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ABSTRACT

Background: Cost-effectiveness analysis often requires information on the
effectiveness of interventions on multiple outcomes, and commonly these
take the form of competing risks. Nevertheless, methods for synthesis of
randomized controlled trials with competing risk outcomes are limited.
Objective: The aim of this study was to develop and illustrate flexible
evidence synthesis methods for trials reporting competing risk results,
which allow for studies with different follow-up times, and that take
account of the statistical dependencies between outcomes, regardless of the
number of outcomes and treatments.
Methods: We propose a competing risk meta-analysis based on hazards,
rather than probabilities, estimated in a Bayesian Markov chain Monte
Carlo (MCMC) framework using WinBUGS software. Our approach
builds on existing work on mixed treatment comparison (network) meta-
analysis, which can be applied to any number of treatments, and any

number of competing outcomes, and to data sets with varying follow-up
times. We show how a fixed effect model can be estimated, and two
random treatment effect models with alternative structures for between-
trial variation. We suggest methods for choosing between these alternative
models.
Results: We illustrate the methods by applying them to a data set involv-
ing 17 trials comparing nine antipsychotic treatments for schizophrenia
including placebo, on three competing outcomes: relapse, discontinuation
because of intolerable side effects, and discontinuation for other reasons.
Conclusions: Bayesian MCMC provides a flexible framework for synthe-
sis of competing risk outcomes with multiple treatments, particularly
suitable for embedding within probabilistic cost-effectiveness analysis.
Keywords: antipsychotic medication, Markov model, meta-analysis,
mixed treatment comparisons, schizophrenia.

Introduction

It is common for randomized controlled trials (RCTs) to report
more than one outcome. For purposes of designing a trial, it is
generally felt that a single outcome should be prespecified to be
the “primary” outcome. But, it is also recognized that, when
pooling results from trials in a meta-analysis, there are several
reasons why it may be appropriate to combine information on
different outcomes. First, one might wish to “gather strength” by
combining several similar outcomes, or to be able to combine
results from trials that report different, but similar, outcomes
[1,2]. Second, in a decision-making context, the different out-
comes recorded may each have separate implications for estimat-
ing quality of life or economic consequences of each treatment.

A key requirement in the synthesis of multiple outcomes is
that the correlation structures are appropriately represented
[1–4]. In a meta-analysis, the correlations may occur at either or
both of two levels. At the between-patient within-trial level, a
patient’s outcome on one measure may be positively or nega-
tively correlated with their outcome on another. At the between-
trial level, trials in which there is a larger treatment effect on one
measure may tend to be the trials on which there is a larger
treatment effect on another (a positive correlation), or possibly a
smaller one (a negative correlation).

Competing risk outcomes represent a special type of multiple
outcome structure in which there are several different failure time
outcomes that are considered mutually exclusive. Once a patient
has reached any one of these end points, they are considered to be

out of the risk set. Censoring may also be occurring. When
results from these trials are pooled in a meta-analysis, the com-
peting risk structure should be taken into account so that the
statistical dependencies between outcomes are correctly reflected
in the analysis. These dependencies are essentially within-trial,
negative correlations between outcomes, applying in each arm of
each trial. They arise because the occurrence of outcome events is
a stochastic process, and if more patients should by chance reach
one outcome, then fewer must reach the others. The importance
of these correlations in the context of meta-analysis of competing
risk outcomes has been recognized by Trikalinos and Olkin [5],
who suggest an approach based on normal approximation of the
variances and covariances arising from multinomial data, and
illustrate it with an application to a two-treatment meta-analysis
with two competing outcomes.

In this article, we present an alternative approach based on
hazards rather than probabilities, to more appropriately take
account of time at risk. We use Bayesian Markov Chain Monte
Carlo (MCMC) estimation [6], which we believe is more flexible
in a situation with large numbers of treatments and outcomes.
We begin by describing the data set, and we then explain the
“proportional competing risks” assumption that underlies our
approach. We next propose three alternative models: one fixed
effects, and two random effects analyses. We also suggest some
methods for model selection. In our discussion of the results, we
compare our proposed method to previously described
approaches, and consider some possible extensions.

Methods

Illustrative Data set
Figure 1 shows the network of comparisons of trials of antipsy-
chotic medication for the prevention of relapse in people with
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schizophrenia. Each “edge” in the network indicates that the
treatments at either end have been compared in an RCT, and the
number on the edge indicates the number of trials. The data set
includes 17 trials comparing nine treatments including placebo;
eight of the trials are placebo controlled. There are 36 possible
pair-wise contrasts between the nine treatments, and the present
data set provides direct evidence on 11 of them. The methods
used to identify these studies, and the criteria for inclusion and
exclusion in the data set have been described previously [7].
Briefly, a systematic search of the literature was undertaken to
identify double-blind RCTs of antipsychotics used for relapse
prevention in people with schizophrenia who are in remission.
The review was conducted during the update of a clinical guide-
line on schizophrenia, commissioned by the National Institute
for Health and Clinical Excellence in the UK [7]. Although
ziprasidone was not considered during the formulation of guide-
line recommendations, as it is not licensed in the UK, ziprasidone
trials were included in the systematic review (and subsequently
this analysis) to strengthen inference about the relative effect
between other treatments. The analysis described in this article
was similar to the one used to populate the decision-analytic
economic model that informed the guideline recommendations
[7].

The data available from each trial are the number of patients
in each of the three outcome states at the end of follow-up. The
outcome states are: relapse, discontinuation of treatment because
of intolerable side effects, and discontinuation for other reasons,
which might include inefficacy of treatment that did not fulfill all
criteria for relapse, or loss to follow-up. Patients not reaching
any of these end points at the end of follow-up were considered
as censored observations, and still in remission. Individual
patient data with times of transition were not available. Study
follow-up varied from 26 to 104 weeks. The available data are
shown in full in Table 1. Three trials comparing olanzapine and
haloperidol were pooled as if they were a single study, because
the original publication trials did not report all three outcomes
separately.

Statistical Model
We begin with a general formulation for competing risks based
on standard results from survival analysis [8]. If lm(t) is the

Figure 1 Network diagram.The presence of connecting lines indicates which
pairs of treatments have been directly compared in randomized trials: the
numbers on the lines indicate the numbers of trials, those by the treatment
names are the numbers assigned in Table 1 and in the mixed treatment com-
parison model. Three of the four trials comparing haloperidol and olanzapine
were aggregated (see text).
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cause-specific hazard at time t for outcome m, then the condi-
tional probability that failure at time t is of type m, given there is
a failure at time t is

π λ λm m u
u

t t t( ) = ( ) ( )∑ (1)

The probability that failure occurs before time D and is of type
m is: (the probability of surviving to t, times the probability of
failure at t, times the conditional probability that failure is of
type m), integrated over all times t between zero and D. This is:

exp
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(2)

A form of “proportional hazards” assumption can now be made,
which might be better termed “proportional competing risks,” in
which the ratio (Equation 1) is constant over all t (i.e.,
pm(t) = pm). Under this restriction, Equation 2 becomes:

π λ π λm u
u

m u
u

− − ( )( )⎡
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⎤
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1

(3)

which is the probability of failure before time D times the prob-
ability that failure was of type m. In what follows, we assume
constant underlying hazards, but Equation 3 shows that with
proportional competing risks we are free to fit more complex
survival distributions. This suggests some useful extensions to
which we return in the discussion.

We now number the treatments from 1 to 9 (as shown in
Table 1 and Fig. 1). Placebo is selected as the reference treatment
1. This is an arbitrary choice, but made to ease interpretation. We
define the three outcomes as: m = 1 relapse, 2 = discontinuation
caused by side effects, and 3 = discontinuation for other reasons.
Then, each outcome is modeled separately on the log hazard rate
scale. Considering a trial j that compares treatments k and b, the
cause-specific log hazard for outcome m for treatment T is:

log

, , . . .
, , , ,

,

, , , ,

λ θ
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μ δ
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=
,

, ,
k b

m 1 2 3 (4)

where dj,b,k,m is the trial-specific log hazard ratio of treatment k
relative to treatment b for outcome m. This can be interpreted as
meaning that the b arm of the trial estimates the baseline log
hazard mj,m, while the k arm estimates the sum of the baseline
hazard and the log hazard ratio. Note that b is not necessarily
treatment 1, nor is it the same treatment in every trial; instead, it
is simply the treatment with the lowest index in that trial. Thus,
in a trial comparing treatments 2 and 3, b = 2. The trial-specific
log hazard ratios are assumed to come from a common normal
distribution, following the standard “random effects” approach:

δ σj b k m k m b m md d, , , , ,~ , ,Normal −( )2 (5)

The mean of this distribution is a difference between mean rela-
tive effects dk,m and db,m, which are the mean effects of treatments
k and b, respectively, relative to (placebo) treatment 1, for
outcome m, and we define d1,m = 0. This formulation of the
problem expresses the consistency equations [9], by which the
dimensionality of the 11 treatment contrasts on which there are
direct data (Table 1 and Fig. 1), are reduced to functions of the
eight contrasts between the active treatments and placebo. The

between-trial variance of the random effect distribution, σm
2 , is

specific to each outcome m. Three models for the variance are
considered below.

We may write the model as Equation 4 because all the trials
in this example are two-arm trials. An advantage of our
approach, however, is that it can be readily extended to multi-
arm trials, and Equation 5 should in fact be interpreted as a
“fragment” of a multivariate normal distribution:
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(6)

The underlying assumption in Equations 5 and 6 is therefore that
every trial may be considered as if it were a multiarm trial on all
nine treatments, that trial-specific relative treatment effects are
sampled from the multivariate normal in Equation 6, and that
treatments are missing at random. (Note that missing at random
means missing without regard to treatment efficacy; it does not
mean that treatment arms are equally likely to be included in a
trial).

The linking function that relates the arm-specific log hazards
qj,k,m to the likelihood is developed as follows. Figure 2 shows a
Markov transition model with a starting state (remission) and
three absorbing states (relapse, discontinuation caused by side
effects, and discontinuation caused by other reasons). Based on
Equation 3, if we assume constant hazards lj,k,m acting over the
period of observation Dj in years, the probability that outcome m
had occurred by the end of the observation period for treatment
T in trial j is:

p D D mj T m j
j T m

j T u
u

j j T u
u
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1 1 22 3,
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The probability of staying in the remission state (m = 4) is now
simply 1 minus the sum of the probabilities of arriving at the
three absorbing states, that is,

p D p Dj T m j j T u j
u

, , , ,= =
( ) = − ( )∑4

1

3
1 (8)

The data for each trial j and treatment T constitute a multinomial
likelihood with four outcomes: moving to one of the three
absorbing states, or remaining in the initial remission state. If
rj,T,m is the number of patients on treatment T observed to reach
end point m, and nj,T is the total number at risk on treatment T
in trial j, then:

r p n pj T m j T m j T j T, , , , , , , , , , , , ,~ , ,= =( )1 2 3 4 1 2 3 4Multinomial where mm

m

=
=

∑ 1
1

4

(9)

Three different models were fitted, differing solely in the specifi-
cation of the between-trial variation in relative treatment effects,
σm

2 . In the fixed effects model, σm
2 0= , and the model collapses

to: qj,T,m = mj,m + dk,m - db,m, b = 1,2 . . . 8, k � b.
In the random effect single-variance model, the between-trial

variance σ σm
2 2= , reflecting the assumption that the between-

trial variation is the same for each outcome: a vague inverse
gamma prior was put on the variance, 1/s2~ gamma (0.001,
0.001). In the random effect different variances model, each
outcome has a different between-trial variation, and the vague
uniform prior is put on each: 1 0 001 0 0012σm ~ . , .gamma ( ) . A
sensitivity analysis based on uniform priors was also examined:
s ~ uniform (0, 5). This gave virtually identical posteriors for the
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treatment effects, but resulted in posterior distributions with
“spikes” at sm values at or close to zero and spikes in the
posterior mean treatment effects. Gamma priors, which give zero
weight to infinite precision and hence to zero SD, were therefore
used in the primary analyses reported below.

Finally, in each of the three models, vague Normal (0, 1002)
priors were put on all the trial baselines mj,m and mean treatment
effects dk, m. The model for treatment effects (Equations 4 and 5)
is therefore identical to that previously proposed for mixed treat-
ment comparisons (MTCs) except that the multinomial likeli-
hood (Equation 9) and linking function (Equation 7) are used, as
is appropriate for the data at hand, in place of the binomial
likelihood and logit link function proposed in most of previous
work on these kinds of evidence structures [9–13].

Model Selection
Choice of models was based on the deviance information crite-
rion [14]. This is a deviance measure of goodness of fit, D, equal
to the posterior mean of minus twice the log likelihood, penalized
by an estimate of the effective number of parameters in the
model, pD. The DIC can be seen as a Bayesian measure analogous
to the Akaike information criterion used in classical analysis, but
which can also be applied to hierarchical models. Here, we adjust
the standard deviance formula by subtracting the deviance of the
saturated model (a constant). The contribution of each multino-
mial observation (trial j treatment T) to the deviance is:

Dev 2 log , = , , ,
, ,

, ,1

4

, , ,j T j T m
j T m

j T mm

m

j T m jr
r
r

r p= − ⎛
⎝⎜

⎞
⎠⎟=

=

∑ ˆ
ˆ ˆ TT m j Tn, , (10)

where ˆ , ,pj T m is an estimate of the probability of outcome m, for
example, the estimate generated on some MCMC cycle, and D
is the posterior mean of the sum of the deviance contributions
over all data points, Dev j T

j T

,

,
∑ . In a model that fits well, D is

expected to roughly approximate the number of data points. In
this data set, with 15 two-arm trials each reporting three out-
comes (the fourth, “censored” outcome is predicted from the
number at risk less the other outcomes), the number of indepen-

dent data points is 90; pD is equal to D D− ˆ , where D̂ is the sum
of the deviance contributions, evaluated at the posterior mean of
the fitted values [15].

Computation
Models were estimated using the freely available Bayesian
MCMC software WinBUGS 1.4.3 [16]. Convergence for all
models occurred within 10,000 to 25,000 iterations as assessed
by the Brooks–Gelman–Rubin criteria [17]. Results are based on
150,000 samples, from three separate chains with disparate start-
ing values for fixed effect, and five chains for the random effect
models, taken after the first 60,000 were discarded. We also
established that, in each model, all the chains converged to the
same posterior. The code for each model is available on the
ISPOR Web site as Supporting Information, in Appendix A
at: http://www.ispor.org/Publications/value/ViHsupplementary/
ViH13i8_Ades.asp.

Results

The global goodness-of-fit statistics rule out the fixed effects
model (Table 2), which fits relatively poorly: the mean posterior
deviance is 119.8 compared to the number of data points, 90.
This model also has the highest DIC because the relatively poor
fit is not sufficiently compensated by the fact that it has fewer
effective parameters. The DIC results slightly favor the three-
variance model over the single-variance model.

Posterior summaries of the log relative hazard rates dk,m for
each treatment relative to placebo are shown in Table 2. For each
of the three outcomes, the ranking of the treatments shows a high
degree of consistency regardless of the choice of model. Zotepine
is the most effective treatment in preventing relapse, followed by
olanzapine; amisulpride causes the least discontinuation caused
by intolerable side effects followed by risperidone and olanzap-
ine; risperidone appears to cause the fewest discontinuations for
other reasons, followed by amisulpride and then olanzapine.
Nevertheless, the rankings of the posterior mean treatment
effects do not take uncertainty into account.

Figure 2 Markov model showing competing risk
structure. Patients in trial j, on treatment T, move
from remission to relapse, discontinued treatment
(side effects), and discontinued treatment (other
reasons), at rates exp(qj,T,1), exp(qj,T,2), and
exp(qj,T,3), respectively.

Network Meta-Analysis with Competing Risk Outcomes 979



Figure 3 shows the probabilities that each treatment is ranked
jth (j = 1,2 . . . 9) for each of the three outcomes, based on the
different variances model. As with Table 2, a rank of 1 indicates
that the treatment is “best” at avoiding that (unwanted)
outcome. These rankograms, introduced by Cipriani et al. [18],
provide an “at a glance” summary that is hard to achieve from
numbers alone, as they simultaneously demonstrate not only the
relative rankings of treatments on each outcome, but also the
very considerable uncertainty in inferences about relative effi-
cacy. For example, although Table 2 shows that zotepine is
ranked first in reducing relapse, Figure 3 reveals that the prob-
ability that zotepine is best in this outcome is only about 0.6.
Olanzapine has a relatively high probability of being ranked
among the highest three places for all three outcomes.

Although the mean effects dk,m are similar across models, their
posterior uncertainty as assessed by the posterior SD depends
strongly on the model used. As one would expect, the random
effect summaries are much more uncertain than the fixed effect
summaries. Nevertheless, in the random effect models, posterior
uncertainty is greater in the three-variance model than in the
single-variance version, but only for the relapse and discontinu-
ation caused by intolerable side effect outcomes. The reason for
this can be seen in the summaries of the between-trial SDs

(Table 2). Although the single-variance model produces an
average between-trial SD with relatively narrow credible limits,
the three-variance model has a particularly low SD for the rela-
tive effects on discontinuation for other reasons, and higher SDs
with wide credible intervals for the other two outcomes. We have
no ready explanation for this apparent difference in between-trial
variability between outcomes, which impacts on the uncertainty
in the mean treatment effect measures. Alternative uniform (0, 5)
priors for the between-trial SD parameters were used in sensitiv-
ity analyses (not shown). These result in posterior estimates of s
and sm that were higher, but this had only minor effects on
posterior distributions of dk,m.

Discussion

We have described and illustrated a simple approach to meta-
analysis of trials with multiple, mutually exclusive event out-
comes. The special feature of such “competing risk” data is the
negative correlations between outcomes within trial arms. The
Bayesian MCMC framework, particularly with WinBUGS,
allows the user to specify a multinomial likelihood along with
conventional fixed or random effect models for relative treatment
differences.

Table 2 Goodness of fit, relative effects (posterior mean log hazard rates dk,m relative to placebo), and between-trial heterogeneity (posterior median
and credible intervals for between-trial SD), for fixed and random effect models

Fixed effect
Random effect
single variance

Random effect
three variances

Goodness of fit statistics
D 119.8 95.5 92.6
pD 68.3 78.2 78.5
DIC 188.1 173.7 171.0

Relapse LHR rank SD LHR rank SD LHR rank SD
1. Placebo (ref) 0.000 9 0.000 9 0.000 9
2. Olanzapine -1.577 2 0.230 -1.500 2 0.337 -1.474 2 0.421
3. Amisulpride -1.151 4 0.479 -1.029 5 0.614 -0.980 6 0.727
4. Zotepine -2.098 1 0.582 -2.101 1 0.739 -2.102 1 0.886
5. Aripiprazole -0.726 8 0.183 -0.724 8 0.479 -0.729 7 0.689
6. Ziprasidone -1.118 5 0.194 -1.199 4 0.407 -1.227 3 0.558
7. Paliperidone -1.020 6 0.257 -1.020 6 0.512 -1.019 5 0.709
8. Haloperidol -0.910 7 0.266 -0.771 7 0.436 -0.716 8 0.560
9. Risperidone -1.284 3 0.288 -1.163 3 0.489 -1.130 4 0.640

Discontinuation caused by
intolerable side effects
1. Placebo (ref) 0.000 6 0.000 6 0.000 6
2. Olanzapine -1.345 3 0.333 -1.257 2 0.430 -1.189 2 0.605
3. Amisulpride -1.688 1 0.680 -1.676 1 0.778 -1.701 1 1.001
4. Zotepine 1.144 8 0.600 1.141 8 0.750 1.162 8 1.068
5. Aripiprazole 0.026 7 0.382 0.013 7 0.583 0.021 7 0.941
6. Ziprasidone -1.057 4 0.343 -1.046 4 0.494 -1.015 4 0.750
7. Paliperidone 1.295 9 1.397 1.320 9 1.454 1.244 9 1.661
8. Haloperidol -0.922 5 0.380 -0.865 5 0.524 -0.848 5 0.759
9. Risperidone -1.358 2 0.410 -1.164 3 0.592 -1.026 3 0.930

Discontinuation caused by other
reasons
1. Placebo (ref) 0.000 7 0.000 7 0.000 7
2. Olanzapine -0.526 3 0.227 -0.484 3 0.332 -0.494 3 0.242
3. Amisulpride -0.603 2 0.254 -0.582 2 0.474 -0.596 2 0.299
4. Zotepine -0.473 4 0.318 -0.476 4 0.544 -0.482 4 0.352
5. Aripiprazole 0.235 9 0.385 0.223 8 0.587 0.219 8 0.410
6. Ziprasidone -0.450 5 0.272 -0.368 6 0.440 -0.421 5 0.301
7. Paliperidone 0.743 9 0.462 0.733 9 0.642 0.736 9 0.485
8. Haloperidol -0.444 6 0.258 -0.426 5 0.431 -0.411 6 0.288
9. Risperidone -1.084 1 0.285 -1.031 1 0.495 -1.072 1 0.330

Between-trial SD
Median (95% CI) Median (95% CI)

s 0.404 (0.17–0.75)
s1 0.561 (0.25–1.24)
s2 0.484 (0.04–2.13)
s3 0.094 (0.03–0.41)
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Almost invariably, when meta-analyses have been applied to
competing risk outcomes, they have looked at outcomes one at a
time, and have not attempted an analysis that looks at the mul-
tiple outcomes simultaneously within a single coherent frame-
work. Methods for competing risk meta-analysis appear not to
have been previously described, although recently Trikalinos and
Olkin have presented methodology for what they describe as
“mutually exclusive binary outcomes” [5]. They propose synthe-
sis of log odds ratios, log relative risk, or risk difference outcomes
from multinomial data arising from what is in fact a competing
risk situation. Their approach is to take the estimated log odds
ratios (or risk differences, or log relative risks) as data, and to
develop expressions for the variances and covariances across
outcomes based on normal theory. We believe that our approach
has several advantages over this scheme. First, the use of the
multinomial likelihood avoids the approximations required
when the normal likelihood is used, and also avoids the need to
add a constant to zero cells, a maneuver that generates bias
[19,20]. Second, although calculation of the variances and cova-

riances is relatively easy when there are two competing out-
comes, it has the potential to be error prone if there are more
than four or five. Similarly, the covariances would become still
more complex to specify in multiarm trials, whereas our Bayesian
approach can be readily extended [9,11], as shown in Equation
6. A third advantage of the Bayesian simulation framework is
that it is suitable both for inference and for use in probabilistic
decision models, or within cost-effectiveness analyses. Frequen-
tist methods would need to be supplemented by, for example,
bootstrap sampling, in order to be used in such environments.

It is important for users to be aware of the underlying
assumptions being made in applications of MTC synthesis. The
key assumption is that, if all trials had included all nine treat-
ments, the relative effects dj,b,k,m would, for each outcome m, be
exchangeable across trials. This is equivalent to assuming that
treatments are missing at random, which means that the absence
of data on a treatment is independent of the treatment effect.
Such assumptions, commonly made in evidence synthesis, are
very hard to verify, and one must generally rely on experts with
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Figure 3 Treatment rankings: probability that each treatment is the jth best (j = 1,2, . . . 9), on avoiding relapse, discontinuation for side effects, and discontinuation
for other reasons. Different variances model.
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knowledge of the trials and the subject area to confirm its plau-
sibility. This ensemble of trials was considered sufficiently homo-
geneous to form the basis for a comparative assessment of the
eight active treatments in the context of clinical guideline devel-
opment [7].

But, the main advantage of the methods proposed here is that
they are based on hazard rates and their ratios, and as a result
they can correctly accommodate sets of trials that have been run
to different follow-up times, as is the case in the present data set.
Methods based on odds ratios, risk ratios, and risk differences,
by contrast, cannot give consistent results for trials with different
follow-up times, and it would be mathematically impossible to
construct survival time distributions that would be compatible
with constant measures at different durations. Use of these mea-
sures in trials with different follow-up times not only introduces
unwanted heterogeneity to the estimates, but will also result in
estimates that cannot, strictly speaking, be applied to other
follow-up times. The Trikalinos and Olkin proposals could,
however, be extended to hazard ratios, by introducing expres-
sions for variances and covariances of log hazard ratios.
Although this would yield coherent rate models with comparable
estimates to those derived from our approach, it would still suffer
from the disadvantages of normal approximations and an explo-
sion of complexity with multiple competing outcomes. These
factors, along with the intrinsic compatibility of MCMC poste-
rior sampling with probabilistic decision analysis, make the mod-
eling approach proposed here the obvious choice in
cost-effectiveness analysis.

The analyses proposed here can be extended in a number of
ways. The purpose of our models is to take into account the
negative correlations between outcomes at the patient level. Nev-
ertheless, it may also be worth considering the additional possi-
bility of correlations between outcomes at the trial level. For
example, it may be plausible to assume that trials in which
treatments which are more effective in preventing relapse may be
those in which treatments are more likely to lead to intolerable
side effects leading to treatment discontinuation. This suggests a
class of extensions that might focus attention on the possibility of
correlations between the trial-specific treatment efficacy and dis-
continuation rates, in which the treatment effects are drawn from
an extended multivariate normal distribution. If we write Equa-
tion 5 as dj,m ~ MVN(dm,Smm), we might consider, for example:
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where the off-diagonal covariance matrices carry terms for cor-
relations between treatment effects on different outcomes. The
present model would then be a special case where these correla-
tions were assumed to be zero. Experience with heterogeneous
variance models [21] in MTC suggests that very large amounts of
data, especially from multiarm trials, would be required to iden-
tify the off-diagonal covariances, and that the impact on the
posterior distributions of mean treatment effects may be limited.
Informative priors could of course be placed on the correlations,
although it is no trivial exercise to ensure the matrix is positive
definite. A useful parameterization has been suggested by Lu and
Ades [21].

Because of the underlying rate parameterization, it would be
possible to incorporate additional data that are reported in the
form of number of events and time at risk [22]. It is also relatively
easy to incorporate data where outcomes are reported at more
than one time point. This is best achieved by conditioning the
data for subsequent intervals on survival to the end of the pre-

vious interval, in order to achieve independent Bernoulli samples,
as illustrated by Lu et al. [23]. The WinBUGS code provided in
the Appendix (http://www.ispor.org/Publications/value/
ViHsupplementary/ViH13i8_Ades.asp) would not need to be
altered to accommodate additional data structured in this way.

The existence of data at multiple time points would facilitate
further extensions of the competing risk analyses to more
complex underlying survival distributions, such as the Weibull or
other distributions. This represents a very substantial liberaliza-
tion of the modeling assumptions. Depending on how much data
are available, Weibull shape parameters could be held constant or
allowed to vary across trials [24]. Alternatively, a piece-wise
constant underlying hazard model offers considerable flexibility
[23].

These extensions, of course, all require not only a propor-
tional hazard assumption for relative treatment effects, but also
the proportional competing risk assumption described in the
introduction. The latter is a strong assumption, but it can be
relaxed, for example, in a piece-wise constant hazard framework.
This could accommodate the possibility that, for example, the
proportional risk of discontinuation caused by side effects could
be higher in an initial period. It is also possible to incorporate
data from trials that fail to report a subset of end points sepa-
rately, for example, by aggregating discontinuation caused by
side effects with other reasons for discontinuing treatment.

Source of financial support: No specific funding was received for this
work. A.E.A., S.D., and N.J.W. were supported by Medical Research
Council funding to the Health Services Research Collaboration, trans-
ferred to University of Bristol.
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