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R[X1, . . . , Xn]/(a1 X1 + · · · + an Xn), then I T = I T .
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1. Introduction

Let R be a commutative noetherian ring and I an ideal in R . An element x ∈ R is said to be integral
over I if it satisfies an equation xn + b1xn−1 + · · · + bn−1x + bn = 0 with bi ∈ I i for all i. The set of
all the elements that are integral over I is an ideal I , the integral closure of I . If ϕ : R → S is a ring
homomorphism, then I S ⊆ I S , a property referred to as persistence (see [7, 1.1.3]). The equality does
not necessarily hold; however, note that I S = I S if and only if I S is integrally closed.

For a formally equidimensional local ring (R,m) with depth R � 2 and an m-primary ideal I , we
prove that the integral closure of I is preserved under specialization modulo generic elements. In
the language of first general grade reductions (2.2) introduced by Hochster [4], this means that the
extension of an integrally closed ideal I to a first general grade reduction of (R, I) is integrally closed,
too. More precisely, we prove the following theorem.
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Theorem 1. Let (R,m) be a local ring with depth R � 2 and I = (a1,a2, . . . ,an) an m-primary ideal in R. Let
S = R[X1, X2, . . . , Xn], α = a1 X1 + a2 X2 + · · · + an Xn ∈ S and T = S/αS. The following hold:

(a) If R is formally equidimensional, then I T = I T .
(b) If R is analytically unramified and Cohen–Macaulay, then Im T = Im T for m � 0.

This implies the following local version.

Corollary 2. Let (R,m) be a local ring with depth R � 2 and I = (a1,a2, . . . ,an) an m-primary ideal in R. Let
U = R[X1, X2, . . . , Xn]m[X1,...,Xn] , α = a1 X1 + a2 X2 + · · · + an Xn ∈ U and V = U/αU . The following hold:

(a) If R is formally equidimensional, then I V = I V .
(b) If R is analytically unramified and Cohen–Macaulay, then Im V = Im V for m � 0.

Under the assumption that R is an equidimensional, universally catenary ring such that R/
√

0 is
analytically unramified, part (a) of Theorem 1 also appears in a 2006 preprint of Hong and Ulrich
[5, Theorem 2.1]. Both parts of Corollary 2 were also proved by Itoh [10, Theorem 1] for ideals gen-
erated by a system of parameters in analytically unramified Cohen–Macaulay local rings of dimension
at least two.

One application of these theorems is their use in proofs based on induction. We exemplify this in
the final section of this paper by extending some results regarding integrally closed almost complete
intersection ideals in regular local rings obtained by the author in [2].

2. Preliminary results

All the rings considered in this paper are commutative with identity. If the ring R is noetherian
and I is an ideal in R , we denote by grade I the common length of all the maximal regular sequences
contained in I . If the ring R is local with maximal ideal m, then grade m will be denoted depth R . We
also say that the local ring R is formally equidimensional if its completion is an equidimensional ring,
that is, dim R̂/P = dim R for all the minimal prime ideals P ∈ Spec R̂ . In the literature, the local rings
with this property are also called quasi-unmixed.

In this section we prove several lemmas which will be used in the proof of the main result.

Remark 2.1. With the notation used in Theorem 1 and Corollary 2, both S and U are faithfully flat
extensions of R and dim U = dim R . In particular, if I is an ideal in R , then I S = I S and IU = IU
[7, 8.4.2(9)].

The next discussion shows that if Theorem 1 is true for some set of generators of I , then the
theorem holds for every set of generators of I .

2.2. General grade reductions

Let I = (a1, . . . ,an) be an ideal in a noetherian ring R with grade I > 0. The element α = a1 X1 +
a2 X2 + · · · + an Xn is a non-zero-divisor on S = R[X1, . . . , Xn] (it follows inductively from [12, (6.13)]),
which implies that the grade of I S/αS in S/αS is one less than the grade of I in R . Introduced
by Hochster in [4], (S/αS, I S/αS) is called a first general grade reduction of (R, I). While a first
general grade reduction does depend on the choice of generators of I , it can be shown that any two
first general grade reductions (T1, I T1) and (T2, I T2) of (R, I) are equivalent in the following sense:
there exist indeterminates Y1, . . . , Yr over T1 and Z1, . . . , Zs over T2, and an R-algebra isomorphism
φ : T1[Y1, . . . , Yr] ∼=−→ T2[Z1, . . . , Zs]. Note that this implies that φ(I T1[Y1, . . . , Yr]) = I T2[Z1, . . . , Zs],
since φ is an R-algebra isomorphism. The existence of this R-algebra isomorphism follows from the
proof of [4, Proposition 1]; for the convenience of the reader, we repeat the argument here. Assume
that (T1, I T1) is obtained with respect to the sequence of generators b1, . . . ,bm of I and (T2, I T2)
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with respect to c1, . . . , cp . Let (T3, I T3) be the first general grade reduction of (R, I) obtained by
using b1, . . . ,bm, c1, . . . , cp as generators of I . Since it is enough to show that (T1, I T1) is equivalent
to (T3, I T3) and (T2, I T2) is equivalent to (T3, I T3), we can assume from the beginning that m < p
and bk = ck for k = 1, . . . ,m. By induction, we can also assume that p = m + 1, in which case we can
take T1 = R[X1, . . . , Xm]/(b1 X1 +· · ·+bm Xm) and T2 = R[X1, . . . , Xm, Z ]/(b1 X1 +· · ·+bm Xm +cm+1 Z),
where X1, . . . , Xm, Z are indeterminates over R . Write cm+1 = r1b1 + · · · + rmbm (ri ∈ R) and let X ′

k =
Xk + rk Z for k = 1, . . . ,m. Then X ′

1, . . . , X ′
m, Z are algebraically independent over R and we have the

following R-algebra isomorphisms

T2 ∼= (
R
[

X ′
1, . . . , X ′

m

]
/
(
b1 X ′

1 + · · · + bm X ′
m

))[Z ] ∼= T1[Z ].

Now let us observe that if (T1, I T1) and (T2, I T2) are two first general grade reductions of (R, I)
and m � 1, then Im T1 = Im T1 if and only if Im T2 = Im T2, or equivalently, Im T1 is integrally closed if
and only if Im T2 is integrally closed. Indeed, if φ : T1[Y1, . . . , Yr] ∼=−→ T2[Z1, . . . , Zs] is an R-algebra
isomorphism, then φ(Im T1[Y1, . . . , Yr]) = Im T2[Z1, . . . , Zs] and, by Remark 2.1, it follows that Im T1 is
integrally closed if and only if Im T2 is integrally closed.

This shows that if Theorem 1 holds for some set of generators of I , then the theorem holds for
every set of generators of I . When proving the main result, this observation allows us to choose the
set of generators of I with some extra properties enabled by the assumption that I is an m-primary
ideal in a local ring with depth R � 2.

Lemma 2.3. Let R be a noetherian ring and I = (a1,a2, . . . ,an) an ideal in R with grade I > 0. Let a ∈ R be
a non-zero-divisor such that grade(I + aR) � 2 and let α = a1 X1 + · · · + an Xn ∈ S = R[X1, . . . , Xn]. Then
a,α is a permutable regular sequence on S. In particular, if the elements a1, . . . ,an are non-zero-divisors and
grade I � 2, then a j,α is a permutable regular sequence on S for all j.

Proof. Both a and α are non-zero-divisors on S (2.2), so it is enough to prove that α is a non-zero-
divisor on S/aS . Since grade(I + aR) � 2, there exists c = r1a1 + · · · + rnan ∈ I (ri ∈ R) such that a, c
is a regular sequence on R . By applying the R-algebra automorphism of S that maps Xi to Xi + ri
(i = 1, . . . ,n), it follows that it is enough to prove that a,α + c is a regular sequence on S .

Let f ∈ S such that

(a1 X1 + · · · + an Xn + c) f ∈ aS. (2.3.1)

We want to prove that f ∈ aS . Considering a monomial order on S , let b Xα1
1 . . . Xαn

n be the smallest
term of f . The coefficient of the smallest term in the left-hand side of (2.3.1) is bc, so bc ∈ aR , and
since a, c is a regular sequence on R , we obtain b ∈ aR . Now

(
f − b Xα1

1 . . . Xαn
n

)
(a1 X1 + · · · + an Xn + c) ∈ aS,

and repeating the argument with f − b Xα1
1 . . . Xαn

n instead of f we eventually get that all the coeffi-
cients of f belong to aR , and hence f ∈ aS . This proves that α + c is a non-zero-divisor on S/aS . �

Keeping the notation introduced in 2.2 we have the following lemma.

Lemma 2.4. Let R be a noetherian ring and I = (a1,a2, . . . ,an) an ideal in R with a1,a2, . . . ,an non-zero-
divisors (n � 2) and grade I � 2. Let α = a1 X1 + · · · + an Xn ∈ S = R[X1, . . . , Xn]. Then for each i we have
the following isomorphisms of R-algebras

T = S/αS ∼= R[X1, . . . , Xi−1, Xi+1, . . . , Xn]
[

a1

a
X1 + · · · + ai−1

a
Xi−1 + ai+1

a
Xi+1 + · · · + an

a
Xn

]

i i i i
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and

Ti := T

[
a1

ai
, . . . ,

an

ai

]
∼= R[X1, . . . , Xi−1, Xi+1, . . . , Xn]

[
a1

ai
, . . . ,

an

ai

]
.

Proof. We begin by recalling a well-known result: if R is a commutative ring and b, c is a regular
sequence on R , then the R-algebra homomorphism τ : R[X] → R[c/b] with τ (X) = −c/b induces an
R-algebra isomorphism R[X]/(b X + c) ∼= R[c/b] (see, for example, [14, (7.1)]).

Since αS ∩ R = (0), we may regard R as embedded in S/αS . We may also assume that i = n. By
Lemma 2.3, a1 X1 +· · ·+an−1 Xn−1,an is a permutable regular sequence on R[X1, . . . , Xn−1] and hence
we obtain the R-algebra isomorphism

φ : S/αS
∼=−→ R[X1, . . . , Xn−1]

[
a1

an
X1 + · · · + an−1

an
Xn−1

]

which maps Xi +αS to Xi , for 1 � i � n − 1, and Xn +αS to − a1
an

X1 −· · ·− an−1
an

Xn−1. Since φ(ai) = ai

for all i, this induces the isomorphism

(S/αS)

[
a1

an
, . . . ,

an−1

an

]
∼= R[X1, . . . , Xn−1]

[
a1

an
X1 + · · · + an−1

an
Xn−1

][
a1

an
, . . . ,

an−1

an

]
,

that is,

(S/αS)

[
a1

an
, . . . ,

an−1

an

]
∼= R[X1, . . . , Xn−1]

[
a1

an
, . . . ,

an−1

an

]
. �

2.5. Superficial elements

Let R be a noetherian ring and I an ideal in R . An element x ∈ I is said to be a superficial element
of I if there exists c ∈ N such that (In+1 : x) ∩ Ic = In for all n � c. Such elements exist, for instance,
when the ring R has infinite residue fields [7, 8.5.7]. Furthermore, superficial elements of I exist even
when we require some extra properties: if R is a local ring with infinite residue field and K1, . . . , Km

are ideals in R not containing I , then there exists a superficial element of I that is not contained in
K1 ∪ · · · ∪ Km [7, 8.5.9].

In particular, if R is a local ring with infinite residue field and I is an ideal in R with grade I > 0,
then there exists x ∈ I a non-zero-divisor superficial element of I . Moreover, there exist elements
a1, . . . ,an generating I that are non-zero-divisors and superficial elements. Indeed, we can choose
a1 ∈ I a non-zero-divisor superficial element of I and then successively take ai ∈ I a superficial ele-
ment outside of (a1, . . . ,ai−1) that avoids all the associated primes of R . Since the ring is noetherian,
we eventually have I = (a1, . . . ,an) for some n.

In the same vein, if R is a local ring with infinite residue field and I is an ideal in R with
grade I � 2, then we can choose a1, . . . ,an generators for I such that ai,a j is a regular sequence
for all i �= j and all the elements ai are superficial. As shown above, start by choosing a1 ∈ I a non-
zero-divisor superficial element of I and then take ai ∈ I a superficial element outside of (a1, . . . ,ai−1)

that avoids all the associated prime ideals of the ideals (a1), . . . , (ai−1). (Since grade I � 2, the ideal I
is not contained in any of those prime ideals.) Eventually we obtain I = (a1, . . . ,an) for some n. Note
that since R is local, a permutation of a regular sequence is a regular sequence, too.

We mention here that a non-zero-divisor x ∈ I is a superficial element of I if and only if, for all
n sufficiently large, (In+1 : x) = In [7, 8.5.3]. This also implies that for a non-zero-divisor superficial
element x of I we have (In+1 : x) = In for all n. Indeed, let N be such that (Ik+1 : x) = Ik for k � N
and let y ∈ (In+1 : x). By [7, 6.8.12], there exists c that avoids all the minimal prime ideals of R and a
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positive M such that cyt xt ∈ I(n+1)t for all t � M . If t � max{M, N/n}, we have cyt ∈ (I(n+1)t : xt) = Int ,
and by using again the characterization of the integral closure from [7, 6.8.12] we obtain y ∈ In .

If I = (a1, . . . ,an), by passing to S = R[X1, . . . , Xn], the element α = a1 X1 + · · · + an Xn ∈ I S is
sufficiently general in the above sense. More exactly we have the following proposition.

Proposition 2.6. Let R be a noetherian ring, I = (a1, . . . ,an) an ideal with grade I > 0 and α = a1 X1 + · · ·+
an Xn ∈ S = R[X1, . . . , Xn]. Then (Im S : α) = Im−1 S for all m and (Im S : α) = Im−1 S for m � 0.

Proof. By localizing at the prime ideals that contain I we may assume that R is a local ring with
maximal ideal m. Moreover, by replacing R with the faithfully flat extension R(Z) := R[Z ]mR[Z ] , we
may also assume that R has infinite residue field. Now let us observe that we may assume that a1 is a
non-zero-divisor and a superficial element of I . Indeed, since grade I > 0, by a refinement of a prime
avoidance argument, it follows that there exist r2, . . . , rn ∈ R such that a′

1 := a1 + r2a2 + · · · + rnan

is a non-zero-divisor and a superficial element of I . Note that I = (a′
1,a2, . . . ,an). If we consider

the R-algebra automorphism φ : S → S that maps X1 to X1 and Xi to Xi + ri X1 for i � 2, we have
φ(α) = a′

1 X1 + a2 X2 + · · · + an Xn , and therefore we may assume that the first generator a1 of I is
a non-zero-divisor superficial element of I . (By repeating the process we can actually make all the
generators of I satisfy this property.)

Let f ∈ (Im S : α). If we consider a monomial order on S with X1 < · · · < Xn and b Xα1
1 . . . Xαn

n is the

smallest term that appears in f , from f α ∈ Im S we obtain ba1 ∈ Im , and hence b ∈ (Im : a1) = Im−1,
where the last equality holds because a1 is a non-zero-divisor superficial element of I (2.5). Replacing
f by f − b Xα1

1 . . . Xαn
n and repeating the argument we eventually obtain that all the coefficients of f

are in Im−1. Similarly, if f ∈ (Im S : α), all the coefficients of f are in (Im : a1) = Im−1 for m � 0. �
Remark 2.7. If I is an ideal generated by a regular sequence a1, . . . ,an , then (Ik : al

i) = Ik−l for all i
and all k � l. This follows, for instance, from the R-algebra isomorphism between the polynomial ring
(R/I)[X1, . . . , Xn] and the associated graded ring G = ⊕

n�0 In/In+1 that sends X j to a j + I2 ∈ I/I2

(see [1, (1.1.8, 1.1.15)]). Moreover, under the same assumptions, (Ik : al
i) = Ik−l . Indeed, if yal

i ∈ Ik , then
there exists c ∈ R that avoids all the minimal prime ideals such that cymalm

i ∈ Ikm for m � 0 (cf.

[7, 6.8.12]). Then cym ∈ (Ikm : alm
i ) = I(k−l)m for m � 0, thus y ∈ Ik−l .

In the next lemma we use the notation established in Lemma 2.4.

Lemma 2.8. Let R be a noetherian ring and I = (a1,a2, . . . ,an) an ideal in R with a1, . . . ,an non-zero-divisors
and superficial elements of I and grade I � 2. Let α = a1 X1 + · · · + an Xn ∈ S = R[X1, . . . , Xn], T = S/αS
and Ti := T [a1/ai, . . . ,an/ai]. Then X j,ai is a permutable regular sequence on Ti for all i, j.

Proof. Clearly ai is a non-zero-divisor on Ti , so it is enough to prove that X j,ai is a regular sequence
on Ti . If j �= i, by the second isomorphism from Lemma 2.4, it follows that X j is a non-zero-divisor
on Ti , and clearly ai is a non-zero-divisor on

Ti/X j Ti
∼= R[X1, . . . , X j−1, X j+1, . . . , Xi−1, Xi+1, . . . , Xn]

[
a1

ai
, . . . ,

an

ai

]
.

In the case i = j, without loss of generality we may assume that i = j = n. The second isomorphism
from Lemma 2.4 maps Xn to − a1

an
X1 − · · · − an−1

an
Xn−1, which, as shown in 2.2, is a non-zero-divisor

on R[ a1
an

, . . . ,
an−1

an
][X1, . . . , Xn−1]. To prove that a1

an
X1 + · · · + an−1

an
Xn−1,an is a regular sequence on

R[ a1
an

, . . . ,
an−1

an
][X1, . . . , Xn−1] we apply Lemma 2.3 in the ring R[ a1

an
, . . . ,

an−1
an

] with a = an and the

ideal J = (
a1
an

, . . . ,
an−1

an
). To be able to do this we will show that an,a1/an is a regular sequence on

R[ a1
a , . . . ,

an−1
a ] and hence grade( J ,an) � 2. Since a1 is superficial element of I and a non-zero-divisor
n n
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on R , there exists n0 such that In0+k : a1 = In0+k−1 for all k � 0. Assume that (a1/an) f = an g with
f , g ∈ R[ a1

an
, . . . ,

an−1
an

]. There exists N0 such that for N � N0 we have f ′ = f aN
n ∈ I N ⊆ R and g′ =

gaN
n ∈ I N ⊆ R . Then a1 f ′ = a2

n g′ and hence, for N � max{n0 − 2, N0}, we have f ′ ∈ (I N+2 : a1) = I N+1.
Finally, f = f ′/aN

1 ∈ I R[ a1
an

, . . . ,
an−1

an
] = an R[ a1

an
, . . . ,

an−1
an

]. �
The following lemma will play a crucial role in the proof of the main result.

Lemma 2.9. Let R be a noetherian ring and I = (a1,a2, . . . ,an) an ideal in R with a1, . . . ,an non-zero-divisors
and superficial elements of I . Let S = R[X1, X2, . . . , Xn], α = a1 X1 + a2 X2 + · · · + an Xn ∈ S and T = S/αS.
If grade I � 2, then X j is a non-zero-divisor on T /Im T for all j and all m � 1.

Proof. We may assume j = 1 and let f ∈ T such that f X1 ∈ Im T . Then there exists c ∈ T that avoids
all the minimal prime ideals of T such that cf k Xk

1 ∈ Imk T for k � 0. Let Ti = T [ a1
ai

, . . . , an
ai

] (i =
1, . . . ,n). Then cf k Xk

1 ∈ Imk Ti = amk
i Ti for all i and k � 0. By Lemma 2.8, X1,ai is a permutable

regular sequence on Ti , and hence cf k ∈ amk
i Ti = Imk Ti for k � 0. We note here that for an arbitrary

ideal J in T we have
⋂n

i=1 J T i ∩ T = ⋃∞
r=1( J Ir T : Ir T ). Therefore, for k � 0, we obtain

cf k ∈
n⋂

i=1

Imk Ti ∩ T =
∞⋃

r=1

(
Imk+r T : Ir T

) = Ĩmk T ,

the Ratliff–Rush closure of Imk T [15, 2.3.1]. Since Ĩmk T = Imk T for k � 0 [15, 2.3.2], we have cf k ∈
Imk T for k � 0, or equivalently, f ∈ Im T . This finishes the proof that X1 is a non-zero-divisor on
T /Im T . �
3. The proof of the main result

With the preliminaries in place we are now prepared to prove the main result. The next proposi-
tion, a particular case of Theorem 1(a), is essentially due to Itoh. It is proved by Itoh in [10] only for
ideals generated by regular sequences. However, by using a result also due to Itoh [9, Lemma 3], it
can be proved in the generality stated below.

Proposition 3.1. Let R be a locally formally equidimensional ring and I = (a1,a2, . . . ,an) a parameter ideal
in R of height n with grade I � 2. Let S = R[X1, . . . , Xn], α = a1 X1 + · · · + an Xn ∈ S and T = S/αS. Then
I T = I T .

Proof. By localizing at the prime ideals that contain I , we may assume that the ring R is local.
Let A = R[X1, . . . , Xn−1]m[X1,...,Xn−1] , where m is the maximal ideal of R , J = I A, β = a1 X1 + · · · +
an−1 Xn−1 and B = A[β/an]. Note that by the discussion 2.2 it is enough to prove the proposition for
a special set of generators for I . Since grade I > 0, by a refinement of a prime avoidance argument,
there exist r1, . . . , rn−1 ∈ R such that a′

n := an + r1a1 + · · · + rn−1an−1 is a non-zero-divisor. Since
I = (a1, . . . ,an−1,a′

n), by replacing an with a′
n we may assume that an is a non-zero-divisor. Moreover,

by Lemma 2.3, β,an is a permutable regular sequence on A, and hence, by the result mentioned at the
beginning of the proof of Lemma 2.4, we have B ∼= A[Xn]/αA[Xn]. First we claim that J k B ∩ A = J k for
every k. Note that J is a parameter ideal in A and an, β are part of a minimal set of generators for J .
For w ∈ J k B ∩ A we have waN

n ∈ J k+N for N � 0, hence w ∈ ( J k+N : aN
n ) = J k (cf. [7, Corollary 6.8.13]).

Next we claim that J B = J B . For y ∈ J B , write y = z/at
n with z ∈ (β,an)t ⊆ A, so that z ∈ (β,an)t ∩

( J t+1 B ∩ A) = (β,an)t ∩ J t+1. Since R is locally formally equidimensional, by [9, Lemma 3] it follows
that (β,an)t ∩ J t+1 = (β,an)t J , and therefore y ∈ J B .
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Now let f ∈ S with f̄ = f + αS ∈ I S/αS . If φ denotes the isomorphism between S/αS and
R[X1, . . . , Xn−1][β/an] ⊆ A[β/an] = B we have φ( f̄ ) ∈ J B = J B = I B . Then f ∈ I A[Xn] and hence
f ∈ I R[X1, . . . , Xn]m[X1,...,Xn] ∩ R[X1, . . . , Xn] = I R[X1, . . . , Xn]. �
Remark 3.2. If the ideal I is generated by a regular sequence, then so is J , and from [8, Proposition 6]
it follows that the equality (β,an)t ∩ J t+1 = (β,an)t J holds in an arbitrary ring. Therefore in this case
the conclusion of Proposition 3.1 is true without assuming that R is locally formally equidimensional.

We now prove the main result of the paper.

Theorem 3.3. Let (R,m) be a formally equidimensional local ring with depth R � 2 and I = (a1,a2, . . . ,an)

an m-primary ideal in R. Let S = R[X1, X2, . . . , Xn], α = a1 X1 +a2 X2 +· · ·+an Xn ∈ S and T = S/αS. Then
I T = I T .

Proof. By replacing R with the faithfully flat extension R(Z) := R[Z ]mR[Z ] we may assume that R is
a local ring with infinite residue field.

We have noted in 2.2 that it is enough to prove the theorem for a special set of generators for I .
For a local ring with infinite residue field, one can successively find sufficiently general elements
x1, . . . , xd ∈ I that form a minimal reduction of I (d = dim R). Therefore we can choose generators
a1, . . . ,an for I such that a1, . . . ,ad is a minimal reduction of I and all the elements a1, . . . ,an are
non-zero-divisors and superficial elements of I (see discussion in 2.5).

Let f ∈ S with f + αS ∈ I T . To prove that f ∈ I S = I S , without loss of generality we may as-
sume that f is a homogeneous polynomial. Since f + αS ∈ I T , there exist a positive integer k and
polynomials gi = gi(X1, . . . , Xn) ∈ I i S , h = h(X1, . . . , Xn) ∈ S such that

f s + g1 f s−1 + · · · + gs = (a1 X1 + · · · + an Xn)h. (3.3.1)

We will proceed by induction on the degree of f . If the degree of f is zero, i.e., f ∈ R , by eval-
uating (3.3.1) at X1 = · · · = Xn = 0 we obtain an equation of integral dependence of f over I , so
f ∈ I ⊆ I S . Now assume that (3.3.1) implies f ∈ I S for any homogeneous polynomial f ∈ S of de-
gree at most k − 1 (k � 1) and let f be a homogeneous polynomial of degree k that satisfies (3.3.1).
We will show that f ∈ I S using again induction, but on e := n − d. If n = d, then I is a parameter
ideal and the conclusion follows from Proposition 3.1. Now assume that e � 1. By evaluating (3.3.1)
at Xn = 0 we obtain an equality that shows that the coset of f (X1, . . . , Xn−1,0) belongs to I T ′ where
T ′ = R[X1, . . . , Xn−1]/(a1 X1 + · · · + an−1 Xn−1). Since I T ′ = (a1, . . . ,an−1)T ′ and f (X1, . . . , Xn−1,0)

is either zero or a homogeneous polynomial of degree k, by the induction hypothesis we have
f (X1, . . . , Xn−1,0) ∈ I R[X1, . . . , Xn−1] ⊆ I S . On the other hand,

f (X1, . . . , Xn) = f (X1, X2, . . . , Xn−1,0) + Xn f1(X1, . . . , Xn) (3.3.2)

for some homogeneous polynomial f1 = f1(X1, . . . , Xn) ∈ S of degree k − 1. Since both f + αS and
f (X1, X2, . . . , Xn−1,0) + αS belong to I T , we have Xn f1 + αS ∈ I T , and by Lemma 2.9 we obtain
f1 +αS ∈ I T . Since the degree of f1 is k − 1, by the induction hypothesis we have f1 ∈ I S , and (3.3.2)
implies that f ∈ I S . �

By localizing at the maximal ideal m[X1, . . . , Xn] of S we also obtain the following local version.

Corollary 3.4. Let (R,m) be a formally equidimensional local ring with depth R � 2 and I = (a1,a2, . . . ,an)

an m-primary ideal in R. Let U = R[X1, X2, . . . , Xn]m[X1,...,Xn] , α = a1 X1 + a2 X2 + · · · + an Xn ∈ U and
V = U/αU . Then I V = I V .
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Remark 3.5. Assume that I is an ideal generated by a regular sequence a1, . . . ,an . Itoh [8] and
Huneke [6] (in the case of rings containing a field) proved that Im+1 ∩ Im = I Im for all m. Based
on this, in a subsequent paper [10], Itoh proved that I T = I T . Let us observe the statement I T = I T
can be used to recover the equality Im+1 ∩ Im = I Im for all m.

We will use induction on m + n. For m = 0 there is nothing to prove. For n = 1, let I = (a). If
ram ∈ (am+1) ∩ (am), then there exists c ∈ R avoiding all the minimal prime ideals of R such that
crsams ∈ (ams+s) for s � 0. Then crs ∈ (as) for s � 0, and hence r ∈ (a). For n � 2, as in Corollary 3.4,
let V = U/αU where U = R[X1, X2, . . . , Xn]m[X1,...,Xn] and α = a1 X1 + a2 X2 + · · · + an Xn ∈ U . Since
α is a non-zero-divisor on U (2.2), grade(I V ) = grade I − 1 = n − 1. Also, I V can be generated by
n − 1 elements (α /∈ ImU ), and therefore I V is a complete intersection ideal. Let y ∈ Im+1 ∩ Im .
Then y + αU ∈ Im+1 V ∩ Im V and by the induction hypothesis we obtain y + αU ∈ Im I V . Applying
Corollary 3.4 we obtain y ∈ Im IU + αU , so that we can write y = z + uα where z ∈ Im IU and u ∈ U .
Then uα = y − z ∈ ImU ∩ Im+1U and using Remark 2.7 we obtain u ∈ (ImU : α) ∩ (Im+1U : α) =
Im−1U ∩ ImU = (Im−1 ∩ Im)U . By the induction hypothesis we then obtain u ∈ Im−1 IU , so y ∈ Im IU ∩
R = Im I .

For an analytically unramified Cohen–Macaulay local ring (R,m) of dimension d � 2 and an ideal
I generated by a maximal regular sequence, Itoh [10, Theorem 1(3)] also proved that Im V = Im V
for m � 0. Note that this implies that Im T = Im T for m � 0. Indeed, all the zero-divisors of the
S-module S/(Im,α) are contained in m[X1, . . . , Xn], and hence Im V ∩ T = Im T , which implies that
Im T ⊆ Im V ∩ T = Im T .

We will extend this result to arbitrary m-primary ideals.

Theorem 3.6. Let (R,m) be an analytically unramified Cohen–Macaulay local ring of dimension d � 2 and
I = (a1,a2, . . . ,an) an m-primary ideal in R. Let S = R[X1, X2, . . . , Xn], α = a1 X1 + a2 X2 + · · · + an Xn ∈ S
and T = S/αS. Then Im T = Im T for m � 0.

Proof. We begin the proof as in Theorem 3.3. We may assume that R has infinite residue field and
since it is enough to prove the theorem for some set of generators for I (2.2), choose a1, . . . ,an

generators for I such that (a1, . . . ,ad) is a minimal reduction of I and all the elements ai are non-
zero-divisors and superficial elements of I (see discussion in 2.5).

Given an element f ∈ S with f + αS ∈ Im T , we obtain an equation

f s + g1 f s−1 + · · · + gs = (a1 X1 + · · · + an Xn)h (3.6.1)

where gi = gi(X1, . . . , Xn) ∈ Imi S and h = h(X1, . . . , Xn) ∈ S . We want to prove that for m � 0 this
implies that f ∈ Im S + αS . Note that we may assume that f is homogeneous. We will use induc-
tion on the degree of f . If deg f = 0, by setting X1 = · · · = Xn = 0 in (3.6.1) we obtain f ∈ Im .
Now assume that the claim is true for every homogeneous polynomial of degree at most k − 1
and let f be a homogeneous polynomial of degree k that satisfies (3.6.1). We use again induc-
tion on e := n − d. If n = d, the conclusion follows from the result of Itoh that we mentioned in
the discussion preceding this theorem. Assume that e � 1. By setting Xn = 0 in (3.6.1), the coset
of f (X1, . . . , Xn−1,0) is an element of Im T ′ where T ′ = R[X1, . . . , Xn−1]/(a1 X1 + · · · + an−1 Xn−1).
Since Im T ′ = (a1, . . . ,an−1)m T ′ and f (X1, . . . , Xn−1,0) is either zero or a homogeneous polyno-
mial of degree k in n − 1 variables, by the induction hypothesis we have f (X1, . . . , Xn−1,0) ∈
Im R[X1, . . . , Xn−1] + (a1 X1 + · · · + an−1 Xn−1)R[X1, . . . , Xn−1] so that we can write

f (X1, . . . , Xn−1,0) = p + (a1 X1 + · · · + an−1 Xn−1)q

where p ∈ Im S is a homogeneous polynomial of degree k and q ∈ S is a homogeneous polynomial of
degree k − 1. On the other hand,
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f (X1, . . . , Xn) = f (X1, . . . , Xn−1,0) + Xn f1(X1, . . . , Xn)

where f1 ∈ S is a homogeneous polynomial of degree k − 1, and therefore we have

f (X1, . . . , Xn) = p + (a1 X1 + · · · + an−1 Xn−1 + an Xn)q + Xn( f1 − anq). (3.6.2)

Since f + αS ∈ Im T and p ∈ Im S we have Xn( f1 − anq) + αS ∈ Im T , and by Lemma 2.9 we obtain
( f1 − anq) + αS ∈ Im T . Since the polynomial ( f1 − anq) is homogeneous of degree at most k − 1, by
the induction hypothesis we have ( f1 − anq) ∈ Im S + αS , and by (3.6.2) we obtain f ∈ Im S + αS ,
which finishes the proof. �
Corollary 3.7. Let (R,m) be an analytically unramified Cohen–Macaulay local ring of dimension d � 2 and
let I = (a1,a2, . . . ,an) be an m-primary ideal in R. Denote U = R[X1, X2, . . . , Xn]m[X1,...,Xn] , α = a1 X1 +
a2 X2 + · · · + an Xn ∈ U and V = U/αU . Then Im V = Im V for m � 0.

Remark 3.8. Theorems 3.3 and 3.6 and their corollaries can be extended to equimultiple ideals. (In
general, the analytic spread �(I) of the ideal I is at most the height of I; when the equality holds,
we say that I is equimultiple.) More precisely, if R is a locally formally equidimensional ring and I
is an equimultiple ideal with grade I � 2, then I T = I T and Im T = Im T for m � 0. Indeed, if I is
equimultiple, then the ideals Im (m � 1) have no embedded components [11] and, by localizing at the
minimal prime ideals of I , the conclusions follow.

4. Applications

As mentioned in the introduction, the results that show that the integral closure is preserved mod-
ulo a generic element are useful for proving integral closure statements by induction. As an example
of such an application, we extend some results obtained by the author in [2].

4.1. Almost complete intersection ideals in regular local rings

Let (A,m) be a regular local ring of dimension d and I an m-primary almost complete intersection
ideal, that is, minimally generated by d+1 elements. Under the assumption that A contains a field, the
author [2, 3.3, 3.5, 3.7] proved that if I is integrally closed, then I contains d − 2 regular parameters
x1, . . . , xd−2 such that in the 2-dimensional regular local ring A′ = A/(x1, . . . , xd−2) the ideal I A′
is integrally closed and generated by three elements. The structure of such ideals in 2-dimensional
regular local rings is then completely characterized by results of Noh [13]. In addition, we proved that
the Rees algebra R = ⊕

n�0 Intn is a Cohen–Macaulay normal domain and the associated graded ring

G = ⊕
n�0 In/In+1 is a Cohen–Macaulay ring with a(G) = 1 − d, where a(G), the a-invariant of G , is

defined by a(G) = sup{i | HM
d (G)i �= 0} with M being the maximal homogeneous ideal of G .

The assumption that A contains a field was needed because the proofs relied upon the following
lemma: if A is a regular local ring containing a field, I is an ideal in A with I � m2 and x ∈ I \m2, then
(I/xA) = I/xA [2, 3.4]. Using Corollary 3.4, we will prove this lemma without assuming that A con-
tains a field, and hence all the results about integrally closed m-primary almost complete intersection
ideals that we mentioned above hold in an arbitrary regular local ring.

Lemma 4.2. Let A be a regular local ring, I an ideal in A with I � m2 and let x ∈ I \ m2 . Then (I/xA) = I/xA.

Proof. It is enough to prove this result for m-primary ideals I . Indeed, for f + xA ∈ (I/xA) we have
f + xA ∈ ((I + mk)/xA) for all k, and hence f ∈ I + mk for all k. Since

⋂
k I + mk = I [7, 6.8.5], we

obtain f ∈ I .
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Let I = (a1, . . . ,an) and α = a1 X1 + · · · + an Xn ∈ U = A[X1, . . . , Xn]m[X1,...,Xn] . Set V = U/αU , de-
note by M the maximal ideal of V , and let φ : A/xA → V /xV be the homomorphism induced by the
embedding A → V .

We will use induction on the dimension of A. If dim A = 1, the statement is clear. Assume that
dim A � 2. Since α /∈ m2U , V is a regular local ring of dimension one less than the dimension of A.
Also, note that x ∈ I V \ M2. By the induction hypothesis, if y ∈ A with ȳ ∈ I/xA, then φ( ȳ) ∈ I V /xV =
I V /xV . Furthermore, by Corollary 3.4, we have φ( ȳ) ∈ I V /xV ∼= IU/(xU + αU ), which implies that
y ∈ IU , and hence y ∈ IU ∩ A = I . �

The following consequence was also noted in [2, 3.5], but now we can drop the assumption that
A contains a field. The same proof from [2] will work.

Corollary 4.3. Let (A,m) be a d-dimensional regular local ring, and let I be an ideal of A such that the em-
bedding dimension of A/I is at most two. Then In = In−1 I for all n � 1.

Remark 4.4. The above corollary also shows that an integrally closed m-primary complete intersection
ideal in a regular local ring is normal. This is a well-known result proved by Goto [3, Theorem 3.1] by
using different methods.
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