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Abstract Two a-type CK2-activated PKAs (CK2-aPKAIa and
CK2-aPKAIIa) were biochemically characterized in vitro using
GST-HBV core fusion protein (GST-Hcore) and GST-Hcor-
e157B as phosphate acceptors. It was found that (i), in the ab-
sence of cAMP, these two CK2-aPKAs phosphorylated both
Ser-170 and Ser-178 on GST-Hcore and Hcore157B; (ii) this
phosphorylation was approx. 4-fold higher than their phosphor-
ylation by cAMP-activated PKAs; and (iii) suramin effectively
inhibited the phosphorylation of Hcore157B by CK2-aPKAIIa
through its direct binding to Hcore157B in vitro. These results
suggest that high phosphorylation of HBV-CP by two CK2-aP-
KAs, in the absence of cAMP, may be involved in the pregenomic
RNA (pgRNA) encapsidation and DNA-replication in HBV-in-
fected cells.
� 2006 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

Previous studies have revealed that (i) hepatitis B virus

(HBV) core protein (HBV-CP) is a 21 kDa phosphoprotein

(185 amino acid residues) in intact cells [1]; (ii) the Ser-residues

(positions 155, 162 and 170 in the strain ayw) of three adjacent

SPRRR repeats in the arginine (Arg)-rich C-terminal region of

HBV-CP are phosphoacceptor sites in vivo [2]; and (iii) the

three major phosphorylation sites in the HBV-CP sequence

(strain adw) are Ser-residues at positions 157, 164 and 172

[2]. Recently, Melegari et al. reported that specific phosphory-

lation of both Ser-162 and Ser-170 (strain ayw) on HBV-CP is

implicated in promoting the sequential progression of HBV

DNA-replication [3]. Several intracellular protein kinases, such
Abbreviations: cAMP-aPKA, cAMP-activated PKA; C-subunit, cata-
lytic subunit; CK2, casein kinase 2; CK2-aPKA, CK2-activated PKA;
DTT, dithiothreitol; GP, galloyl pedunculagin; GST, glutathione-S-
transferase; HBV, hepatitis B virus; HBV-CP, HBV-core protein;
PKA, cAMP-dependent protein kinase; PKC, Ca2+- and phopholipid-
dependent protein kinase; PKAI, type I PKA; PKAII, type II PKA;
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as cyclin-dependent protein kinase Cdc2 [4], cAMP-dependent

protein kinase (PKA) [5], Ca2+- and phopholipid-dependent

protein kinase (PKC) [5], 46-kDa serine protein kinase [6]

and serine (S)/arginine (R) protein-specific kinases 1 (95 kDa

SRPK1) and 2 (105 kDa SRPK2) [7], have been found to pref-

erentially phosphorylate Ser-residues at the C-terminal region

of HBV-CP in vitro. Mutational analysis strongly suggests that

the preferential phosphorylation of both Ser-162 and Ser-170

on HBV-CP (in the strain ayw) by some intracellular protein

kinases is critical for subsequent pregenomic RNA packaging

[3,8].

Recently, we reported that full phosphorylation of two a-
type PKAs (PKAIa and PKAIIa) by casein kinase 2 (CK2) re-

sults in their significant activation in vitro [9]. However, still

remaining to be elucidated are the substrate requirements

and potent inhibitors for two a-type CK2-activated PKAs

(CK2-aPKAs) in vitro. Therefore, the aim of the present study

was to characterize the substrate requirements of these two

CK2-aPKAs using glutathione-S-transferase (GST)-Hcore

(GST-full length HBV-CP) and GST-Hcore fusion polypeptide

(Hcore157B), containing three potent phosphorylation sites

(Thr-162, Ser-170 and Ser-178 in the strain adw) for PKA, as

phosphate acceptors. This is the first report describing high

phosphorylation of HBV-CP by two CK2-aPKAs in vitro.
2. Materials and methods

2.1. Materials
[c-32P]ATP (3000 Ci/mmol) was obtained from Amersham Pharma-

cia Biotech. (Arlington Heights, USA); quercetin, suramin (a polysulf-
onated napthylurea), histone H2B, protamine (rainbow trout sperm),
PKAIa and PKAIIa (bovine heart muscle) were obtained from Sigma
Chemical (St. Louis, USA). Two PKAs (PKAIa and PKAIIa) were
separately purified by Mono Q column chromatography (HPLC), as
previously reported [9]. Recombinant human CK2 was obtained from
Biomol Research Laboratories (Plymouth Meeting, PA, USA). Gal-
loyl pedunculagin (GP, a potent PKA inhibitor [10]) was a generous
gift from Dr. T. Tanaka (Nagasaki University, Japan).
2.2. Preparation of GST-Hcore and GST-Hcore fusion polypeptides
GST-Hcore fusion proteins were prepared, as described by Kuroki

et al. [11] using a glutathione–Sepharose column. The bound GST fu-
sion proteins on the affinity column were eluted separately with 50 mM
Tris–HCl (pH 8.0) containing 20 mM reduced glutathione. In addition,
three Hcore164B variants [Hcore164B-AS (replacement of Ser-170
with Ala), Hcore164B-SA (replacement of Ser-178 with Ala), and
Hcore164B-AA (replacement of both Ser-170 and Ser-178 with Ala)]
were prepared.
ation of European Biochemical Societies.
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2.3. Preparation of two CK2-activated PKAs in vitro
Purified PKAIa or PKAIIa (approx. 50 ng each) was incubated for

120 min at 30 �C in reaction mixtures comprising 40 mM Tris–HCl
(pH 7.6), CK2 (approx. 50 ng), 2 mM dithiothreitol (DTT), 3 mM
Mn2+ and 10 lM GTP. The phosphorylated forms (CK2-aPKAIa
and CK2-aPKAIIa) of these two PKAs were used, as previously
reported [9].

2.4. Detection of 32P-labeled GST-Hcore or GST-Hcore fusion

polypeptides by SDS–PAGE followed by autoradiography
Either GST-Hcore or GST-Hcore fusion polypeptides were added to

reaction mixtures (50 ll) comprising 40 mM Tris–HCl (pH 7.6), 2 mM
DTT, 3 mM Mn2+, 5 lM [c-32P]ATP (500 cpm/pmol) and two PKAs
or CK2-aPKAs (approx. 50 ng each). After incubation for 30 min at
30 �C, 32P-labeled GST-Hcore or GST-Hcore fusion polypeptides in
the reaction mixtures were detected separately by sodium dodecylsul-
fate polyacrylamide gel electrophoresis (SDS–PAGE) followed by
autoradiography, as previously reported [9,10]. To determine the phos-
phorylation kinetics, 32P-labeled substrates phosphorylated by two
PKAs or CK2-aPKAs were arrested by the addition of 1.0 ml of
20% trichloroacetic acid (TCA) and 0.5 ml of 0.1 M sodium pyrophos-
phate containing bovine serum albumin (1 mg/ml) and 10 mM EDTA.
The TCA-insoluble precipitates trapped on a glass membrane filter
(Advantic GF/75, Tokyo, Japan) was measured with a liquid scintilla-
tion spectrophotometer, as previously reported [10].
3. Results

3.1. Phosphorylation of GST-Hcore and GST-Hcore fusion

polypeptides by PKAIa and PKAIIa in vitro

Six distinct GST-Hcore fusion polypeptides were manufac-

tured, as illustrated in Fig. 1. To detect the phosphorylation

of GST-Hcore and these six GST-Hcore fusion polypeptides

by two PKAs, they (approx. 5 lg each) were incubated sepa-

rately with either PKAIa or PKAIIa and 5 lM [c-32P]ATP

(500 cpm/pmol) in the presence or absence of 1 lM cAMP.

Fig. 2A shows that (i) PKAIIa phosphorylates GST-Hcore

in vitro (lane 2); and (ii) this phosphorylation is significantly

stimulated by 1 lM cAMP (lane 3), but completely inhibited

by 1 lM GP (lane 4, Fig. 2A). A similar phosphorylation of

GST-Hcore was observed with PKAIa (Fig. 2B). Two GST-

Hcore fusion polypeptides [Hcore157B (lane 2) and Hcore-

164B (lane 3, Fig. 2C)], containing Ser-170 and Ser-178, were

highly phosphorylated by PKAIIa in the presence of 1 lM
cAMP in vitro. In contrast, the phosphorylation of both

Hcore6477 (lane 5) and Hcore7077, containing Ser-170 (lane

7, Fig. 2C), by PKAIIa was about 2% of the phosphorylation
Fig. 1. Diagram of six different GST-Hcore fusion polypeptides (positions 1
Thr-162, Ser-170 and Ser-178 in the strain adw) for PKA.
of Hcore157B. No phosphorylation of recombinant GST (lane

1) and two other GST-Hcore fusion polypeptides [Hcore5769

(lane 4) and Hcore5763 (lane 6, Fig. 2C)] by PKAIIa were de-

tected. Only phosphoserine was detected in GST-Hcore (lane

1) and Hcore157B (lane 2, Fig. 2D) phosphorylated by

PKAIIa in the presence of 1 lM cAMP in vitro. Under the

same experimental conditions, similar results were obtained

with PKAIa instead of PKAIIa (data not shown).

Using Hcore164B and three Hcore164B variants (Hcor-

e164B-AS, Hcore164B-SA and Hcore164B-AA), the phos-

phorylation sites for two PKAs (PKAIa and PKAIIa) on

Hcore164B were determined in vitro. No phosphorylation

was detected when Hcore164B-AA was used as a phosphate

acceptor for PKAIIa (lane 6, Fig. 3). The phosphorylation le-

vel of Hcore164B-AS (lane 4) by PKAIIa was about half of the

phosphorylation of Hcore164B (lane 2, Fig. 3). In contrast,

Hcore164B-SA (lane 5) functioned as a poor substrate for

PKAIIa, as compared with Hcore164B-AS (lane 4, Fig. 3).

Under the same experimental conditions, similar results were

observed in the phosphorylation of Hcore164B and three

Hcore164B variants by PKAIa (data not shown). These results

suggest that PKAIIa as well as PKAIa phosphorylate both

Ser-170 and Ser-178 on Hcore164B in vitro.

As demonstrated in our previous report [9], it was confirmed

that (i) free RIIa was phosphorylated by CK2 in vitro (lane 3,

Fig. 4A); and (ii) this phosphorylation was significantly stimu-

lated by 10mer-Arg (lane 4), but completely inhibited by 1 lM
quercetin (lane 6) or cold 10 lM GTP (lane 5, Fig. 4A). Under

the given experimental conditions, the CK2-mediated phos-

phorylation of free RIIa was approx. 3.3-fold stimulated at a

low concentration (0.3 lg/ml) of GST-Hcore, but did not stim-

ulate at concentrations higher than 10 lg/ml (Fig. 4B). The

CK2-mediated phosphorylation of free RIIa was stimulated

by Hcore157B as effective as 10mer-Arg up to approx. 3.8-fold

in a dose-dependent manner in vitro (Fig. 4B). However, no

phosphorylation of GST-Hcore and GST-Hcore fusion poly-

peptides by CK2 was detected.

3.2. Characterization of CK2-aPKAIIa in vitro

On the basis of the above results (Fig. 2), CK2-aPKAIIa
was characterized in vitro using Hcore157B as a phosphate

acceptor. As expected, the phosphorylation of Hcore157B

by CK2-aPKAIIa, in the absence of cAMP, increased in a

time-dependent manner within 20 min (Fig. 5A). However,
57 and 185), containing three potent phosphorylation sites (RRXS/T:



Fig. 2. Phosphorylation of GST-Hcore and six GST-Hcore fusion
polypeptides by PKAIIa in vitro and analysis of their phosphoamino
acids. (A) To determine the phosphorylation of GST-Hcore by
PKAIIa in vitro, the reaction mixtures comprised 40 mM Tris–HCl
(pH 7.6), PKAIIa (approx. 50 ng), 3 mM Mn2+, 1 mM DTT, GST-
Hcore (approx. 5 lg) and 5 lM [c-32P]ATP (500 cpm/pmol) were
incubated for 30 min at 30 �C in the presence or absence of 1 lM
cAMP. 32P-Labeled GST-Hcore in the reaction mixtures was detected
by autoradiography after SDS–PAGE. Lane 1, PKAIIa alone; lane 2,
PKAIIa incubated with GST-Hcore; lane 3, lane 2 + 1 lM cAMP; and
lane 4, lane 3 + 1 lM GP. (B) Phosphorylation of GST-Hcore by
PKAIa in vitro (protocol as described in the legend of (A)). After
incubation for 30 min at 30 �C, 32P-labeled GST-Hcore in the reaction
mixtures was detected by autoradiography after SDS–PAGE. Lane 1,
PKAIa alone; lane 2, PKAIa incubated with GST-Hcore; lane 3, lane
2+1 lM cAMP; and lane 4, lane 3+1 lM GP. (C) Six GST-Hcore
fusion polypeptides (approx. 5 lg each) were incubated separately with
PKAIIa (approx. 50 ng) in reaction mixtures, as described in the
legend of (A). After incubation for 30 min at 30 �C, 32P-labeled GST-
Hcore fusion polypeptides in the reaction mixtures including 1 lM
cAMP were detected by autoradiography after SDS–PAGE. Lane 1,
GST (control); lane 2, Hcore157B; lane 3, Hcore164B; lane 4,
Hcore5769; lane 5, Hcore 6477; lane 6, Hcore5763; and lane 7,
Hcore7077. (D) After incubation of GST-Hcore or Hcore157B with
PKAIIa and 5 lM [c-32P]ATP in the presence of 1 lM cAMP for
60 min at 30 �C, 32P-labeled GST-Hcore or Hcore157B were separately
hydrolyzed in 6 M HCl for 2 h at 110 �C and dried in vacuo. The
resulting phosphoamino acids were separated by thinlayer chroma-
tography followed by autoradiography. Arrows indicate the positions
of phosphotyrosine (P-Tyr), phosphothreonine (P-Thr) and phospho-
serine (P-Ser). Lane 1, GST-Hcore; and lane 2, Hcore157B.

Fig. 3. Determination of the phosphorylation sites on Hcore164B by
PKAIIa in vitro. Hcore164B and three Hcore164B variants (approx.
5 lg each) were incubated separately with PKAIIa (approx. 50 ng) in
reaction mixtures, as described in the legend of Fig. 2A. After
incubation for 30 min at 30 �C in the presence of 1 lM cAMP, 32P-
labeled Hcore164B or two Hcore164B variants (Hcore164B-AS and
Hcore164B-SA) in the reaction mixtures were detected by SDS–PAGE
followed by autoradiography. Autoradiogram of PKAIIa alone (lane
1); lane 2, PKAIIa + Hcore164B (control); lane 3, lane 2+1 lM GP;
lane 4, PKAIIa + Hcore164B-AS; lane 5, PKAIIa + Hcore164B-SA;
and lane 6, PKAIIa + Hcore164B-AA.
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no significant phosphorylation of Hcore157B was detected by

incubation (20 min at 30 �C) in vitro after preincubation of

CK2 with PKAIIa and 10 lM GTP in the presence of 1 lM
quercetin (CK2 inhibitor) for 120 min at 30 �C (line c,

Fig. 5A). The phosphorylation of GST-Hcore or Hcore157B

by CK2-aPKAIIa was found to be 13.5–14.0-fold stimulated

when the RIIa subunit of PKAIIa holoenzyme was fully phos-

phorylated by CK2 in vitro (lane 2, Fig. 5B). No stimulation

was observed when PKAIIa was preincubated with CK2 in

the presence of 1 lM quercetin (lanes 3 and 6, Fig. 5B). cAMP

(1 lM) significantly stimulated the phosphorylation of GST-

Hcore or Hcore157B by PKAIIa (lane 4), and also slightly

stimulated their phosphorylation by CK2-aPKAIIa (lane 5,

Fig. 5B). Under the same experimental conditions, a similar

high phosphorylation of GST-Hcore as well as Hcore157B
was observed with CK2-activated PKAIa (CK2-aPKAIa)
in vitro (data not shown).

The phosphorylation kinetics between CK2-aPKAIIa and

cAMP-aPKAIIa were compared using Hcore157B as a phos-

phate acceptor in vitro. An apparent Km for Hcore157B was

found to be approx. 0.11 lg/ml when it was incubated with

CK2-aPKAIIa, whereas an apparent Km for Hcore157B with

cAMP-aPKAIIa was approx. 0.39 lg/ml (Fig. 5C). The Vmax

of CK2-aPKAIIa was approx. 0.29 nmol/lg/min and that of

cAMP-aPKAIIa was approx. 0.28 nmol/lg/min (Fig. 5C).

These results show that Hcore157B has a higher binding affin-

ity for CK2-aPKAIIa than cAMP-aPKAIIa in vitro.

3.3. Characterization of suramin as a potent inhibitor for

the phosphorylation of GST-Hcore and Hcore157B by

CK2-aPKAIIa in vitro

Since suramin is characterized as an antiviral compound

[12], the inhibitory effect of suramin on the phosphorylation

of GST-Hcore, Hcore157B, protamine 1B or histone H2B by

CK2-aPKAIIa was compared in vitro. The phosphorylation

of Hcore157B by CK2-aPKAIIa was inhibited dose-depen-

dently by suramin (ID50 = approx. 10 nM) (Fig. 6A). There

was no difference in the suramin-induced inhibition of the

CK2-aPKAIIa-mediated phosphorylation between Hcore157B

and GST-Hcore (Fig. 6A). A relative high concentration of

suramin was required to inhibit the CK2-aPKAIIa-mediated

phosphorylation of protamine 1B and histone H2B (Fig. 6A).

The binding affinity of suramin with either GST-Hcore,

Hcore157B or protamine 1B was compared in vitro by using

a quartz crystal microbalance (QCM) [13]. As expected, sura-

min directly bound to GST-Hcore, Hcore157B and protamine

1B, but not to GST, with different affinities in vitro (Fig. 6B).

Taken together, these results suggest that suramin may effec-

tively inhibit the phosphorylation of GST-Hcore and Hcor-

e157B by CK2-aPKAIIa through its direct binding to these

substrate proteins in vitro.
4. Discussion

Using GST-Hcore and Hcore157B as phosphate acceptors,

two CK2-aPKAs (CK2-aPKAIa and CK2-aPKAIIa) were

biochemically characterized in vitro. It was found that (i) both



Fig. 4. (A) Characterization of the CK2-mediated phosphorylation of free RIIa in vitro. Free RIIa (approx. 5 lg) was incubated with CK2 (approx.
50 ng) in reaction mixtures comprising 40 mM Tris–HCl (pH 7.6), 5 lM [c-32P]ATP (500 cpm/pmol), 3 mM Mn2+ and 1 mM DTT. After incubation
for 30 min at 30 �C, 32P-labeled RIIa in the reaction mixtures was detected by autoradiography following SDS–PAGE. Lane 1, RIIa alone; lane 2,
CK2 alone; lane 3, lane 1 + CK2; lane 4, lane 3 + 10mer-Arg (3 lg/ml); lane 5, lane 4 + 10 lM GTP; and lane 6, lane 4 + 1 lM quercetin. (B) The
stimulatory effects of GST-Hcore, Hcore157B and 10mer-Arg on the CK2-mediated phosphorylation of free RIIa in vitro. After incubation for
15 min at 30 �C, 32P-labeled RIIa in the reaction mixtures was detected by autoradiography after SDS–PAGE. A stimulation rate of 1 represents the
phosphorylation of free RIIa by CK2 in the absence of these Hcore basic polypeptides. The stimulatory effects on the CK2-mediated
phosphorylation of RIIa are presented for GST-Hcore (-d-), Hcore157B (-s-) and10mer-Arg (-m-)

Fig. 5. Characterization of the CK2-aPKAIIa-mediated phosphorylation of GST-Hcore or Hcore157B in vitro. (A) After incubation for the
indicated periods (0–30 min) at 30 �C, 32P-labeled Hcore157B in the reaction mixtures was measured by the glass membrane method [10].
Phosphorylation of Hcore157B by PKAIIa incubated without CK2 (-s-, a); phosphorylation of Hcore157B by PKAIIa incubated with CK2 (-d-,
b); and phosphorylation of Hcore157B by PKAIIa incubated with CK2 in the presence of 1 lM quercetin (-n-, c). (B) The initial reaction mixtures
comprised PKAIIa (approx. 50 ng) and the same components, as described in Fig. 2A. Subsequently, GST-Hcore or Hcore157B (approx. 5 lg) and
5 lM [c-32P]ATP (500 cpm/pmol) were added to the reaction mixtures, and then incubated for 20 min at 30 �C. 32P-Labeled GST-Hcore (white
columns) or Hcore157B (black columns) in the reaction mixtures was determined by autoradiography after SDS–PAGE. Lane 1, PKAIIa incubated
without CK2; lane 2, PKAIIa incubated with CK2; lane 3, lane 2 + 1 lM quercetin; lane 4, lane 1 + 1 lM cAMP; lane 5, lane 2 + 1 lM cAMP; and
lane 6, lane 5 + 1 lM quercetin. A stimulation rate of 1 represents the phosphorylation of GST-Hcore or Hcore157B by PKAIIa or CK2-aPKAIIa.
Mean values from three different experiments. (C) The phosphorylation kinetics of Hcore157B were determined by incubation for 20 min at 30 �C
with the indicated concentrations of Hcore157B and 5 lM [c-32P]ATP in vitro. After incubation, 32P-phosphorylated Hcore157B in the reaction
mixtures was measured with a liquid scintillation spectrophotometer. Lineweaver–Burk plots of Hcore157B for CK2-aPKAIIa in the absence of
cAMP (-s-); and cAMP-aPKAIIa (-d-).
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CK2-aPKAIa and CK2-aPKAIIa highly phosphorylated only

Ser-residues on GST-Hcore as well as Hcore157B (Fig. 2); (ii)

CK2-aPKAIIa phosphorylated approx. 4-fold GST-Hcore as
well as Hcore157B, as compared with their phosphorylation

by cAMP-aPKAIIa (Fig. 5B); (iii) Hcore157B had a higher

affinity for CK2-aPKAIIa than cAMP-aPKAIIa (Fig. 5C);



Fig. 6. (A) The inhibitory effect of suramin on the phosphorylation of GST-Hcore, Hcore157B, protamine 1B and histone H2B by PKAIIa in vitro.
After incubation (20 min at 30 �C) of either GST-Hcore, Hcore157B, protamine 1B or histone H2B with CK2-aPKAIIa and 5 lM [c-32P]ATP in the
presence of the indicated concentrations of suramin, 32P-phosphorylated GST-Hcore (-s-), Hcore157B (-d-), protamine 1B (-h-) or histone H2B
(-n-) in the reaction mixtures was detected by autoradiography after SDS–PAGE. 100% represents the phosphorylation of these proteins by CK2-
aPKAIIa after incubation with 5 lM [c-32P]ATP for 20 min at 30 �C in the absence of suramin. (B) The binding affinity of suramin with three
polypeptides (approx. 2 lg each) was examined, using using a QCM (Initium, Tokyo, Japan) in 8 ml of 40 mM Tris–HCl (pH 7.6) at 25 �C. Suramin
(final concentration: 1 lM) was added to equilibrated solutions containing either GST-Hcore (a), Hcore157B (b), protamine 1B (c) or GST (d).
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and (iv) suramin effectively inhibited the phosphorylation of

GST-Hcore as well as Hcore157B by CK2-aPKAIIa through

its direct binding to these substrate proteins in vitro

(Fig. 6A). There was approx. 22-fold dose-discrepancy in the

suramin-induced inhibition of the CK2-aPKAIIa-mediated

phosphorylation between Hcore 157B (protamine-like se-

quence) and protamine 1B (Fig. 6A). It seems, therefore, that

the suramin-induced inhibition of the CK2-aPKA-mediated

phosphorylation of HBV-CP may be involved in the antiviral

action of suramin in HBV-infected cells.

Earlier studies have identified the Ser-residues at positions

157, 164 and 172 in the strain adw [1] and at positions 162

and 170 in the strain ayw [2] of three adjacent SPRRR repeats

in the Arg-rich C-terminal region of HBV-CP as phosphoac-

ceptor sites in vivo. It has also been shown that several intra-

cellular protein kinases, such as PKA [5], PKC [5,14] and two

SRPKs [7], are cellular mediators responsible for the preferen-

tial phosphorylation of HBV-CP during pregenomic RNA

(pgRNA) encapsidation and DNA-replication in HBV-in-

fected cells. These reports suggest that the Arg-rich C-terminal

region, containing different phosphorylation sites for these

protein kinases, may be a major targeting domain involved

in the physiological function of HBV-CP in virus-infected cells.

Our results that two PKAs (PKAIa and PKAIIa) phosphory-
late both Ser-170 and Ser-178 on Hcore164B in vitro (Fig. 3)

and two CK2-aPKAs highly phosphorylate Hcore157B as well

as GST-Hcore, containing Ser-170 and Ser-178, in vitro

(Fig. 5B), suggest that two a-type CK2-aPKAs, in the absence

of cAMP, may be main protein kinases responsible for the

preferential phosphorylation of both Ser-170 and Ser-178 on

HBV-CP in virus-infected cells.
Previously, we proposed a novel CK2-mediated activation

of two PKAs (PKAIa and PKAIIa) in the absence of cAMP

in vitro [9]. This model is supported by evidence that CK2

may be a protein kinase responsible for the activation of

these two PKAs at the cellular level. Therefore, it is possible

to speculate that the CK2-mediated activation of these two

PKAs may be closely coupled to the enhanced activation of

CK2 in the initial stages of cells infected with DNA and

RNA viruses. This speculation is supported by our previous

observations that (i) CK2 is highly activated by the accumu-

lation of Rev and Tat (viral basic proteins) in T cells infected

with human immunodeficiency virus type 1 (HIV-1) [15]; and

(ii) the activated CK2 effectively phosphorylates a number of

functional cellular proteins, including NS protein, in the cells

infected with vesicular stomatitis virus (VSV) [16]. Indeed, we

observed that five other GST-Hcore polypeptides (Fig. 1) sig-

nificantly stimulated the CK2-mediated phosphorylation of

the R-subunits (RIa and RIIa) of two PKAs in a manner

similar to that observed with Hcore157B (Fig. 4). These

observations suggest that the Arg-rich fragments cleaved

from the C-terminal region of HBV-CP may function as po-

tent activators for the CK2-mediated phosphorylation of cel-

lular functional proteins, including R-subunits of PKAIa and

PKAIIa, and viral proteins, such as HIV-1 reverse transcrip-

tase [17] and protease [18], at an increased level sufficient to

activate CK2, as has been previously demonstrated in the

Rev-induced stimulation of CK2 activity in HIV-1-infected

cells [17,18]. Further analytical experiments to detect the gen-

eration of CK2-aPKAs and specific phosphorylation of HBV-

CP by the CK2-activated PKAs in HBV-infected cells are

currently under way.
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