [13]) the necessary a priori estimates in Section 2. For technical reason
we use weighted norms defined by the weight(expx), A > 0. Although the
corresponding weighted norms are equivalent, respectively, to the rjpris
and| - ||1, they play an important role in proving our unigueness result.

In Section 3 we assume thatx, y, u) = g(x, y, u) —r(x, y)ulu|®, p > 0, and
prove by a finite element method existence of generalized solution of Problem B
(Theorem 3.1).

In Section 4 we obtain under very mild restriction grthat each generalized
solution of Problem B is a strong solution of the same problem (Theorem 4.2).
This fact is used in Theorem 4.3 to prove that Problem B has at most one
generalized solution under the assumption

|f(x,y,20) — f(x,y,22)| < C(lzalf +12z2/P)|z1 — z2l, € >0, =0,

Observe that we do not require the constartb be “sufficiently small”; it is an
arbitrary positive constant.

Results on existence and unigueness of generalized solution of Problem B have
been obtained in [15], but in the case whére, y) = 0 and the right-hand side
f of the corresponding equation is only “weakly nonlinear” in the sense that
f is satisfying the Carathéodory conditidrf,(x, y, u)| < Q(x, y) + Clu| with
Q(x,y) € L%(G) and| f (x, y,z1) — f(x,y.22)| < Clz1 — 22|, C = const> 0.

In the following lemma we formulate a partial case of the well known
multiplicative inequality (see, e.g., Theorem 7.3 in Chapter 1 of [10]).

Lemma 1.1. If G ¢ R? isa bounded domain with the uniform cone property then
for every p > 2

-2 2
lull oGy < Collull P2 P1uld?,  uwe HYG),

where the constant Cp dependsonly on G.

Remark. Since we assume that the limit limok(y)/£(y) exists our domair
has the uniform cone property.
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2. A priori estimates

Consider for any. > 0 the following norms:
1/2
lullos = lle”*2%u]o, lully,, = </e“ [u2 +u? +u?] dxdy) )

Obviously, for every fixed. these norms are equivalent respectivelyfitio and

fleell -

Lemma 2.1. Supposek(y), £(y) € C[0, Y], a(x, y), b(x, y) € C(G) and
0)>0, a(x,00>0, bx,0=0 forxelO,1].

Then there exist constantsm > 0 and Ag > 0 such that for A > Ag

mlulley, < ILulos. Yu e Ci(G).
Proof. Let» andu be positive constants. By Green'’s formula,

(2Lu, e M (uy — uy))0 = /(2Lu)ef)‘x(,uux —uy)dxdy
G
=1\ + / ef)‘x[[—(ku)zc + Eu%) + Z;LEuxuy] dx
3G
+ [y,(ku)zc + Zuf) — 2kuxuy] dy],

where

I(\) :/‘e#‘x [A(x, y)u? +2B(x, Wuxuy + C(x, y)u%] dxdy, 3

G

with

A(x,y)=Auk — k' +2ua, B(x,y)=—rk —a-+ ub,

C(x,y)=Aul+4¢ —2b.

The line integral f;,; = [,z + [5c + /o4 is nonnegative. Indeedf,, = 0
becausek(0) = ¢£(0) = 0. On BC: x =1 — F(y) we havedx = —k/tdy,
therefore

Y
/:/(“LF(”)(M—%W)(«/EMX—\/Zuy)zdy>o.
BC 0
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OnAC: x = F(y) we havedx = \/k/€dy, and, in additiony = 0 onAC implies
Vkuy +/tuy =0 0nAC, therefore

/ / RO (3 JJ0) (Vg + VEuy)Pdy =0,

Hence
(2Lu, e (uux — uy))g = 1(0).
Taking into account that
2 ’
32/?0) - @”5’
2(—k + pb)usuy > —(Ak + u|b]) (u? + u3)

—2auyuy > —

we obtain
1) > /e—xx[Al(x,y)ui—i—Cl(x,y)uﬂ dxdy, (4)
G
where

Ar(x,y) =2k (= 1) — k' (y) + p(2a(x, y) — |b(x, )|)
— 2a%(x, )/ 0),
Ci(x, y) = Apl(y) = k(W] +€(y) = €' (0)/2— pulb(x, y)|.
By k(0) = £(0) =0 andb(x, 0) =0 for x € [0, 1] we have

A1(x,0) = —k'(0) + 2pa(x, 0) — 2a(x, 0) /€' (0),
C1(x,0) =£'(0)/2.

Since the functiom (x, 0) has a strictly positive lower bound ¢, 1] (because
it is continuous and (x, 0) > 0) there existg. > 0 such thatd;(x, 0) > £/(0)/2,
x € [0, 1]. Fix the constanf so thaty > 2+ sup; k/€.

Taking into account that the functioks?, a, b are continuous, so uniformly
continuous inG, one can easily see that there exists 0 such that n‘Gl =
{(x,y) € G: 0< y <8} then forx > 0 and (x, y) € G} we haveAi(x,y) >
¢'(0)/4, Ca(x,y) >13/(0)/4

Next we conS|de|G2 = {(x,y) € G: § < y}. By the choice ofx we have
w—k/£>1andu — 1 > 1. Since the functiong(y) and £(y) are continuous
and strictly positive fory > § it is easy to see that there exists such that for
A > o and(x, y) € G2 we haveA(x, y) > £/(0)/4, C1(x, y) > ¢/(0)/4. Hence
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for A > Ag it holds

1) > Z(O)/4 /e u +u dxdy
G
On the other hand, we have

0</eikxuzdy:/‘Bx(e*)‘xuz)dxdy

3G G
:/(—ke_’\xuz—l—e_)‘xZuux)dxdy
G
g/ ( Au? +u +u )dxdy
G
Therefore
(A—l)/e_’\xuzdxdygf —hx 2dxdy,

G
sofori > Ag > 2 it holds

/ef)‘xuzdxdygf —hx 2d)cdy
G G

Hence
1) = (€0)/8)ul?, (5)

and we obtain

(5/(0)/8)||u||ik < (2Lu, e M (uy — uy))o < 12Lulloallmux — uyllo.
SAullLullopluliaz,
which impliesm|u| 1., < | Lu|lo, with m = ¢/(0)/(32w). O

The following simple observation will be useful.

Lemma22.IfA>0andu e H%C(G) then (A/2)||ullo.x < llullza.

Proof. Obviously, itis enough to prove the claim for Cffc((_}). Then we have
by Cauchy inequality

/e_kxf?x (u?/2)dxdy = / e uuydxdy < ullollullsz.
G G

On the other hand, sincg; e ~**y2dy >0, we obtain by Green’s formula
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1
/eikxax(uz/Z)dxdyzéf 2 dy + 2/ u?dxdy

G 9G G
A
2
Z S lulga

which completes the proof.O
We need also the following technical statement.

Lemma 2.3. If v, w € L°(G) Vs > 2 and there exists a constant C > 0 such that
lvllLs gy < C for all s > so > 2, then [vw]o,x < Cllwllo,x-

Proof. By Cauchy inequality we obtain (using induction on

1/4 1/4
lowllo. < </e)‘xv4w2dxdy> </e)‘xw2dxdy)
G G

1/2 1/2 1/4 ||3/4

= [v*w]g;wig; vaH

_o— 2—k _
< Hv wHM IIwIIOA < IIUIIsz+2(G)||w||L4(G)Ilelo,A2

Therefore, fork so large that 22 > 5o we have

lvwlos < CllwliZa g, lwlg;?
Thus, lettingk — oo we obtain the claim. O
Lemma 2.4. If k, ¢ € C1[0, Y] and v € C3-(G) then for n > O the boundary
problem

h(u) == e (uuy —uy) =v inG, ulac =0,
has a unique solution u € C3(G) N C%(G \ {A}).
Proof. Fix v e C,C;OC(G) and seti(x, y) = —e**v(x, y). Then we have to find
u(x, y) € C1.(G) such that

—puy +uy =0(x,y). (6)
Consider one parameter family of linésgiven by

E=—ut+c, n=t, ceR.

Suppose thati(x, y) satisfies (6) and for some the line ¢, has a nonempty
intersection withG. Then

d ~
E[u(—ut +c, )] =—puy +uy =v(—ut +c,t).
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Observe that ifp(s) is the inverse function of the function: + F(¢) then for
each point(x, y) € G the line ¢, with ¢ = x 4+ py passes through the point
(x,y), intersects the characteristidsC into a point with a second coordinate
@(c) = (x + pny) and forz € [y, ¢(c)] the corresponding segment of the lie
lies insideG. Therefore we obtain
y
u(x,y)= / v(—ut +x 4+ pny,t)dr.
Plx+py)

Conversely, ifu(x, y) is defined by the above formula then itis easy to see that
u e Cy.(G)NC?%G \ {A}) and (6) holds. Second derivativesiofmay not exist
at A = (0, 0) becausd”” (0) (and as wellp” (0)) may not exist. O

Remark. Nevertheless second derivativesuwofmay not exist at the poind =
(0,0), we can apply Green’s formula in Lemma 2.5 to some expression that
involves second derivatives af. One can easily see that by applying Green’s
formulato domaing;. = G N{y > ¢}, ¢ > 0, and passing to a limit as— 0.

Next we are going to prove a priori estimate corresponding to the nonlinear
term f(x, y,u) = —r(x, y)ulu|” + g(x, y,u), p = 0.
Set

Bilu, v] := Blu, v] — / f(x, vy, u(x, y))v(x, y)dxdy.
G

Lemma 2.5. Suppose the assumptions of Lemma 2.1 hold, r(x, y) € c(G) and
g(x,y,2) € CHG x R). Inaddition, let g(x, y, u) satisfy

gl SC+qe, MIuP™h gl + gyl < C1+ Colul?™H, (7
where C, C1, C; are positive constants, p = p + 2, ¢(x, y) € C(G) and
i%f[r(x,y)—q(x,y)]zro>0. (8)

The_n there exist 1 > 0 and Ag > O such that for A > Ao we have for v €
C3e(G) and u related to v asin Lemma 2.4

Ba[u, v] = Ba[u, h(u)] > molull? ;, — D, 9)
where mg = £/(0)/16 and the constant D > 0 depends on the choice of . and 2,
but does not depend on u.

Proof. Supposev C?C(G) and u is related tov as in Lemma 2.4, that is
v =h(u) =exp(—ix)(uuy —uy,). We have
Bilu, h(u)] = Blu, h(u)] + I1 — I2,
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where
11=/e_er|u|pu(uux —uy)dxdy,
G
Iz=/e*“g(x,y,u)(uux —uy)dxdy.
G

By Green'’s formula,

Blu,h(u)] = %1(}\) + % / e (eu? — kul)(udy + dx),
G

where I(3) is given by (3). The linear integral,; = [,z + e+ Jca iS
nonnegative. IndeeqCAB =0 becaus&(0) = ¢(0) =0. OnBC: x =1— F(y),
sodx = —+/k/€dy and

Y
/ = / e M FO (0ud — ku?) (u — Vk/€) dy.
BC 0

Sincepu, —uy, = vexp(ix) =0 onBC we have

Y
/=/e—A<1—F<>‘>>(zM2—k)(M—,/k/z)uidy
BC 0

Y

_ / e MEFO (1 JJE (1 — /8 2uP dy > 0.
0

Finally ., =0 because =0 onCA impliesu,+/k/f +u, =0 onCA. Hence
from (5) it follows

Blu, h(w)] > mollull3,. mo=1'(0)/16. (10)
By Green'’s formula

11=/r(x,y)|u|"ue_“(uux —uy)dxdy
G

1 1
:;/e’“r|u|p(dx+,udy)+;/ef)‘x|u|p(k,ur—,urx—i—ry)dxdy
G G

1
> 1 / e lulP (dx + pdy)
paG

1 _
4 ;/e PP Gar — | = Iry ) dx dy.
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Next we consider the integr#. Set

Z

g(x,y,2) :Z/g(x,y,t)dt-
0
Then we have

8X[§(Xﬂ y,u(.x, y))] :g'x(x’ y7u(xﬂ y))+g(xﬂ yﬂu(-x7 y))ux
8}‘[§(Xﬂ y,u(x, y))] :g'y(x’ y,M(X, y))—f—g(X, y,u(x, y))u}

Therefore by Green'’s formula we obtain

IZZ/g(X,y,M)eka(Mux—uy)dxdy

G
=/e’“g(x,y,u)(dx+udy)+/e’“(w§—ugx+§y)dxdy.
G G

Sinceu — k/¢ > 0 (by the choice ofu) it is easy to see that for any function
¥ (x, y) with nonnegative valueg, . v (x, y)(dx + udy) > 0. Therefore

/ekag(X,y,u)(dx—i-udy)S/e*kxlg?(x,y,u)l(dx—i—udy).
G 3G

From (7) it follows (with some: > 0 that will be fixed later)

181 < Clul+q(x, plul?/p < C?/e + elu® +q(x, y)lul?/p,
82| +12y] < Calul + Colul?/p < C3/e + elul® + Calul”/ p,

thus

< / e M3 0x yow)|(dx + udy)
0G

+/e—“(w|g|+u|gx|+|§y|)dxdy
G

<D+ / e (elul? + g (o ) lul?/p) (dx + dy)

+/e*“ haa(elul? + g (e y)lul?/ p)
G

+ u(elul® + Colul? /p)]dx dy,
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where

D= (u/e) / e (MC? 4 CF) dxdy + (C?/e) / e M (dx + pndy).
G G

Combining the estimates fdi and/, we obtain (due to (8))
Ihh—Db>2—-D—¢elo+1/p)J1+ (1/p)Jo,

where
_ —Ax 2 —AX 2
Jo—/e u (dx—i—,udy)—i—/e A+ pwyu“dxdy,
G G
di= [Ty — g+ pdy)
3G

> /e_“lulpro(dx +udy) >0,
G
b =/e’“|u|pu[k[r(x, ) = 4 )] = (rel + Iryl + C2)]dxdy >0
G

for A > do = (1/ro) sup; (Irx| + |ry| + C2).
In order to estimatdy observe that

/ef)‘xuz(dx +udy)= / e*“[—)»uuz + 2uuuy — 2uuy|dx dy

3G G
< /e_)‘x[—k,uuz + Mzuz + ujzc +u+ ui] dxdy,
G
therefore

S0 [+t Du o ul - u]dwdy < 4t Dl
G
Hence by (10) we obtaiBi(u, v) > [mo — e(u? + w + D]|lul|?, — D, so the
claim holds withm = mq/2 if ¢ is fixed so that (u? + i + 1) < nlo/z. O

3. Existence of generalized solution

Theorem 3.1. Suppose

1. k(y), £(y) € CY[0, Y], a(x, y), b(x, y) € C(G) and
¢0)>0, a(x,00>0, b(x,0=0 forxel01];
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2. r(x,y) € CYG), g(x,v,2) e CHG x R) and
gl < CH+qE, NP g +1gl <Ci+ColuP™, (11)
where C, C1, C; are positive constants, p = p + 2, ¢(x, y) € C(G) and
ir(_l;f [r(x,y) —q(x,y)]=ro>0. (12)

Then there exists a generalized solution of Problem B.

Proof. For convenience we divide the proof into several steps.

Sep 1. Since the spacH,%C is separable we can choose a linearly independent
sequence of function®; 3?021, vj € C;;OC(E) which linear span is dense iﬁéc.

Let uj € C3-(G) N C3.(G \ {A}), j =1,2,..., corresponds tw; as in
Lemma 2.4, that i (u;) = e ™ (udcu; — dyu;) =vj, j=1,2,....

We claim that for each € N there exist constant#, j=1,...,n,such that

n
u" = Zc?uj (13)
j=1
satisfies the system of equations
n
Bl[u”,vi]zBl[Zc;uj,vi}:O, i=1...,n. (14)
j=1
Indeed, fixx € N and set for ang = (c1,...,¢,) € R"
n
u(c) = chuj;
j=1

then obviouslys(u(©)) = 3y c;jh(u;) = 3 i_;cjv;. Consider a mapping
P:R" — R" defined byP (¢) = (B1[u(¢c), v;]);_,. Obviously P is continuous.

Fix constantst, A, D as in Lemma 2.5. Then, by a priori estimate (9) proved
in Lemma 2.5 it follows

n
> Bi[u(@), vil - ¢; = Ba[u(@), h(u(@)] = mu@I , — D. (15)
i=1
The norms||c|| == |lu(@)]|1; and||¢] := (Z?Zlcjz.)l/2 are equivalent (since any
two norms inR” are equivalent), so from (15) we obtain

(P@).2)=>_ Bilu(@,v;]-c;i >0 if || >const> 0.
i=1
Hence, by well-known Sharp-Angle Lemma (see, e.g., Lemma 4.3 in Chapter 1
of [12]) there existg € R such thatP(c) = 0.



R. Semerdjieva / J. Math. Anal. Appl. 273 (2002) 637-653 649

Sep 2. The sequenceu”);°; from Step 1 is bounded in the spaeejc.
Indeed, fromBy[u”, h(u")] = ";_4 B1[u", vi]- ¢! =0, and a priori estimate (9)
it follows

mlu"|3, <D, n=12,....

Since every bounded set in the (Hilbert) spat.;}% is weakly compact there exists
a subsequenaga”) and an element H/}C such that

u"™ — u  weakly inHj.. (16)

On the other hand, by Relich’s Theorem about compact embedding of the
Sobolev spacaV1?(G) into L2(G) (see [1]), we can assume without loss of
generality that the subsequeneé+) converges in.2(G) to some functiorw €
L?(G). Moreover, due to a well-known property of strong convergendéitG)
we can assume that the subsequede) converges taw almost everywhere
inG.

Since weak convergence ! implies weak convergence ii2(G), the
subsequence:+) converges ta weakly in L2(G), thusw = u and

u™ — u almost everywhere i. a7)

Observe also that in view of Lemma 1.1 the subsequémte is bounded in
the space.”(G), that is there exists a constafi} > 0 such that

1/p
" p = (/Iu”k(x,y)l"dxdy> <Cp. (18)
G

Sep 3. We shall prove that the function is a generalized solution of
Problem B.

Since the linear span of the systam i = 1,2,..., is dense inHéC and
Bi1lu, v] is linear with respect to its second argument it is enough to show that
Bilu,v;]=0fori =1,2,.... By Step 1 we havéi[u"*, v;] =0 forn; > i, soit
is enough to prove that

Bi[u"™,v;] — Bi[u,v;] ask — oco. (19)
For every fixedv; the linear functionalB[-, v;] is continuous in the spach?,
thus B[u"*, v;] — Blu, v;] ask — oo.
It remains to consider the nonlinear termsbi{u**, v;]. Put
wi(x, y) =g (x, y, u™ (x, y)) = r(x, y)|u"™ | u",
w(x,y)=g(x,y, uCx,y)) —rx, y)|ul’u.
We are going to show for every=1, 2, ... that

/wk(x,y)vi(x,y)dxdyﬁ fw(x,y)mx,y)dxdy. (20)
G G
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From (17) it follows

wi(x,y) > w(x,y) almosteverywhereid. (21)
In addition, in view of (11) and (18) we have foe= p/(p — 1)

lwi(x, Y)I° < C3+ Calu™ (x, y)|? < C3+ C4Cp,

where the constaniSz andC4 depend orC and sup; ¢ (x, y), so the sequence
(wg) is bounded in the spacg®(G). Now (20) follows from Lemma 1.3 in
Chapter 1 of [12], which says that if the sequeriag) is bounded inL*(G)
then (21) implies thatv; — w weakly inLS(G). O

4. Strong solutions and unigueness theorem

After Friedrichs [5,6] coincidence of weak (or generalized) and strong
solutions has been proven (under some restrictions on the corresponding domain)
for various linear boundary value problems. In the case of our linear Problem B
the following statement holds.

Proposition4.1. Ifk(y) € C[0, Y1, £(y) € C1[0, Y]anda(x, y), b(x, y) € CL(G)
then every generalized solution of linear Problem B is also a strong solution of
linear Problem B.

We omit the proof because the same statement (butiwithy) = 0) has been
proven in [15, Proposition 1] (see also Lemmas 5 and 6 there).

In the next theorem we prove under very mild restriction on the right-hand
side f (x, y, u) that each generalized solution of nonlinear Problem B is a strong
solution of the same problem. Similar result has been obtained in [11] for a
nonlinear Tricomi Problem and the related evolution problem.

Recall that a functiory (x, y,z) : G x R — R satisfiesCarathéodory condi-
tion (e.g., [9]) if for any fixed; € R it is measurable function o and for almost
all (x, y) € G the functionf is continuous with respect toe R.

Theorem 4.2. Supposek(y), £(y) € C1[0, Y]and a(x, y), b(x, y) € CL(G). Ifthe
function f (x, y, z) satisfies Carathéodory condition and

lf Gy, 2 < Qx, y) +alz|”, (22)
where Q(x, y) € L?(G) and «, y are nonnegative constants, then every general-
ized solution of Problem B is a strong solution of Problem B.

Proof. Supposex € H/}C is a generalized solution of Problem B. Theris a
generalized solution of the following linear problem:

Lu= f(x,y):=f(x,y,u(x,y)),  ulac=0.
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Thus by Proposition 4.1 there exists a sequengE? , u, € CZOC(E) such that

lu, — ull1 + | Lu, — fllo— 0 asn — oo.
Obviously, to prove the theorem it is enough to show that there exists a
subsequenceu,)f°, such thatl| f (x, y, un (x,¥)) — f(x,y)llo — 0 ask —
co. Since [u, — ull1 — 0 one can choose a subsequeneg )2, such that
Yok ltngy — unells < 0o, In view of Lemma 1.1 for every > 2 we have
Y ok Ntn g —unllLs Gy < oo. So from well known properties of the spade<G),
s > 2 it follows:

(i) the series

o0
B(x, 3) = lng (0, D)+ Y g (6, 9) = i (x,9)]
k=1

is convergent almost everywhereGhand® € L*(G) for everys > 2;
(i) wp, (x,y) = u(x,y) ask — oo almost everywhere i;
(ii)) |up, (x, )] <|@(x,y)| almost everywhere it

Now by Carathéodory condition

Fy o G y)) = fxy,ulx, )= fx.y)
almost everywhere i,

thus| f(x, y, up, (x,y)) — f(x, y)|?2 — 0 ask — oo almost everywhere .
On the other hand (iii) and (22) imply

| f (%, 3,1 (2, )| € Q(x, 3) + @@ (x, y)
almost everywhere iy Lettingk — oo we obtain

| f )| < 0@, y) +ad? (x,y),
thus

£ (6 3, (6, ) = F o, )P <8O (x, y) +840% (x, y) € LX(G)
almost everywhere itv. Hence by Lebesgue Theorem

| £ (vt ) — Fe )|

:/}f(xvyv”nk(x’ﬁ)—f(x,y)lzdxdy%O ask — oo,
G

which proves the claim. O

Theorem 4.3. Suppose k(y), £(y) € CL[0, Y], a(x,y),b(x,y) € CXG) and
£(0)>0,a(x,0) >0, b(x,0=0for x [0, 1].
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If the function f(x,y,z) satisfies Carathéodory condition and there exist
constants C > 0and 8 > Osuchthatfor all z1,z2 € R

|f e,y 20 = fx, 3,22 < C(Izalf +122P )21 — 22, (x, ) € G, (23)
then Problem B has at most one generalized solution.

Proof. It is easy to see that the assumptions of Theorem 4.2 hold. Supfose
andu@ are two generalized solutions of Problem B. By Theorem 4.2 they are also

strong solutions. Le@unl)) and(u(z)) be corresponding sequences of functions in
C%w(G) such that

e — u(l)H + || Ll — f(x,y,ul?) lo—0 asn—oo, i=12
From (23) it follows withv, = 4P |8 + 42 |# andw, = [u® — uV|
Hf(x Vs M(Z)) f(x Y, M(l))HO)\ < Cllvawnllo,a-

The sequence(su(l)) and(unz)) are convergent irH AC, therefore there exists a
constantC1 > 0 such that

1 2

u®|, <1 Ju@|,<C1 n=12....
Thus in view of Lemma 1.1 we have
2

oy SCoC1 [uy? | gy < CoCr Vs >2.
Therefore, in casg > 0 we obtain fors > 2/8

|||”(1) g et |||”(2)|

Jui?

lvnllLsG) < < 2(CoCr)P, Vn.

Thus by Lemma 2.3
[£Gevyw?) = £ (v uP) o, < 200’ 0P =P, (24)

Obviously the same estimate holds fo&= 0.
By Lemma 2.1 there exist constamts> 0 andig > 0 such that

mlu? =Py, <|Lw? = LuP o0 VAo,
Therefore from (24) it follows
mlu? —uP|y, <N Lw? = £y, w2) o,
+2C(CoC [l = ;P
+] £, y’”(l)) Lug? Ho,x'
Lettingn — oo we obtain
mlu® — D, , <20y [u® —u,,
Hence, by Lemma 2.2,
m/2)[u® = u@, <20(CoC” [u® —u@y,,

Ls(G) =

so choosing. > (4/m)C(CoC1)? we prove thau® =u. O
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