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Abstract

Stochastic partial differential equations driven by Poisson random measures (PRMs) have been proposed
as models for many different physical systems, where they are viewed as a refinement of a corresponding
noiseless partial differential equation (PDE). A systematic framework for the study of probabilities of
deviations of the stochastic PDE from the deterministic PDE is through the theory of large deviations. The
goal of this work is to develop the large deviation theory for small Poisson noise perturbations of a general
class of deterministic infinite dimensional models. Although the analogous questions for finite dimensional
systems have been well studied, there are currently no general results in the infinite dimensional setting. This
is in part due to the fact that in this setting solutions may have little spatial regularity, and thus classical
approximation methods for large deviation analysis become intractable. The approach taken here, which
is based on a variational representation for nonnegative functionals of general PRMs, reduces the proof
of the large deviation principle to establishing basic qualitative properties for controlled analogues of the
underlying stochastic system. As an illustration of the general theory, we consider a particular system that
models the spread of a pollutant in a waterway.
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1. Introduction

Stochastic partial differential equations driven by Poisson random measures arise in many
different fields. For example, they have been used to develop models for neuronal activity that
account for synaptic impulses occurring randomly, both in time and at different locations of a
spatially extended neuron. Other applications arise in chemical reaction–diffusion systems and
stochastic turbulence models. The starting point in all these application areas are deterministic
partial differential equations (PDEs) that capture the underlying physics. One then develops a
stochastic evolution model driven by a suitable Poisson noise process to take into account random
inputs or effects to the nominal deterministic dynamics. In typical settings the solutions of these
stochastic evolution equations are not smooth. In fact in many applications of interest they are
not even random fields (that is, function valued), and therefore an appropriate framework is given
through the theory of generalized functions. A systematic theory of existence and uniqueness of
solutions (both weak and pathwise) for such stochastic partial differential equations (SPDEs)
driven by Poisson random measures has been developed in [16]. Our objective in this work is to
study some large deviation problems associated with such stochastic systems.

Large deviation properties of SPDEs driven by infinite dimensional Brownian motions
(e.g. Brownian sheets) have been extensively studied. In such a typical setting one considers
a small parameter multiplying the noise term and is interested in asymptotic probabilities of
non-nominal behavior as the parameter approaches zero. This is the classical Freidlin–Wentzell
problem that has been studied in numerous papers (see the references in [5]). Earlier works
on this family of problems were based on ideas of [1] and relied on discretizations and other
approximations combined with ‘super-exponential closeness’ probability estimates. For many
models of interest, particularly those arising from fluid dynamics and turbulence, developing the
required exponential probability estimates is a daunting task and consequently simpler alternative
methods are of interest. In recent years an approach based on certain variational representation
formulas for moments of nonnegative functionals of Brownian motions [5] has been increasingly
used for the study of the small noise large deviation problem for Brownian motion driven infinite
dimensional systems [2,5,6,8,10,11,18–21,23,25,27,29–31]. The main appealing feature of this
approach is that it completely bypasses approximation/discretization arguments and exponential
probability estimates, and in their place essentially requires a basic qualitative understanding
of existence, uniqueness and stability (under ‘bounded’ perturbations) of certain controlled
analogues of the underlying stochastic dynamical system of interest.

Large deviation results for finite dimensional stochastic differential equations with a Poisson
noise term has been studied by several authors [28,17,12,9]. For infinite dimensional models
with jumps, very little is available. One exception is the paper [22] that obtains large deviation
results for an Ornstein–Uhlenbeck type process driven by an infinite dimensional Lévy noise.
One reason there is relatively little work in the Poisson noise setting is that approximation
arguments that one uses for Brownian noise models become much more onerous in the
Poisson setting, and for general infinite dimensional models the approach of [1] becomes
intractable.

With the expectation that it would prove useful for the study of large deviations for SPDEs
driven by Poisson random measures (PRMs), the paper [7] developed a variational representation,
for moments of non negative functionals of PRMs, which is analogous to the representation
given in [4,5] for the Brownian motion case. The paper [7] also obtained large deviation results
for a basic model of a finite dimensional jump–diffusion to illustrate the applicability of this
variational representation for the study of large deviation problems for models with jumps.
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However the feasibility of this approach for the study of complex infinite dimensional stochastic
dynamical systems driven by Poisson random measures has not been addressed to date.

The goal of this work is to demonstrate that the approach based on variational representations
that has been very successful for obtaining large deviation results for system driven by Brownian
noises works equally well for SPDE models driven by PRMs. As in the Brownian case we study
the small noise problem, which in the Poisson setting means that the jump intensity is O(ϵ−1)

and jump sizes are O(ϵ), where ϵ is a small parameter. We consider a rather general family of
models of the form

X ϵt = X ϵ0 +

 t

0
A(s, X ϵs )ds + ϵ

 t

0


X

G(s, X ϵs−, v)Ñ
ϵ−1
(dsdv), (1.1)

where N ϵ−1
is a Poisson random measure on [0, T ]×X with a σ -finite mean measure ϵ−1λT ⊗ν,

λT is the Lebesgue measure on [0, T ] and Ñ ϵ−1
([0, t] × B) = N ϵ−1

([0, t] × B) − ϵ−1tν(B),
∀B ∈ B(X) with ν(B) < ∞, is the compensated Poisson random measure.

As noted previously, a key issue with a Poisson noise model is the selection of an appropriate
state space, since it is natural and often convenient for there to be little spatial regularity.
However, many of these foundational issues have been satisfactorily resolved in [16], where
pathwise existence and uniqueness of SPDEs of the form (1.1) are treated under rather general
conditions. In the framework of [16] solutions lie in the space of RCLL trajectories that take
values in the dual of a suitable nuclear space. This framework covers many specific application
settings that have been studied in the literature (e.g., spatially extended neuron models, chemical
reaction–diffusion systems, etc.). Parallel with the case of Brownian noise, one finds that the
estimates needed for establishing the well-posedness of the equation are precisely the ones that
are key for the proof of the large deviation result as well.

The paper is organized as follows. We begin in Section 2 with some background results. The
variational representation from [7] is recalled and also a general large deviation result established
in that paper is presented. Also summarized are basic existence and uniqueness results from [16]
for SPDEs with solutions in the duals of Countably Hilbertian Nuclear Spaces (CHNS). In
Section 3 we study the small noise problem and state verifiable conditions on the model data
in (1.1) under which a large deviation principle holds. Section 4 considers a particular system
designed to model the spread of a pollutant in a waterway, and verifies all the conditions assumed
on (1.1). Finally, the Appendix collects some auxiliary results.

The following notation will be used. For a topological space E , denote the corresponding
Borel σ -field by B(E). We will use the symbol “⇒” to denote convergence in distribution.
Let N,N0,Z,R,R+,Rd denote the set of positive integers, non-negative integers, integers, real
numbers, positive real numbers, and d-dimensional real vectors respectively. For a Polish space
X, denote by C([0, T ] : X) and D([0, T ] : X) the space of continuous functions and right
continuous functions with left limits from [0, T ] to X, endowed with the uniform and Skorokhod
topology, respectively. For a metric space E , denote by Mb(E) and Cb(E) the space of real
bounded B(E)/B(R)-measurable maps and real continuous bounded functions respectively. For a
measure ν on E and a Hilbert space H , let L2(E, ν; H) denote the space of measurable functions
f from E to H such that


E ∥ f (v)∥2ν(dv) < ∞, where ∥ · ∥ is the norm on H . For a function

x : [0, T ] → E , we use the notation xt and x(t) interchangeably for the evaluation of x at
t ∈ [0, T ]. A similar convention will be followed for stochastic processes. We say a collection
{X ϵ} of E -valued random variables is tight if the distributions of X ϵ are tight in P(E) (the space
of probability measures on E ).
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A function I : E → [0,∞] is called a rate function on E , if for each M < ∞ the level set
{x ∈ E : I (x) ≤ M} is a compact subset of E . A sequence {X ϵ} of E valued random variables
is said to satisfy the Laplace principle upper bound (respectively lower bound) on E with rate
function I if for all h ∈ Cb(E)

lim sup
ϵ→0

ϵ log E


exp

−

1
ϵ

h(X ϵ)


≤ − inf

x∈E
{h(x)+ I (x)},

and, respectively,

lim inf
ϵ→0

ϵ log E


exp

−

1
ϵ

h(X ϵ)


≥ − inf

x∈E
{h(x)+ I (x)}.

The Laplace principle is said to hold for {X ϵ} with rate function I if both the Laplace upper
and lower bounds hold. It is well known that when E is a Polish space, the family {X ϵ} satisfies
the Laplace principle upper (respectively lower) bound with a rate function I on E if and only if
{X ϵ} satisfies the large deviation upper (respectively lower) bound for all closed sets (respectively
open sets) with the rate function I . For a proof of this statement we refer the reader to Section 1.2
of [12].

2. Preliminaries

2.1. Poisson random measure and a variational representation

Let X be a locally compact Polish space. Let M FC (X) be the space of all measures ν on
(X,B(X)) such that ν(K ) < ∞ for every compact K in X. Endow M FC (X) with the weakest
topology such that for every f ∈ Cc(X) (the space of continuous functions with compact
support), the function ν → ⟨ f, ν⟩ =


X f (u)dν(u), ν ∈ M FC (X) is continuous. This topology

can be metrized such that M FC (X) is a Polish space (see e.g. [7]). Fix T ∈ (0,∞) and let
XT = [0, T ] × X. Fix a measure ν ∈ M FC (X), and let νT = λT ⊗ ν, where λT is Lebesgue
measure on [0, T ].

We recall that a Poisson random measure n on XT with mean measure (or intensity measure)
νT is a M FC (XT ) valued random variable such that for each B ∈ B(XT )with νT (B) < ∞, n(B)
is Poisson distributed with mean νT (B) and for disjoint B1, . . . , Bk ∈ B(XT ), n(B1), . . . ,n(Bk)

are mutually independent random variables (cf. [14]). Denote by P the measure induced by
n on (M FC (XT ),B(M FC (XT ))). Then letting M = M FC (XT ), P is the unique probability
measure on (M,B(M)) under which the canonical map, N : M → M, N (m)

.
= m, is a Poisson

random measure with intensity measure νT . With applications to large deviations in mind, we
also consider, for θ > 0, probability measures Pθ on (M,B(M)) under which N is a Poisson
random measure with intensity θνT . The corresponding expectation operators will be denoted
by E and Eθ , respectively. We now present a variational representation, obtained in [7], for
− log Eθ (exp[−F(N )]), where F ∈ Mb(M), in terms of a Poisson random measure constructed
on a larger space. We begin by describing this construction.

The analysis of large deviation properties for a process such as (1.1) is simplified considerably
by a convenient control representation for the exponential integrals appearing in the Laplace
principle. In contrast with the case of Brownian motion, the formulation of a useful representation
is not immediate for Poisson noise. With a Poisson random measure, one needs a control that
alters the intensity at time t and for jump type x from that of the underlying PRM to essentially
any value in [0,∞) in a non-anticipating fashion. To accommodate this form of control, we
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augment the space of jump times and jump types by a variable r ∈ [0,∞), and consider in place
of the original PRM one whose intensity is a product of νT and Lebesgue measure on r . The
desired jump intensities can then be obtained by “thinning” this variable.

Thus we let Y = X × [0,∞) and YT = [0, T ] × Y. Let M̄ = M FC (YT ) and let P̄ be
the unique probability measure on (M̄,B(M̄)) under which the canonical map, N̄ : M̄ → M̄,
N̄ (m)

.
= m, is a Poisson random measure with intensity measure ν̄T = λT ⊗ ν ⊗ λ∞, with λ∞

Lebesgue measure on [0,∞). The corresponding expectation operator will be denoted by Ē. Let
Ft

.
= σ {N̄ ((0, s] × A) : 0 ≤ s ≤ t, A ∈ B(Y)}, and let F̄t denote the completion under P̄.

We denote by P̄ the predictable σ -field on [0, T ] × M̄ with the filtration {F̄t : 0 ≤ t ≤ T } on
(M̄,B(M̄)). Let Ā be the class of all (P̄ ⊗ B(X))/B[0,∞)-measurable maps ϕ : XT × M̄ →

[0,∞). For ϕ ∈ Ā, define a counting process Nϕ on XT by

Nϕ((0, t] × U ) =


(0,t]×U


(0,∞)

1[0,ϕ(s,x)](r)N̄ (dsdxdr), t ∈ [0, T ],U ∈ B(X). (2.1)

Nϕ is then the controlled random measure, with ϕ selecting the intensity for the points at location
x and time s, in a possibly random but non-anticipating way. When ϕ(s, x, m̄) ≡ θ ∈ (0,∞), we
write Nϕ

= N θ . Note that N θ has the same distribution with respect to P̄ as N has with respect
to Pθ . Define l : [0,∞) → [0,∞) by

l(r) = r log r − r + 1, r ∈ [0,∞).

For any ϕ ∈ Ā the quantity

LT (ϕ) =


XT

l(ϕ(t, x, ω))νT (dtdx) (2.2)

is well defined as a [0,∞]-valued random variable. The following is a representation formula
proved in [7].

Theorem 2.1. Let F ∈ Mb(M). Then, for θ > 0,

− log Eθ (e−F(N )) = − log Ē(e−F(N θ )) = inf
ϕ∈Ā

Ē

θLT (ϕ)+ F(N θϕ)


.

2.2. A general large deviation result

In this section, we summarize the main large deviation result of [7]. Let {Gϵ}ϵ>0 be a family
of measurable maps from M to U, where U is some Polish space. We present below a sufficient
condition for a large deviation principle to hold for the family Z ϵ = Gϵ(ϵN ϵ−1

), as ϵ → 0.
Define

SN
= {g : XT → [0,∞) : LT (g) ≤ N } . (2.3)

A function g ∈ SN can be identified with a measure νg
T ∈ M, defined by

ν
g
T (A) =


A

g(s, x)νT (dsdx), A ∈ B(XT ).

This identification induces a topology on SN under which SN is a compact space. See the
Appendix for a proof of this statement. Throughout we use this topology on SN . Define
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S = ∪N≥1 SN , and let

U N
= {ϕ ∈ Ā : ϕ(w) ∈ SN , P̄ a.e. w}.

The following condition will be sufficient to establish an LDP for a family {Z ϵ}ϵ>0 defined
by Z ϵ = Gϵ(ϵN ϵ−1

). When applied to the SDE (1.1) later on, Gϵ will be the mapping that takes
the PRM into X ϵ .

Condition 2.2. There exists a measurable map G 0
: M → U such that the following hold.

a. For N ∈ N, let gn, g ∈ SN be such that gn → g as n → ∞. Then

G 0 νgn
T


→ G 0 νg

T


.

b. For N ∈ N, let ϕϵ, ϕ ∈ U N be such that ϕϵ converges in distribution to ϕ as ϵ → 0. Then

Gϵ(ϵN ϵ−1ϕϵ ) ⇒ G 0 νϕT  .
The first condition requires continuity in the control for deterministic controlled systems. The

second condition is a law of large numbers result for small noise controlled stochastic systems.
In both cases we are allowed to assume the controls take values in a compact set.

For φ ∈ U, define Sφ =

g ∈ S : φ = G 0(ν

g
T )

. Let I : U → [0,∞] be defined by

I (φ) = inf
g∈Sφ

{LT (g)} , φ ∈ U. (2.4)

By convention, I (φ) = ∞ if Sφ = ∅.
The following theorem was established in [7, Theorem 4.2].

Theorem 2.3. For ϵ > 0, let Z ϵ be defined by Z ϵ = Gϵ(ϵN ϵ−1
), and suppose that Condi-

tion 2.2 holds. Then I defined as in (2.4) is a rate function on U and the family {Z ϵ}ϵ>0 satisfies
a large deviation principle with rate function I .

For applications, the following strengthened form of Theorem 2.3 is useful. The proof follows
by straightforward modifications; for completeness we include a sketch in the Appendix.

Let {Kn ⊂ X, n = 1, 2, . . .} be an increasing sequence of compact sets such that ∪
∞

n=1 Kn =

X. For each n let

Āb,n
.
= {ϕ ∈ Ā : for all (t, ω) ∈ [0, T ] × M̄, n ≥ ϕ(t, x, ω) ≥ 1/n if x ∈ Kn

and ϕ(t, x, ω) = 1 if x ∈ K c
n},

and let Āb = ∪
∞

n=1 Āb,n . Define Ũ N
= U N

∩ Āb.

Theorem 2.4. Suppose Condition 2.2 holds with U N replaced by Ũ N . Then the conclusions
of Theorem 2.3 continue to hold.

2.3. A family of SPDEs driven by Poisson random measures

In this section we introduce the basic SPDE model that will be studied in this work. We begin
by giving a precise meaning to a solution for such a SPDE and then recall a result from [16]
which gives sufficient conditions on the coefficients ensuring the strong existence and pathwise
uniqueness of solutions. To introduce the solution space, we start with some basic definitions
(cf. [16]).
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Definition 2.5. Let E be a vector space. A family of norms {∥ · ∥p : p ∈ N0} on E is called
compatible if for any p, q ∈ N0, whenever {xn} ⊆ E is a Cauchy sequence with respect to both
∥ · ∥p and ∥ · ∥q , and converges to 0 with respect to one norm, then it also converges to 0 with
respect to the other norm. The family is said to be increasing if for all x ∈ E , ∥x∥p ≤ ∥x∥q
whenever p ≤ q .

Definition 2.6. A separable Frèchet space Φ is called a countable Hilbertian space if its topology
is given by an increasing sequence ∥ · ∥n , n ∈ N0, of compatible Hilbertian norms. A countable
Hilbertian space Φ is called nuclear if for each n ∈ N0 there exists m > n such that the canonical
injection from Φm into Φn is Hilbert–Schmidt, where Φk , for each k ∈ N0, is the completion of
Φ with respect to ∥ · ∥k .

If Φ, {Φn}n∈N0 are as above, then {Φn}n∈N0 is a sequence of decreasing Hilbert spaces
and Φ = ∩

∞

n=0 Φn . Identify Φ′

0 with Φ0 using Riesz’s representation theorem, and denote the
space of bounded linear functionals on Φn by Φ−n . This space has a natural inner product [and
norm] which we denote by ⟨·, ·⟩−n [resp. ∥ · ∥−n], n ∈ N0 such that {Φ−n}n∈N0 is a sequence
of increasing Hilbert spaces and the topological dual of Φ, denoted as Φ′ equals ∪

∞

n=0 Φ−n
(see Theorem 1.3.1 of [16]). Elements of Φ′ need not have much regularity. Solutions of the
SPDE considered in this paper will have sample paths in Φ′. In fact under the conditions imposed
here the solutions will take values in D([0, T ] : Φ−n) for some finite value of n.

We will assume that there is a sequence {φ j } ⊂ Φ such that {φ j } is a complete orthonormal
system (CONS) in Φ0 and is a complete orthogonal system (COS) in each Φn, n ∈ Z. Then
{φn

j } = {φ j∥φ j∥
−1
n } is a CONS in Φn for each n ∈ Z. Define the map θp : Φ−p → Φp by

θp(φ
−p
j ) = φ

p
j . It is easy to check that for all p ∈ N, θp(Φ) ⊆ Φ (see Remark 6.1.1 of [16]).

Also, for each r > 0, η ∈ Φ−r and φ ∈ Φr , η[φ] is defined by the formula

η[φ] =

∞
j=1

⟨η, φ j ⟩−r ⟨φ, φ j ⟩r . (2.5)

We refer the reader to Example 1.3.2 of [16] for a canonical example of such a Countable
Hilbertian Nuclear Space (CHNS) defined using a closed densely defined self-adjoint operator
on Φ0. A similar example is considered in Section 4 of this paper.

Following [13], we introduce the following conditions on the coefficients A and G in Eq. (1.1).
Let A : [0, T ]×Φ′

→ Φ′, G : [0, T ]×Φ′
×X → Φ′ be maps satisfying the following condition.

Condition 2.7. There exists p0 ∈ N such that, for every p ≥ p0, there exists q ≥ p and a
constant K = K (p, q) such that the following hold.
a. (Continuity) For all t ∈ [0, T ] and u ∈ Φ−p, A(t, u) ∈ Φ−q and G(t, u, ·) ∈ L2(X, ν;Φ−p).

The maps u → A(t, u) and u → G(t, u, ·) are continuous.
b. (Coercivity) For all t ∈ [0, T ], and φ ∈ Φ,

2A(t, φ)[θpφ] ≤ K (1 + ∥φ∥
2
−p).

c. (Growth) For all t ∈ [0, T ], and u ∈ Φ−p,

∥A(t, u)∥2
−q ≤ K (1 + ∥u∥

2
−p)

and 
X

∥G(t, u, v)∥2
−pν(dv) ≤ K (1 + ∥u∥

2
−p).
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d. (Monotonicity) For all t ∈ [0, T ], and u1, u2 ∈ Φ−p,

2⟨A(t, u1)− A(t, u2), u1 − u2⟩−q +


X

∥G(t, u1, v)− G(t, u2, v)∥
2
−qν(dv)

≤ K∥u1 − u2∥
2
−q .

In Section 4, we will consider a model motivated by problems in hydrology where all parts of
Condition 2.7 are satisfied.

We now give a precise definition of a solution to the SDE (1.1).

Definition 2.8. Let (M̄,B(M̄), P̄, {F̄t }) be the filtered probability space from Section 2.1. Fix
p ∈ N0, suppose that X0 is a F̄0-measurable Φ−p-valued random variable such that E∥X0∥

2
−p <

∞. A stochastic process {X ϵt }t∈[0,T ] defined on M̄ is said to be a Φ−p-valued strong solution to
the SDE (1.1) with initial value X0, if

(a) X ϵt is a Φ−p-valued F̄t -measurable random variable for all t ∈ [0, T ];
(b) X ϵ ∈ D([0, T ] : Φ−p) a.s.;
(c) there is a q ≥ p such that for all t ∈ [0, T ] and u ∈ Φ−p, A(t, u) ∈ Φ−q and G(t, u, ·)

∈ L2(X, ν;Φ−q), and there exists a sequence {σn}n≥1 of {F̄t }-stopping times increasing to
infinity such that for each n ≥ 1,

Ē
 T ∧σn

0


X

∥G(s, X ϵs , v)∥
2
−qν(dv)ds < ∞

and

Ē
 T ∧σn

0
∥A(s, X ϵs )∥

2
−qds < ∞;

(d) for all t ∈ [0, T ], almost all ω ∈ M̄, and all φ ∈ Φ

X ϵt [φ] = X0[φ] +

 t

0
A(s, X ϵs )[φ]ds + ϵ

 t

0


X

G(s, X ϵs−, v)[φ]Ñ ϵ−1
(dsdv). (2.6)

In Definition 2.8, Ñ ϵ−1
is the compensated version of N ϵ−1

as defined below (1.1), with N ϵ−1

having jump rates that are scaled by 1/ϵ and is constructed from N̄ , as below (2.1).
One can similarly define a Φ−p-valued strong solution on an arbitrary filtered probability

space supporting a suitable PRM.

Definition 2.9 (Pathwise Uniqueness). We say that the Φ−p-valued solution for the SDE (1.1)
has the pathwise uniqueness property if the following is true. Suppose that X and X ′ are two
Φ−p-valued solutions defined on the same filtered probability space with respect to the same
Poisson random measure and starting from the same initial condition X0. Then the paths of X
and X ′ coincide for almost all ω.

The following theorem is taken from [16] (see Theorems 6.2.2, 6.3.1 and Lemma 6.3.1
therein).

Theorem 2.10. Suppose that Condition 2.7 holds. Let X0 be a Φ−p-valued random variable
satisfying E∥X0∥

2
−p < ∞. Then for sufficiently large p1 ≥ p, the canonical injection from

Φ−p to Φ−p1 is Hilbert–Schmidt, and for all such p1 the SDE (1.1) with initial value X0 has a
pathwise unique Φ−p1 -valued strong solution.
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3. Large deviation principle

Throughout this section we will assume that Condition 2.7 holds.
Fix p ≥ p0 and X0 ∈ Φ−p. Let X ϵ be the Φ−p1 -valued strong solution to the SDE (1.1) with

initial value X0. In this section, we establish an LDP for {X ϵ} under suitable assumptions, by
verifying the sufficient condition in Section 2.2.

We begin by introducing the map G 0 that will be used to define the rate function and also used
for verification of Condition 2.2. Recall that S = ∪N≥1 SN , where SN is defined in (2.3). As a
first step we show that under Conditions 3.1 and 3.5 below, for every g ∈ S, the integral equation

X̃ g
t = X0 +

 t

0
A(s, X̃ g

s )ds +

 t

0


X

G(s, X̃ g
s , v)(g(s, v)− 1)ν(dv)ds (3.1)

has a unique continuous solution. Here g plays the role of a control. Keeping in mind that (2.6)
is driven by the compensated measure and that equations such as (3.1) will arise as law of large
number limits, g corresponds to a shift in the scaled jump rate away from that of the original
model, which corresponds to g = 1. Let

∥G(t, v)∥0,−p = sup
u∈Φ−p

∥G(t, u, v)∥−p

1 + ∥u∥−p
, (t, v) ∈ [0, T ] × X.

Condition 3.1 (Exponential Integrability). There exists δ1 ∈ (0,∞) such that for all E ∈

B([0, T ] × X) satisfying νT (E) < ∞,
E

eδ1∥G(s,v)∥2
0,−pν(dv)ds < ∞.

Remark 3.2. Under Condition 3.1, for every δ2 ∈ (0,∞) and for all E ∈ B([0, T ] × X)
satisfying νT (E) < ∞

E
eδ2∥G(s,v)∥0,−pν(dv)ds < ∞.

The proof of Remark 3.2 is given in the Appendix.

Remark 3.3. The following inequalities will be used several times. Proofs are omitted.

a. For a, b ∈ (0,∞), σ ∈ [1,∞),

ab ≤ eσa
+

1
σ
(b log b − b + 1) = eσa

+
1
σ

l(b). (3.2)

b. For each β > 0 there exists c1(β) > 0, such that c1(β) → 0 as β → ∞ and

|x − 1| ≤ c1(β)l(x) whenever |x − 1| ≥ β.

c. For each β > 0 there exists c2(β) < ∞, such that

|x − 1|
2

≤ c2(β)l(x) whenever |x − 1| ≤ β.

In particular, using the inequalities we have the following lemma.
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Lemma 3.4. Under Conditions 2.7(c) and 3.1, for every M ∈ N,

sup
g∈SM


XT

∥G(s, v)∥2
0,−p(g(s, v)+ 1)ν(dv)ds < ∞, (3.3)

sup
g∈SM


XT

∥G(s, v)∥0,−p|g(s, v)− 1|ν(dv)ds < ∞, (3.4)

and

lim
δ→0

sup
g∈SM

sup
|t−s|≤δ


[s,t]×X

∥G(r, v)∥0,−p|g(r, v)− 1|ν(dv)dr = 0. (3.5)

Proof. First notice that under Condition 2.7(c), we have
XT

∥G(s, v)∥2
0,−pν(dv)ds ≤ K T < ∞. (3.6)

Thus we only need to prove that

sup
g∈SM


XT

∥G(s, v)∥2
0,−pg(s, v)ν(dv)ds < ∞.

If E = {(s, v) : ∥G(s, v)∥0,−p ≥ 1}, then by (3.6) we have νT (E) < ∞. Also, from the super
linear growth of the function l, we can find κ1, κ2 ∈ (0,∞) such that for all x ≥ κ1, x ≤ κ2l(x).
Define F = {(s, v) : g(s, v) ≥ κ1}. Then, from (3.2)

XT

∥G(s, v)∥2
0,−pg(s, v)ν(dv)ds =


E

∥G(s, v)∥2
0,−pg(s, v)ν(dv)ds

+


Ec

∥G(s, v)∥2
0,−pg(s, v)ν(dv)ds

≤


E

eδ1∥G(s,v)∥2
0,−pν(dv)ds

+


E

l


g(s, v)

δ1


ν(dv)ds

+


Ec∩F

κ2l(g(s, v))ν(dv)ds

+ κ1


Ec∩Fc

∥G(s, v)∥2
0,−pν(dv)ds.

Combining this estimate with Condition 3.1 and the definition of SM , we have (3.3).
We now prove (3.4) and (3.5). Note that

[s,t]×X
∥G(r, v)∥0,−p|g(r, v)− 1|ν(dv)dr

=


([s,t]×X)∩E

∥G(r, v)∥0,−p|g(r, v)− 1|ν(dv)dr

+


([s,t]×X)∩Ec

∥G(r, v)∥0,−p|g(r, v)− 1|ν(dv)dr.
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Using (3.2) twice (once with b = g and once with b = 1), for any M0 ∈ (1,∞)
([s,t]×X)∩E

∥G(r, v)∥0,−p|g(r, v)− 1|ν(dv)dr

≤ 2

([s,t]×X)∩E

eM0∥G(r,v)∥0,−pν(dv)dr +
M

M0
. (3.7)

Recalling Remark 3.3, for any θ > 0 and g ∈ SM
([s,t]×X)∩Ec

∥G(r, v)∥0,−p|g(r, v)− 1|ν(dv)dr

=


([s,t]×X)∩Ec∩{|g−1|≤θ}

∥G(r, v)∥0,−p|g − 1|ν(dv)dr

+


([s,t]×X)∩Ec∩{|g−1|>θ}

∥G(r, v)∥0,−p|g − 1|ν(dv)dr

≤


[s,t]×X

∥G(r, v)∥2
0,−pν(dv)dr

1/2
c2(θ)M + c1(θ)M. (3.8)

The inequality in (3.4) now follows on setting s = 0, t = T in (3.7) and (3.8) and using
Condition 2.7(c) and Remark 3.2.

Next consider (3.5). Fix ϵ ∈ (0,∞). Choose M0 such that M
M0

≤
ϵ
4 . Let δ1 ∈ (0,∞) be such

that

2 sup
|t−s|≤δ1


([s,t]×X)∩E

eM0∥G(r,v)∥0,−pν(dv)dr ≤
ϵ

4
.

Now choose θ ∈ (0,∞) such that c1(θ)M ≤
ϵ
4 . Finally, choose δ2 ∈ (0,∞) such that

sup
|t−s|≤δ2


[s,t]×X

∥G(r, v)∥2
0,−pν(dv)dr

1/2
c2(θ)N ≤

ϵ

4
.

Using the above inequalities in (3.7) and (3.8), we have for all δ ≤ min{δ1, δ2},

sup
g∈SM

sup
|t−s|≤δ


[s,t]×X

∥G(r, v)∥0,−p|g(r, v)− 1|ν(dv)dr ≤ ϵ.

The result follows. �

We will need the following stronger condition on fluctuations of G than (d) of Condition 2.7.
Let

∥G(t, v)∥1,−q = sup
u1,u2∈Φ−q ,u1≠u2

∥G(t, u1, v)− G(t, u2, v)∥−q

∥u1 − u2∥−q
.

Condition 3.5. For q as in Condition 2.7, there exists δ > 0 such that for all E ∈ B([0, T ] × X)
satisfying νT (E) < ∞,

E
eδ∥G(s,v)∥2

1,−q ν(dv)ds < ∞.
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Remark 3.6. Under Conditions 2.7(d) and 3.5, for every M ∈ N,

sup
g∈SM


XT

∥G(s, v)∥2
1,−q(g(s, v)+ 1)ν(dv)ds < ∞,

and

sup
g∈SM


XT

∥G(s, v)∥1,−q |g(s, v)− 1|ν(dv)ds < ∞. (3.9)

The proof of this remark is similar to that of Lemma 3.4, and thus omitted. Note that
Conditions 3.1 and 3.5 hold trivially if ∥G(s, v)∥0,−p and ∥G(s, v)∥1,−q are bounded in (s, v).

Recall that p1 ≥ p is chosen such that the canonical injection from Φ−p to Φ−p1 is
Hilbert–Schmidt.

Theorem 3.7. Fix g ∈ S. Suppose Conditions 2.7, 3.1 and 3.5 hold, and that X0 ∈ Φ−p. Then
there exists a unique X̃ g

∈ C([0, T ] : Φ−p1) such that for every φ ∈ Φ,

X̃ g
t [φ] = X0[φ] +

 t

0
A(s, X̃ g

s )[φ]ds

+

 t

0


X

G(s, X̃ g
s , v)[φ](g(s, v)− 1)ν(dv)ds. (3.10)

Furthermore, for N ∈ N, supt∈[0,T ] supg∈SN ∥X̃ g
t ∥−p < ∞.

We note that in the above theorem X̃ g is a non-random element of C([0, T ] : Φ−p1). We can
now present the main large deviation result. Recall that for g ∈ S, νg

T (dsdv) = g(s, v)ν(dv)ds.
Define

G 0(ν
g
T ) = X̃ g for g ∈ S, with X̃ g given by (3.10). (3.11)

Let I : D([0, T ] : Φ−p1) → [0,∞] be defined as in (2.4).

Theorem 3.8. Suppose that Conditions 2.7, 3.1 and 3.5 hold. Then I is a rate function on Φ−p1 ,
and the family {X ϵ}ϵ>0 satisfies a large deviation principle on D([0, T ] : Φ−p1) with rate
function I .

We now proceed with the proofs. In Section 3.1 we prove Theorem 3.7 and in Section 3.2, we
present the proof of Theorem 3.8.

3.1. Proof of Theorem 3.7

The proof of the theorem is based on the following two lemmas. The first lemma is standard
and so its proof is relegated to the Appendix. The norm ∥ · ∥ in the lemma is the Euclidean norm
in Rd .

Lemma 3.9. Let a, u : [0, T ] × Rd
→ Rd and b : [0, T ] × Rd

→ R be measurable functions
such that, for a.e. s ∈ [0, T ], the maps y → a(s, y), y → b(s, y) and y → u(s, y) are
continuous. Further suppose that for some κ ∈ (0,∞),

∥a(s, y)∥ + |b(s, y)| ≤ κ(1 + ∥y∥), for all s ∈ [0, T ], y ∈ Rd T

0
sup
y∈Rd

∥u(s, y)∥ds ≤ M < ∞.
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Fix x0 ∈ Rd . Then there exists x ∈ C([0, T ] : Rd) such that x satisfies the integral equation

x(t) = x0 +

 t

0
a(s, x(s))ds +

 t

0
b(s, x(s))u(s, x(s))ds, (3.12)

and

sup
t∈[0,T ]

∥x(t)∥ ≤ (∥x0∥ + κ(M + T ))eκ(M+T ).

Lemma 3.10. Let {ad , gd
}d∈N be a sequence of maps, ad

: [0, T ]×Rd
→ Rd and gd

: [0, T ]×

Rd
× X → Rd , such that the following hold.

a. For each s ∈ [0, T ] and y ∈ Rd , gd(s, y, ·) ∈ L2(X, ν; Rd) and for each s ∈ [0, T ], the maps
y → ad(s, y) and y → gd(s, y, ·) (from Rd to L2(X, ν; Rd)) are continuous.

b. For some κ ∈ (0,∞) and all d ∈ N,

2⟨ad(s, y), y⟩ ≤ κ(1 + ∥y∥
2), ∀(s, y) ∈ [0, T ] × Rd

and 
X

∥gd(s, v)∥2
0ν(dv) ≤ κ, ∀s ∈ [0, T ],

where ∥gd(s, v)∥0 = supy∈Rd
∥gd (s,y,v)∥

1+∥y∥
.

c. For each d ∈ N, there exists κd ∈ (0,∞) with

∥ad(s, y)∥ ≤ κd(1 + ∥y∥), ∀(s, y) ∈ [0, T ] × Rd .

d. There is a δ0 ∈ (0,∞) such that for all E ∈ B([0, T ] × X) satisfying νT (E) < ∞,
E

eδ0∥gd (s,v)∥0ν(dv)ds < ∞.

Then for any d ∈ N, ψ ∈ S and xd
0 ∈ Rd , the equation

xd(t) = xd
0 +

 t

0
ad(s, xd(s))ds +

 t

0


X

gd(s, xd(s), v)(ψ(s, v)− 1)ν(dv)ds (3.13)

has a solution xd
∈ C([0, T ] : Rd). Suppose that supd∈N ∥xd

0 ∥
2 < ∞. Then for every M ∈

(0,∞), there exists a κ̃M ∈ (0,∞) such that

sup
d∈N

sup
t∈[0,T ]

∥xd(t)∥2
≤ κ̃M , whenever ψ ∈ SM .

Proof. For each d fixed, Eq. (3.13) is the same as (3.12) with the following choices of a, b and u:

a(s, y) = ad(s, y),

b(s, y) = 1 + ∥y∥,

and

u(s, y) =


X

gd(s, y, v)

1 + ∥y∥
(ψ(s, v)− 1)ν(dv).
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Thus in order to prove the existence of the solutions to (3.13), it suffices to verify conditions in
Lemma 3.9. The continuity of a, b and first condition in Lemma 3.9 are immediate. The proof of
the statement

y → u(s, y) is continuous for a.e. s ∈ [0, T ] (3.14)

is given in the Appendix. Finally note that T

0
sup
y∈Rd

∥u(s, y)∥ds ≤

 T

0


X

∥gd(s, v)∥0|ψ(s, v)− 1|ν(dv)ds < ∞,

where the last inequality follows from conditions (b) and (d) using a similar argument as for (3.4).
Thus from Lemma 3.9, for each d ∈ N, there exists a xd

∈ C([0, T ] : Rd) satisfying (3.13). Next
note that

∥xd(t)∥2
= ∥xd

0 ∥
2

+ 2
 t

0


xd(s),


ad(s, xd(s))+


X

gd(s, xd(s), v)(ψ(s, v)− 1)ν(dv)


ds

≤ ∥xd
0 ∥

2
+ 2

 t

0


xd(s), ad(s, xd(s))


ds

+ 2
 t

0
∥xd(s)∥


X

∥gd(s, xd(s), v)∥ |ψ(s, v)− 1|ν(dv)ds

≤ ∥xd
0 ∥

2
+ κ

 t

0
(1 + ∥xd(s)∥2)ds

+ 2
 t

0
∥xd(s)∥(1 + ∥xd(s)∥)


X

∥gd(s, v)∥0|ψ(s, v)− 1|ν(dv)ds. (3.15)

Let

f d(s) =


X

∥gd(s, v)∥0|ψ(s, v)− 1|ν(dv).

Then as before, using (b) and (d), we have that

sup
ψ∈SM

sup
d∈N

 T

0
f d(s)ds < ∞. (3.16)

Also, from (3.15) and using that c + c2
≤ 1 + 2c2 for c ≥ 0,

∥xd(t)∥2
≤


∥xd

0 ∥
2
+ κT + 2

 T

0
f d(s)ds


+

 t

0
∥xd(s)∥2(κ + 4 f d(s))ds.

Thus, by Gronwall’s inequality

∥xd(t)∥2
≤


∥xd

0 ∥
2
+ κT + 2

 T

0
f d(s)ds


eκt+4

 t
0 f d (s)ds .

Hence if supd∈N ∥xd
0 ∥

2 < ∞, then by (3.16)

sup
ψ∈SM

sup
d∈N

sup
t∈[0,T ]

∥xd(t)∥2 < ∞.

The lemma follows. �
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We are now ready to prove Theorem 3.7.

Proof of Theorem 3.7. We first argue the existence of the solutions to (3.10). Let M ∈ N be
such that g ∈ SM . Recall the CONS {φ

p
k } defined by φ p

k = φk ∥φk∥
−1
p ∈ Φp that was introduced

below Definition 2.6. Fix d ∈ N and let π : Φ−p → Rd be the mapping given by

π(u)k = u[φ
p
k ], k = 1, 2, . . . , d

and denote π(X0) by xd
0 . Define ad

: [0, T ] × Rd
→ Rd and gd

: [0, T ] × Rd
× X → Rd by

ad(s, x)k = A


s,

d
j=1

x jφ
−p
j


[φ

p
k ]

and

gd(s, x, v)k = G


s,

d
j=1

x jφ
−p
j , v


[φ

p
k ].

It is easy to verify that ad and gd satisfy the assumptions of Lemma 3.10, and therefore there
exists xd

∈ C([0, T ] : Rd) which satisfies (3.13) with ψ replaced by g. Define the Φ−p-valued
continuous function Xd , associated with xd , by

Xd
t =

d
k=1

(xd
t )kφ

−p
k .

Then with κ̃M as in Lemma 3.10, we have

sup
d∈N

sup
t∈[0,T ]

∥Xd
t ∥

2
−p ≤ κ̃M . (3.17)

Recalling the definition of u[φ] from (2.5), let γ d
: Φ′

→ Φ′ be a mapping given by

γ du =

d
k=1

u[φ
p
k ]φ

−p
k .

Let, for d ∈ N, Ad
: [0, T ]×Φ′

→ Φ′ and Gd
: [0, T ]×Φ′

×X → Φ′ be measurable mappings
given by

Ad(s, u) = γ d A(s, γ du) and Gd(s, u, v) = γ d G(s, γ du, v).

Then Xd solves

Xd
t [φ] = Xd

0 [φ] +

 t

0
Ad(s, Xd

s )[φ]ds

+

 t

0


X

Gd(s, Xd
s , v)[φ](g(s, v)− 1)ν(dv)ds, φ ∈ Φ.

We now argue that for each φ ∈ Φ, the family {Xd
[φ]}d∈N is pre-compact in C([0, T ] : R).

From (3.17), we have

sup
d

sup
t∈[0,T ]

|Xd
t [φ]| ≤ sup

d
sup

t∈[0,T ]

∥Xd
t ∥−p∥φ∥p ≤


κ̃M∥φ∥p < ∞. (3.18)
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Now we consider fluctuations of Xd
[φ]. For 0 ≤ s ≤ t ≤ T ,

|Xd
t [φ] − Xd

s [φ]| ≤

 t

s
|Ad(r, Xd

r )[φ]|dr

+

 t

s


X

|Gd(r, Xd
r , v)[φ]| |g(r, v)− 1|ν(dv)dr

≤

 t

s
∥Ad(r, Xd

r )∥−q∥φ∥qdr

+

 t

s


X

∥Gd(r, Xd
r , v)∥−p∥φ∥p|g(r, v)− 1|ν(dv)dr.

Also, for (s, u) ∈ [0, T ] × Φ′

∥Ad(s, u)∥2
−q =

 d
k=1

A(s, γ du)[φ p
k ]φ

−p
k


2

−q

=

 d
k=1

A(s, γ du)[φq
k ]φ

−q
k


2

−q

=

d
k=1


A(s, γ du)[φq

k ]

2

≤ ∥A(s, γ du)∥2
−q

≤ K


1 + ∥γ du∥
2
−p


≤ K


1 + ∥u∥

2
−p


,

where for the second equality we use the observation

u[φ
q
j ]φ

−q
j = u[φ

p
j ]φ

−p
j , ∀u ∈ Φ′, p, q ≥ 0,

and the last inequality follows on observing that

∥γ du∥
2
−p ≤ ∥u∥

2
−p, ∀p ≥ 0.

Similarly,

∥Gd(s, u, v)∥2
−p =


 d
k=1

G(s, γ du, v)[φ p
k ]φ

−p
k



2

−p

=

d
k=1


G(s, γ du, v)[φ p

k ]

2

≤ ∥G(s, γ du, v)∥2
−p.

Combining the above estimates we have

|Xd
t [φ] − Xd

s [φ]| ≤ ∥φ∥q
√

K


1 + κ̃M (t − s)

+ ∥φ∥p(1 +


κ̃M )

 t

s


X

∥G(r, v)∥0,−p|g(r, v)− 1|ν(dv)dr.
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By Lemma 3.4 we now see that

lim
δ→0

sup
d∈N

sup
|t−s|≤δ

|Xd
t [φ] − Xd

s [φ]| = 0. (3.19)

Combining (3.18) and (3.19) we now have that the family {Xd
[φ]} is pre-compact in C([0, T ] :

R) for every φ ∈ Φ. Combining this with (3.17) we have that {Xd
}d∈N is pre-compact in

C([0, T ] : Φ−p1) (cf. Theorem 2.5.2 in [16]). Let X̃ be any limit point. Then by the dominated
convergence theorem and the definitions of Ad and Gd (see Lemma 6.1.6 and Theorem 6.2.2
of [16]), X̃ satisfies the integral equation (3.10). Note that the argument also shows that whenever
g ∈ SM , supt∈[0,T ] ∥X̃ t∥

2
−p ≤ κ̃M .

Next, we argue uniqueness of solutions. Suppose there are two elements X̃ and X̄ of
C([0, T ] : Φ−p1) such that both satisfy (3.10). Then, using Condition 2.7(d),

∥X̃ t − X̄ t∥
2
−q = 2

 t

0
⟨A(s, X̃s)− A(s, X̄s), X̃s − X̄s⟩−qds

+ 2
 t

0


X
⟨G(s, X̃s, v)− G(s, X̄s, v), X̃s − X̄s⟩−q(g(s, v)− 1)ν(dv)ds

≤ K
 t

0
∥X̃s − X̄s∥

2
−qds

+ 2
 t

0
∥X̃s − X̄s∥

2
−q


X

∥G(s, v)∥1,−q |g(s, v)− 1|ν(dv)ds.

Also, by Remark 3.6, T

0


X

∥G(s, v)∥1,−q |g(s, v)− 1|ν(dv)ds < ∞.

An application of Gronwall’s inequality now shows that ∥X̃ t − X̄ t∥
2
−q = 0 for all t ∈ [0, T ].

Uniqueness follows. �

3.2. Proof of Theorem 3.8

From Theorem 2.10 and by the classical Yamada–Watanabe argument (cf. [14]), for each ϵ >
0, there exists a measurable map Gϵ : M → D([0, T ] : Φ−p1) such that, for any PRM nϵ

−1
on

[0, T ]× X with mean measure ϵ−1λT ⊗ ν given on some filtered probability space, Gϵ(ϵnϵ
−1
) is

the unique Φ−p1 valued strong solution of (1.1) (with Ñ ϵ−1
replaced by ñϵ

−1
= nϵ

−1
−ϵ−1λT ⊗ν)

with initial value X0, where p1 is as in the statement of Theorem 2.10. In particular, X ϵ =

Gϵ(ϵN ϵ−1
) is the strong solution of (1.1) with initial value X0 on (M̄,B(M̄), P̄, {F̄t }). In view

of this observation, for proof of Theorem 3.8, it suffices to verify Condition 2.2.
We begin with the following lemma.

Lemma 3.11. Fix N ∈ N, and let gn, g ∈ SN be such that gn → g as n → ∞. Let
h : [0, T ] × X → R be a measurable function such that

XT

|h(s, v)|2νT (dvds) < ∞, (3.20)
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and for all δ2 ∈ (0,∞)
E

eδ2|h(s,v)|νT (dvds) < ∞, (3.21)

for all E ∈ B([0, T ] × X) satisfying νT (E) < ∞. Then
XT

h(s, v)(gn(s, v)− 1)νT (dvds) →


XT

h(s, v)(g(s, v)− 1)νT (dvds) (3.22)

as n → ∞.

Proof. We first argue that given ϵ > 0, there exists a compact set K ⊂ X, such that

sup
n


[0,T ]×K c

|h(s, v)||gn(s, v)− 1|ν(dv)ds ≤ ϵ. (3.23)

For each β ∈ (0,∞) and compact K in X, the left side of (3.23) can be bounded by the sum of
the following two terms:

T1 = sup
n


([0,T ]×K c)∩{|gn−1|>β}

|h(s, v)||gn(s, v)− 1|ν(dv)ds,

and

T2 = sup
n


([0,T ]×K c)∩{|gn−1|≤β}

|h(s, v)||gn(s, v)− 1|ν(dv)ds.

Consider T1 first. Then for every L ∈ (1,∞)

T1 ≤ sup
n


([0,T ]×K c)∩{|gn−1|>β}∩{|h|<1}

|h(s, v)||gn(s, v)− 1|ν(dv)ds

+ sup
n


([0,T ]×K c)∩{|gn−1|>β}∩{|h|≥1}

|h(s, v)||gn(s, v)− 1|ν(dv)ds

≤ sup
n


([0,T ]×K c)∩{|gn−1|>β}∩{|h|<1}

|gn(s, v)− 1|ν(dv)ds

+ 2

([0,T ]×K c)∩{|h|≥1}

eL|h(s,v)|ν(dv)ds +
1
L

sup
n


XT

l(gn(s, v))ν(dv)ds

where the inequality uses (3.2) twice (with b = gn and b = 1). Using inequality (b) of
Remark 3.3, the first term on the right side above can be bounded by

c1(β) sup
n


XT

l(gn(s, v))ν(dv)ds ≤ c1(β)N .

Therefore,

T1 ≤ c1(β)N + 2

([0,T ]×K c)∩{|h|≥1}

eL|h(s,v)|ν(dv)ds +
1
L

N .

Now choose β sufficiently large so that c1(β)N ≤ ϵ/6, L be sufficiently large so that N/L ≤

ϵ/6. Note that from (3.20), νT {|h| ≥ 1} < ∞ and so by (3.21),

|h|≥1 eL|h(s,v)|νT (dvds) < ∞.

Thus we can find a compact set K1 ⊂ X such that

2

([0,T ]×K c

1 )∩{|h|≥1}

eL|h(s,v)|νT (dvds) ≤ ϵ/6.
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With β chosen as above, consider now the term T2. We have, using the Cauchy–Schwarz
Inequality and inequality (c) of Remark 3.3, for every compact K ,

T 2
2 ≤


[0,T ]×K c

|h(s, v)|2ν(dv)ds × c2(β) sup
n


XT

l(gn(s, v))ν(dv)ds

≤


[0,T ]×K c

|h(s, v)|2ν(dv)ds × c2(β)N .

By (3.20), we can choose a compact set K2, such that T2 ≤ ϵ/2 with K replaced by K2. Thus by
taking K = K1 ∪ K2, we have on combining the above estimates that T1 + T2 ≤ ϵ. This proves
(3.23).

In order to prove (3.22), it now suffices to show that, for every compact K ⊂ X,
[0,T ]×K

h(s, v)(gn(s, v)− 1)νT (dvds)

→


[0,T ]×K

h(s, v)(g(s, v)− 1)νT (dvds). (3.24)

Fix a compact K ⊂ X. From (3.20), we have that

[0,T ]×K |h(s, v)|νT (dvds) < ∞. Thus to

prove (3.24), it suffices to argue
[0,T ]×K

h(s, v)gn(s, v)νT (dvds) →


[0,T ]×K

h(s, v)g(s, v)νT (dvds). (3.25)

When h is bounded, (3.25) can be established using Lemma 2.8 in [3]. For completeness we
include the proof in the Appendix. For general h (which may not be bounded), it is enough to
show

sup
n


[0,T ]×K

|h(s, v)|1{|h|≥M}gn(s, v)νT (dvds) → 0, (3.26)

as M → ∞. We have

sup
n


[0,T ]×K

|h(s, v)|1{|h|≥M}gn(s, v)νT (dvds)

≤ sup
n


([0,T ]×K )∩{|h|≥M}

eL|h(s,v)|ν(dv)ds +
1
L

sup
n


XT

l(gn(s, v))ν(dv)ds

≤


([0,T ]×K )∩{|h|≥M}

eL|h(s,v)|ν(dv)ds +
1
L

N .

Given ϵ > 0, we can choose L large enough such that N/L ≤ ϵ/2. Also, since
[0,T ]×K

eL|h(s,v)|νT (dvds) < ∞,

we can choose M0 large enough such that

([0,T ]×K )∩{|h|≥M}

eL|h(s,v)|ν(dv)ds ≤ ϵ/2, for all
M ≥ M0. Thus for all M ≥ M0, supn


[0,T ]×K |h(s, v)|1|h|≥M gn(s, v)νT (dvds) ≤ ϵ. Since

ϵ > 0 is arbitrary, (3.26) follows. This proves the result. �

We now proceed to verify the first part of Condition 2.2. Recall the map G 0 defined in (3.11).
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Proposition 3.12. Fix N ∈ N, and let gn, g ∈ SN be such that gn → g as n → ∞. Then

G 0 νgn
T


→ G 0 νg

T


.

Proof. Let X̃n
= G 0


ν

gn
T


. By Theorem 3.7, there exists a constant κ̃ ∈ (0,∞) such that

sup
n

sup
t∈[0,T ]

∥X̃n
t ∥−p ≤ κ̃ . (3.27)

Using similar arguments as in the proof of Theorem 3.7 (cf. (3.18) and (3.19)), we have, for any
φ ∈ Φ,

sup
n

sup
t∈[0,T ]

|X̃n
t [φ]| < ∞.

Also,

|X̃n
t [φ] − X̃n

s [φ]| ≤ ∥φ∥q
√

K


1 + κ̃(t − s)

+ ∥φ∥p(1 +

√

κ̃)

 t

s


X

∥G(r, v)∥0,−p|gn(r, v)− 1|ν(dv)dr.

Using (3.5) in Lemma 3.4 we now have that

lim
δ→0

sup
n

sup
|t−s|≤δ

|X̃n
t [φ] − X̃n

s [φ]| = 0.

This proves that the family {X̃n
t [φ]} is pre-compact in C([0, T ] : R) for every φ ∈ Φ.

Combining this with (3.27), we have that {X̃n
}n∈N is pre-compact in C([0, T ] : Φ−p1)

(see Theorem 2.5.2 in [16]). Let X̃ be any limit point. An application of the dominated
convergence theorem shows that, along the convergent subsequence, t

0
A(s, X̃n

s )[φ]ds →

 t

0
A(s, X̃s)[φ]ds (3.28)

as n → ∞. Furthermore, using the convergence of X̃n to X̃ , Condition 2.7(d) and (3.9), we have
that  t

0


X

G(s, X̃n
s , v)[φ](gn(s, v)− 1)ν(dv)ds

−

 t

0


X

G(s, X̃s, v)[φ](gn(s, v)− 1)ν(dv)ds → 0. (3.29)

Here we have used the inequalityG(s, X̃n
s , v)[φ] − G(s, X̃s, v)[φ]

 ≤ ∥G(s, v)∥1,−q sup
t∈[0,T ]

∥X̃n
s − X̃s∥−q

along with inequality (3.9) in Remark 3.6.
Also, from (3.27), we have that for some κ1 ∈ (0,∞)

|G(s, X̃s, v)[φ]| ≤ κ1∥G(s, v)∥0,−p, ∀(s, v) ∈ XT .
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Combining this with Condition 2.7(c) and Remark 3.2, we now get from Lemma 3.11 that, as
n → ∞, t

0


X

G(s, X̃s, v)[φ](gn(s, v)− 1)ν(dv)ds

→

 t

0


X

G(s, X̃s, v)[φ](g(s, v)− 1)ν(dv)ds. (3.30)

Combining (3.28), (3.29) and (3.30) we now see that X̃ must satisfy the integral equation (3.10)
for all φ ∈ Φ. In view of unique solvability of (3.10) (Theorem 3.7), it now follows that
X̃ = G 0


ν

g
T


. The result follows. �

We now proceed to the second part of Condition 2.2. As noted in Theorem 2.4, it suffices to
verify this condition with U M replaced with Ũ M .

Recall from the beginning of this section that X ϵ = Gϵ(ϵN ϵ−1
) is the strong solution of (1.1)

with initial value X0 on (M̄,B(M̄), P̄, {F̄t }). Let ϕϵ ∈ Ũ M , define ψϵ = 1/ϕϵ , and recall the
definitions of N̄ and ν̄T from Section 2.1. Then it is easy to check (see Theorem III.3.24 of [15],
see also Lemma 2.3 of [7]) that

Eϵt (ψϵ) = exp


(0,t]×X×[0,ϵ−1]

log(ψϵ(s, x))N̄ (ds dx dr)

+


(0,t]×X×[0,ϵ−1]

(−ψϵ(s, x)+ 1) ν̄T (ds dx dr)


is an


F̄t

-martingale. Consequently

Qϵ
T (G) =


G

Eϵt (ψϵ)dP̄, for G ∈ B(M̄)

defines a probability measure on M̄, and furthermore P̄ and Qϵ
T are mutually absolutely

continuous. Also it can be verified that under Qϵ
T , ϵN ϵ−1ϕϵ has the same law as that of ϵN ϵ−1

under P̄. Thus it follows that X̃ ϵ = Gϵ(ϵN ϵ−1ϕϵ ) is the unique solution of the following controlled
stochastic differential equation:

X̃ ϵt = X0 +

 t

0
A(s, X̃ ϵs )ds +

 t

0


X

G(s, X̃ ϵs−, v)

ϵN ϵ−1ϕϵ (dsdv)− ν(dv)ds


. (3.31)

Proposition 3.13. Fix M ∈ N. Let ϕϵ, ϕ ∈ Ũ M be such that ϕϵ converges in distribution to ϕ,
under P̄, as ϵ → 0. Then Gϵ(ϵN ϵ−1ϕϵ ) ⇒ G 0 (νϕ) .

Proof. If X̃ ϵ = Gϵ(ϵN ϵ−1ϕϵ ), then as just noted, X̃ ϵ is the unique solution of (3.31). We now
show that the family {X̃ ϵ}ϵ>0 of D([0, T ] : Φ−p1) valued random variables is tight.

We begin by showing that for some ϵ0 ∈ (0,∞)

sup
0<ϵ<ϵ0

E sup
0≤t≤T

∥X̃ ϵt ∥
2
−p < ∞. (3.32)
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Recall that θp is defined by θp(φ
−p
j ) = φ

p
j for the CONS {φ

−p
j , j ∈ Z}. By Itô’s formula,

∥X̃ ϵt ∥
2
−p = ∥X0∥

2
−p + 2

 t

0
A(s, X̃ ϵs )[θp X̃ ϵs ]ds

+ 2
 t

0


X
⟨G(s, X̃ ϵs , v), X̃ ϵs ⟩−p(ϕϵ − 1)ν(dv)ds

+

 t

0


X


∥ϵG(s, X̃ ϵs−, v)∥

2
−p + 2⟨ϵG(s, X̃ ϵs−, v), X̃ ϵs−⟩−p


×


N ϵ−1ϕϵ (dsdv)− ϵ−1ϕϵν(dv)ds


+ ϵ

 t

0


X

∥G(s, X̃ ϵs , v)∥
2
−pϕϵν(dv)ds. (3.33)

For completeness we include the proof of (3.33) in the Appendix.
For the second term in (3.33), we have by Condition 2.7(b) that

2
 t

0
A(s, X̃ ϵs )[θp X̃ ϵs ]ds ≤ K

 t

0
(1 + ∥X̃ ϵs ∥

2
−p)ds. (3.34)

Also, using a + a2
≤ 1 + 2a2 for a ≥ 0 t

0


X
⟨G(s, X̃ ϵs , v), X̃ ϵs ⟩−p(ϕϵ − 1)ν(dv)ds


≤

 t

0


X

∥G(s, X̃ ϵs , v)∥−p

1 + ∥X̃ ϵs ∥−p
(1 + ∥X̃ ϵs ∥−p)∥X̃ ϵs ∥−p|ϕϵ − 1|ν(dv)ds

≤

 t

0
(1 + 2∥X̃ ϵs ∥

2
−p)


X

∥G(s, v)∥0,−p|ϕϵ − 1|ν(dv)


ds

≤ L1 + 2
 t

0
∥X̃ ϵs ∥

2
−p


X

∥G(s, v)∥0,−p|ϕϵ − 1|ν(dv)


ds,

where L1 = supϕ∈SM


XT
∥G(s, v)∥0,−p|ϕ − 1|ν(dv)ds < ∞, from (3.4).

For the last term in (3.33), we have

ϵ

 t

0


X

∥G(s, X̃ ϵs , v)∥
2
−pϕϵν(dv)ds

= ϵ

 t

0


X

∥G(s, X̃ ϵs , v)∥
2
−p

(1 + ∥X̃ ϵs ∥−p)2
(1 + ∥X̃ ϵs ∥−p)

2ϕϵν(dv)ds

≤ 2ϵ
 t

0
(1 + ∥X̃ ϵs ∥

2
−p)


X

∥G(s, v)∥2
0,−pϕϵν(dv)


ds

≤ 2ϵL2 + 2ϵ
 t

0
∥X̃ ϵs ∥

2
−p


X

∥G(s, v)∥2
0,−pϕϵν(dv)


ds,

where L2 = supϕ∈SM


XT
∥G(s, v)∥2

0,−pϕν(dv)ds < ∞, from (3.3).

We split the martingale term as Mt = M1
t + M2

t , where

M1
t =

 t

0


X

∥ϵG(s, X̃ ϵs−, v)∥
2
−p


N ϵ−1ϕϵ (dsdv)− ϵ−1ϕϵν(dv)ds


,
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and

M2
t =

 t

0


X

2⟨ϵG(s, X̃ ϵs−, v), X̃ ϵs−⟩−p


N ϵ−1ϕϵ (dsdv)− ϵ−1ϕϵν(dv)ds


.

We now use the following Gronwall inequality:

If η and ψ ≥ 0 satisfy η(s) ≤ a +

 s

0
η(r)ψ(r)dr

for all s ∈ [0, t], then η(t) ≤ ae
 t

0 ψ(s)ds .

Using this inequality, the above estimates, and Lemma 3.4, we have that for some constants
L3, L4 ∈ (1,∞),

sup
0≤s≤t

∥X̃ ϵs ∥
2
−p ≤ L3


L4 + sup

0≤s≤t
|M1

s | + sup
0≤s≤t

|M2
s |


, (3.35)

for all ϵ ∈ (0, 1) and t ∈ [0, T ].
For the term M1

t , we have, for ϵ ∈ (0, 1)

E sup
0≤s≤T

|M1
s | ≤ E

 T

0


X

∥ϵG(s, X̃ ϵs−, v)∥
2
−p N ϵ−1ϕϵ (dsdv)


+ E

 T

0


X

∥ϵG(s, X̃ ϵs−, v)∥
2
−pϵ

−1ϕϵν(dv)ds


≤ 2E

 T

0


X

∥ϵG(s, X̃ ϵs , v)∥
2
−pϵ

−1ϕϵν(dv)ds

≤ 4ϵE
 T

0
(1 + ∥X̃ ϵs ∥

2
−p)


X

∥G(s, v)∥2
0,−pϕϵν(dv)


ds

≤ 4ϵE


XT

∥G(s, v)∥2
0,−pϕϵν(dv)ds

+ 4ϵE sup
0≤s≤T

∥X̃ ϵs ∥
2
−p


XT

∥G(s, v)∥2
0,−pϕϵν(dv)ds

≤ 4ϵL2


1 + E sup

0≤s≤T
∥X̃ ϵs ∥

2
−p


. (3.36)

Next consider the term M2
t . From the Burkholder–Davis–Gundy inequality, we have that

E sup
0≤s≤T

|M2
s | ≤ 4E[M2

]
1/2
T

≤ 4E
 T

0


X

4ϵ2
⟨G(s, X̃ ϵs−, v), X̃ ϵs−⟩

2
−p N ϵ−1ϕϵ (dsdv)

1/2

≤ 4E
 T

0


X

4ϵ2
∥G(s, X̃ ϵs−, v)∥

2
−p∥X̃ ϵs−∥

2
−p N ϵ−1ϕϵ (dsdv)

1/2

≤ 8E


sup

0≤s≤T
∥X̃ ϵs ∥

2
−p

 T

0


X
ϵ2

∥G(s, X̃ ϵs−, v)∥
2
−p N ϵ−1ϕϵ (dsdv)

1/2
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≤
1

8L3
E sup

0≤s≤T
∥X̃ ϵs ∥

2
−p

+ 128ϵ2L3E
 T

0


X

∥G(s, X̃ ϵs−, v)∥
2
−p N ϵ−1ϕϵ (dsdv)


=

1
8L3

E sup
0≤s≤T

∥X̃ ϵs ∥
2
−p

+ 128ϵL3E
 T

0


X

∥G(s, X̃ ϵs , v)∥
2
−pϕϵν(dv)ds



≤
1

8L3
E sup

0≤s≤T
∥X̃ ϵs ∥

2
−p + 256ϵL2L3


1 + E sup

0≤s≤T
∥X̃ ϵs ∥

2
−p


. (3.37)

For the fifth inequality, we have used the inequality
√

ab ≤
a
2 +

b
2 with a =

1
32L3

sup0≤s≤T

∥X̃ ϵs ∥
2
−p and b = 32L3ϵ

2
 T

0


X ∥G(s, X̃ ϵs−, v)∥

2
−p N ϵ−1ϕϵ (dsdv). Combining (3.35)–(3.37) we

now have
E sup

0≤s≤T
∥X̃ ϵs ∥

2
−p


1 − 4ϵL2L3 − 256ϵL2L2

3 −
1
8


≤ L3L4 + 4L2L3 + 256L2L2

3.

Choose ϵ0 small enough so that max{4ϵ0L2L3, 256ϵ0L2L2
3} ≤

1
8 . Then for ϵ ≤ ϵ0, we have that

E sup
0≤s≤T

∥X̃ ϵs ∥
2
−p ≤

8
5
(L3L4 + 4L2L3 + 256L2L2

3).

This proves (3.32).
In view of the estimate in (3.32), to prove tightness of {X̃ ϵ}ϵ≤ϵ0 in D([0, T ] : Φ−p1), it suffices

to show that for all φ ∈ Φ, {X̃ ϵ[φ]}ϵ≤ϵ0 is tight in D([0, T ] : R). For the rest of the proof we
will only consider ϵ ≤ ϵ0, however we will suppress ϵ0 from the notation. Fix φ ∈ Φ. Let

Cϵ
t =

 t

0
A(s, X̃ ϵs )[φ]ds +

 t

0


X

G(s, X̃ ϵs , v)[φ](ϕϵ − 1)ν(dv)ds

and

Mϵ
t = ϵ

 t

0


X

G(s, X̃ ϵs−, v)[φ]Ñ ϵ−1ϕϵ (dsdv).

To argue tightness of Cϵ in C([0, T ] : R), it suffices to show (cf. Lemma 6.1.2 of [16]) that for
all τ > 0, there exists δ = δτ > 0 such that

sup
0≤ϵ≤ϵ0

P


sup

0<β−α<δ

|Cϵ
α − Cϵ

β | > τ


< τ. (3.38)

Fix τ > 0. Then for arbitrary δ > 0,

sup
ϵ

P


sup

0<β−α<δ

|Cϵ
α − Cϵ

β | > τ



= sup
ϵ

P


sup

0<β−α<δ

 β

α

A(s, X̃ ϵs )[φ]ds
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+

 β

α


X

G(s, X̃ ϵs , v)[φ](ϕϵ − 1)ν(dv)ds

 > τ



≤ sup
ϵ

P


sup

0<β−α<δ

 β

α

A(s, X̃ ϵs )[φ]ds

 > τ

2



+ sup
ϵ

P


sup

0<β−α<δ

 β

α


X

G(s, X̃ ϵs , v)[φ](ϕϵ − 1)ν(dv)ds

 > τ

2



≤ sup
ϵ

4

τ 2 E


δ2 sup

0≤s≤T

A(s, X̃ ϵs )[φ]

2

+ sup
ϵ

2
τ

E


sup

0<β−α<δ

 β

α


X

G(s, X̃ ϵs , v)[φ](ϕϵ − 1)ν(dv)ds



. (3.39)

From (3.32) and Condition 2.7(c), it follows that

sup
ϵ

E


sup

0≤s≤T

A(s, X̃ ϵs )[φ]

2 < ∞.

Thus we can find δ1 > 0 such that for all δ ≤ δ1, the first term on the last line of (3.39) is
bounded by τ/2.

Now we consider the second term:
[α,β]×X

G(s, X̃ ϵs , v)[φ](ϕϵ − 1)ν(dv)ds


≤ ∥φ∥p


1 + sup

0≤s≤T
∥X̃ ϵs ∥−p


[α,β]×X

∥G(s, v)∥0,−p|ϕϵ − 1|ν(dv)ds

≤ ∥φ∥p


1 + sup

0≤s≤T
∥X̃ ϵs ∥−p


sup

g∈SM
sup

|t−s|≤δ


[s,t]×X

∥G(s, v)∥0,−p|g − 1|ν(dv)ds.

Then from (3.5) in Lemma 3.4 and (3.32), we can find δ2 > 0 such that for all δ ≤ δ2, the second
term on the last line of (3.39) is bounded by τ/2. By taking δ = min(δ1, δ2), (3.38) holds and the
tightness of {Cϵ

}ϵ≤ϵ0 follows.
Next consider Mϵ . We have

E

Mϵ

T = ϵE

 T

0


X
(G(s, X̃ ϵs , v)[φ])2ϕϵν(dv)ds

≤ 2ϵ∥φ∥p


1 + E sup

0≤s≤T
∥X̃ ϵs ∥

2
−p


sup
ϕ∈SM


XT

∥G(s, v)∥2
0,−pϕν(dv)ds. (3.40)

Using Lemma 3.4, we have E sup0≤s≤T ⟨Mϵ⟩s goes to 0 as ϵ → 0. Then by Theorem 6.1.1
in [16], for any φ ∈ Φ, the sequence of semimartingales X̃ ϵt [φ] = X0[φ] + Cϵ

t + Mϵ
t is tight

in D([0, T ] : R). It then follows from (3.32) and Theorem 2.5.2 in [16] that {X̃ ϵ}ϵ≤ϵ0 is tight in
D([0, T ] : Φ−p1).

Choose a subsequence along which (X̃ ϵ, ϕϵ,Mϵ) converges in distribution to (X̃ , ϕ̃, 0).
Without loss of generality, we can assume the convergence is almost sure by using the Skorokhod
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representation theorem. Note that X̃ ϵ satisfies the following integral equation

X̃ ϵt [φ] = X0[φ] +

 t

0
A(s, X̃ ϵs )[φ]ds +

 t

0


X

G(s, X̃ ϵs , v)[φ](ϕϵ − 1)ν(dv)ds + Mϵ .

Along the lines of Theorem 3.7 and Proposition 3.12 (see (3.28)–(3.30)), we see that X̃ must
solve

X̃ t [φ] = X0[φ] +

 t

0
A(s, X̃s)[φ]ds +

 t

0


X

G(s, X̃s, v)[φ](ϕ̃ − 1)ν(dv)ds.

The unique solvability of the above integral equation gives that X̃ = G 0

νϕ̃

, thus we have

proved part 2 of Condition 2.2, i.e., Gϵ(ϵN ϵ−1ϕϵ ) ⇒ G 0 (νϕ). �

We are now ready to prove the main theorem.

Proof of Theorem 3.8. Using Propositions 3.12 and 3.13, Theorem 3.8 is an immediate
consequence of Theorem 2.4. �

4. A one dimensional model for spread of a chemical agent

In the hydrology literature (see [26] for example), partial differential equations of the
following type are often used to model the spread of a pollutant in a reservoir, river or air:

D∆φ − V · ∇φ − αφ + Q = 0. (4.1)

Here φ(x) represents the water quality or pollutant concentration at location x ; ∆ is the Laplacian
operator modeling the diffusion of the chemical; D is the coefficient capturing the strength of the
diffusion effect. The term V · ∇φ models the convection term, here ∇ is the gradient operator
and V is the velocity vector. The scalar α ≥ 0 can be interpreted as the rate of dissipation of the
chemical and Q ≥ 0 is the “load” or pollutant issued from outside. Pollutants take various forms,
such as nutrients (e.g., runoff fertilizer), microbiological, and chemical (e.g., pesticides).

The deterministic (4.1) models the steady state density profile of the pollutant and does not
take into account any temporal or stochastic variability. A dynamic stochastic model for pollutant
spread described through a stochastic partial differential equation (SPDE) driven by a PRM
was studied in [16]. We begin by describing this model in a one dimensional setting, where
it describes the evolution of a pollutant deposited at different sites along a reservoir. Our goal
is to study probabilities of deviations from the nominal behavior by establishing a suitable large
deviation principle.

4.1. Dynamic SPDE model

The model considered here describes the spread of a chemical agent which is released by
several different sources along a one-dimensional reservoir. Suppose that there are r such sources
located at different sites κ1, . . . , κr ∈ [0, l], where the interval [0, l] represents the reservoir.
These sources release pollutants according to independent Poisson streams Ni (t), with rate fi ,
i = 1, . . . , r , and with random magnitudes A j

i (ω), j ∈ N, i = 1, . . . , r , which are mutually
independent with magnitudes in the i th stream having common distribution Fi (da).

Formally, the model describing the evolution of concentration is written as follows:

∂

∂t
u(t, x) = D ∂2

∂x2 u(t, x)− V ∂
∂x u(t, x)− αu(t, x)+

r
i=1


j

A j
i (ω)δκi (x)1


t=τ j

i (ω)
 (4.2)
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where τ j
i (ω), j ∈ N are the jump times of Ni , and δa(x) is the Dirac delta measure with unit

mass at a. The equation is considered with a Neumann boundary condition on [0, l]. A Neumann
boundary condition is reasonable as a model for a reservoir, though one would expect in this
case that at the boundary the component of the velocity orthogonal to the boundary would be
zero, which in the current setting would mean V = 0. However, the example is for illustrative
purposes only, and the domain, boundary conditions and differential operator may be made much
more general, though one will not always obtain expressions as explicit as those given below.

Eq. (4.2) can be regarded as a stochastic partial differential equation driven by a Poisson
random measure. The Poisson random measure N driving the equation is a random measure on
the space R+ × X with X = J × R+ and J = {1, 2, . . . , r}, and can be represented as

N ([0, t] × A × B) =

r
i=1

1A(i)
Ni (t)
j=1

1B(A
j
i (ω)), t ≥ 0, A ⊆ J, B ∈ B(R+).

The intensity measure of N is given by ν0 = λ⊗ ν, where λ is the Lebesgue measure on R+ and

ν(A × B) =

r
i=1

1A(i) fi Fi (B), A ⊆ J, B ∈ B(R+). (4.3)

We now introduce a natural CHNS associated with Eq. (4.2) (see [16]). Let ρ ∈ M F [0, l] be
defined by

ρ(A) =


A

e−2cx dx; A ∈ B[0, l],

where c =
V

2D . Let H = L2([0, l], ρ). Then {φ j } j∈N0 defined below is a complete orthonormal
system on H of eigen-functions of the operator L defined by

Lφ = D
∂2

∂x2φ − V
∂

∂x
φ, (4.4)

with Neumann boundary φ′(0) = φ′(l) = 0.

φ0(x) =


2c

1 − e−2cl
, φ j (x) =


2
l

ecx sin


jπ

l
x + α j


;

α j = tan−1


−
jπ

lc


, j = 1, 2, . . . .

The corresponding eigenvalues, denoted by {−λ j } j∈N0 , are given as

λ0 = 0, λ j = D


c2

+


jπ

l

2

.

For φ ∈ H and n ∈ Z let

∥φ∥
2
n =

∞
j=0

⟨φ, φ j ⟩
2(1 + λ j )

2n,

where ⟨φ,ψ⟩ is the inner product on H . Define

Φ = {φ ∈ H : ∥φ∥n < ∞,∀n ∈ Z} (4.5)
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and let Φn be the completion of Φ with respect to the norm ∥ · ∥n . Note that Φ0 = H , and it can
be checked that Φ is a CHNS.

With Φ defined by (4.5), the equation in (4.2) can be written rigorously as a SPDE in Φ′ as
follows. Define A : Φ′

→ Φ′ and G : X → Φ′ by

A(u)[φ] = u[Lφ] − αu[φ] +

r
i=1

ai fiφ(κi )ρ(κi ), φ ∈ Φ, u ∈ Φ′ (4.6)

G(i, a)[φ] = aφ(κi )ρ(κi ), (i, a) ∈ J × R+, φ ∈ Φ (4.7)

where ai =


R+
aFi (da) and L is defined as in (4.4).

Let (Ω ,F ,P, {Ft }) be a filtered probability space on which is given a Poison random measure
N with intensity measure λ ⊗ ν, with ν as in (4.3), such that N ([0, t] × A × B) − tν(A × B)
is a {Ft } martingale for all A ⊆ J, B ∈ B(R+) satisfying ν(A × B) < ∞, and let u0 be a
F0-measurable random variable with values in Φ′. In order to formulate the SPDE, we will need
square integrability assumptions on Fi , but with large deviation questions in mind, we impose
the following stronger integrability requirement.

Condition 4.1. There exists δ > 0 such that
∞

0
eδa

2
Fi (da) < ∞, ∀i = 1, . . . , r.

Let Ñ (dsdv) be the compensated random measure of N , i.e.

Ñ ([0, t] × B) = N ([0, t] × B)− tν(B),

∀B ∈ B(X)with ν(B) < ∞. Note that the operator −L on H is positive definite and self-adjoint,
and thus the following definition of a solution of (4.2) is natural.

Definition 4.2. Fix p ≥ 0, suppose that E∥u0∥
2
−p < ∞. A stochastic process {ut }t∈[0,∞) defined

on (Ω ,F ,P) is said to be a Φ−p-valued strong solution to the SPDE (4.2) with initial value u0,
if

(a) ut is a Φ−p-valued Ft -measurable random variable, for all t ∈ [0,∞);
(b) u ∈ D([0,∞) : Φ−p) a.s.;
(c) For all t ∈ [0,∞) and a.e. ω

ut [φ] = u0[φ] +

 t

0
A(us)[φ]ds +

 t

0


X

G(v)[φ]Ñ (dsdv), ∀φ ∈ Φ.

We are interested in the behavior of the solution when the Poisson noise is small, namely the
case where ν0 is replaced with ϵ−1ν0 and G with ϵG, and ϵ is a small parameter. More precisely,
the goal is to study the large deviation behavior of {uϵt }0≤t≤T in D([0, T ] : Φ−p), as ϵ → 0,
where uϵ solves the integral equation

uϵt = u0 +

 t

0
A(uϵs )ds + ϵ

 t

0


X

G(v)Ñ ϵ−1
(dsdv),

where Ñ ϵ−1
is the compensated version of N ϵ−1

as introduced below (1.1) and N ϵ−1
is

constructed using N̄ as in (2.1). Here N̄ , as in Section 2, is once more a Poisson random measure
on [0, T ]×X×[0,∞) with intensity ν̄T = λT ⊗ν⊗λ∞. In particular, we are assuming (without
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loss of generality) that the filtered probability space (Ω ,F ,P, {Ft }) introduced below (4.7) is
large enough to support the Poisson random measure N̄ that has the usual martingale properties
with respect to the filtration {Ft }.

It can be easily checked that the functions A and G satisfy Condition 2.7 with p0 = 1.
Moreover in the setting of this section, for any p1 ≥ 2, the canonical injection from Φ−1 to
Φ−p1 is Hilbert–Schmidt. Recall the space M and S from Section 2. Recall that νg

T (dsdv) =

g(s, v)ν(dv)ds.
For p1 ≥ 2 fixed, define the map G 0

: M → U = D([0, T ] : Φ−p1) as follows.

G 0(ν
g
T ) = ũg for g ∈ S, with ũggiven by (4.8).

ũg
t [φ] = u0[φ] +

 t

0
A(ũg

s )[φ]ds +

 t

0


X

G(v)[φ](g(s, v)− 1)νT (dvds),

∀φ ∈ Φ. (4.8)

From Theorem 3.7, we have that there is a unique ũg
∈ D([0, T ] : Φ−p1) that solves (4.8).

Define I through (2.4), where LT is as in (2.2). It can be checked that Conditions 3.1 and 3.5
are satisfied under Condition 4.1. Thus, as an immediate consequence of Theorem 3.8, we have
the following large deviation principle for uϵ .

Theorem 4.3. Suppose Condition 4.1 holds. Fix p1 ≥ 2. Then I is a rate function on U and the
family {uϵ}ϵ>0 satisfies a large deviation principle, as ϵ → 0, on D([0, T ] : Φ−p1), with rate
function I .

Note that as ϵ → 0, uϵ converges in D([0, T ] : Φ−p1) to u0 that solves the integral equation

u0
t [φ] = u0[φ] +

 t

0
A(u0

s )[φ]ds, ∀φ ∈ Φ.

In particular, if u0 solves the stationary equation

D
d2u0(x)

dx2 − V
du0(x)

dx
− αu0(x)+ Q(x) = 0, (4.9)

where

Q(x) =

r
i=1

ai fiδκi (x),

then u0
t = u0 for all t ≥ 0. It is easily verified that there is a unique Φ−1 valued solution to (4.9)

which can be explicitly characterized by

u0[φ] =

r
i=1

∞
j=1

ai fi

α + λ j
⟨φ, φ j ⟩φ j (κi )ρ(κi ), ∀φ ∈ Φ.

Eq. (4.9) should be compared with the stationary deterministic equation (4.1). This equation,
which appears in [26], has been proposed as a model for the long time concentration profile
when there is a constant rate, non random, source term given by Q(x). Theorem 4.3 provides
probabilities of large deviations from the steady state nominal values given by (4.1) when the
true source term is a small noise perturbation of Q. We remark that in this case the solution to
the integral equation for ũg (i.e., (4.8)) that is used to define the map G 0 appearing in the formula
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for the rate function, can be explicitly written as

ũg
t [φ] =

∞
j=0

r
i=1

e−(α+λ j )t fiφ j (κi )ρ(κi )⟨φ, φ j ⟩

×

 t

0


∞

0
e(α+λ j )sag(s, i, a)Fi (da)ds +

ai

α + λ j


.
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Appendix

A.1. Proof of compactness of SN

Lemma A.1. For every N ∈ N, {ν
g
T : g ∈ SN

} is a compact subset of M.

Proof. The topology on M, which was described in Section 2.1, can be metrized as follows.
Consider a sequence of open sets


O j , j ∈ N


such that Ō j ⊂ O j+1, each Ō j is compact, and

∪
∞

j=1 O j = XT (cf. Theorem 9.5.21 of [24]). Let φ j (x) =

1 − d(x, O j )


∨ 0, where d denotes

the metric on XT . Given any µ ∈ M, let µ( j)
∈ M be defined by


dµ( j)/dµ


(x) = φ j (x). Given

µ, ν ∈ M, let

d̄(µ, ν) =

∞
j=1

2− j
µ( j)

− ν( j)


BL
,

where ∥·∥BL denotes the bounded, Lipschitz norm on M F (XT ):µ( j)
− ν( j)


BL

= sup


XT

f dµ( j)
−


XT

f dν( j)
: | f |∞

≤ 1, | f (x)− f (y)| ≤ d(x, y) for all x, y ∈ XT


.

It is straightforward to check that d̄(µ, ν) defines a metric under which M is a Polish space,
and that convergence in this metric is essentially equivalent to weak convergence on each
compact subset of XT . Specifically, d̄(µn, µ) → 0 if and only if for each j ∈ N, µ( j)

n → µ( j) in
the weak topology as finite nonnegative measures, i.e., for all f ∈ Cb(XT )

XT

f dµ( j)
n →


XT

f dµ( j).

Let µn = ν
gn
T . We first show that {µn} ⊂ M is relatively compact for any sequence

{gn} ⊂ SN . For this, by using a diagonalization method, it suffices to show that {µ
( j)
n } ⊂ M
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is relatively compact for every j . Next, since µ( j)
n are supported on the compact subset of XT

given by K j
= {x |φ j (x) ≠ 0}, to show {µ

( j)
n } ⊂ M is relatively compact it suffices to show

supn µ
( j)
n (XT ) < ∞. The last property will follow from the fact that LT (gn) ≤ N for all n, and

the super-linear growth of l. Specifically, let c ∈ (0,∞) be such that z ≤ c(l(z) + 1) for all
z ∈ [0,∞). Then

sup
n
µ
( j)
n (XT ) = sup

n


XT

φ j (x)gn(x)νT (dx)

≤ sup
n


K j

gn(x)νT (dx) ≤ c(N + νT (K
j )) < ∞.

Next, suppose that along a subsequence (without loss of generality, also denoted by {µn}),
µn → µ. We would like to show that µ is of the form ν

g
T , where g ∈ SN . For this we will use the

lower semi-continuity property of relative entropy. The result holds trivially if µ = 0. Suppose
now µ ≠ 0. Then there exists j0 ∈ N such that for all j ≥ j0, infn∈N ν

gn
T (Ō j ) > 0. For j ≥ j0,

define

c j
= ν

( j)
T (XT ), ν̄

j
T = ν

( j)
T /c j

;

c j
n = µ

( j)
n (XT ), µ̄

j
n = µ

( j)
n /c j

n;

c j
µ = µ( j)(XT ), µ̄ j

= µ( j)/c j
µ.

Then ν̄ j
T , µ̄ j

n and µ̄ j are probability measures, and

R(µ̄ j
n ∥ ν̄

j
T ) =

1

c j
n


XT


log(gn(x))+ log


c j

c j
n


gn(x)φ j (x)νT (dx)

=
1

c j
n


XT

[l(gn(x))+ gn(x)− 1]φ j (x)νT (dx)+ log


c j

c j
n



≤
1

c j
n

N + 1 −
c j

c j
n

+ log


c j

c j
n


.

Since µ( j)
n → µ( j), we have c j

n → c j
µ. Thus by the lower semi-continuity property of relative

entropy,

R(µ̄ j
∥ ν̄

j
T ) ≤ lim inf

n→∞
R(µ̄ j

n ∥ ν̄
j
T )

≤ lim inf
n→∞


1

c j
n

N + 1 −
c j

c j
n

+ log


c j

c j
n



≤
1

c j
µ

N + 1 −
c j

c j
µ

+ log


c j

c j
µ


< ∞. (A.1)

Thus µ( j) is absolutely continuous with respect to ν( j)
T . Define g j

= dµ( j)/dν( j)
T , and g =

g j on Ō j . It is easily checked that g is defined consistently, and that µ = ν
g
T . Also by a direct
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calculation,

R(µ̄ j
∥ ν̄

j
T ) =

1

c j
µ


XT

l(g(v))φ j (v)νT (dv)+ 1 −
c j

c j
µ

+ log


c j

c j
µ


.

Combining the last display with (A.1), we have


XT
l(g(v))φ j (v)νT (dv) ≤ N , for all j . Sending

j → ∞, we see that g ∈ SN . The result follows. �

A.2. Proof of Theorem 2.4

Proof. The proof follows by modifying arguments for the lower bound and upper bound in the
proof of Theorem 4.2 of [7].

Lower bound. Following the proof of Theorem 2.8 in [7], it is easy to see that −ϵ log Ē
e−ϵ−1 F(Z ϵ)


is bounded below (actually equal to)

inf
ϕ∈Ũ

Ē


LT (ϕ)+ F ◦ Gϵ

ϵN ϵ−1ϕ


, (A.2)

where Ũ = ∪N≥1 Ũ N . The rest of the proof for the lower bound is as in Theorem 4.2 of [7].
Upper bound. Fix δ ∈ (0, 1) and φ0 ∈ U such that

I (φ0)+ F(φ0) ≤ inf
φ∈U

(I (φ)+ F(φ))+ δ.

Choose g ∈ Sφ0 such that LT (g) ≤ I (φ0)+ δ. Note that g ∈ Sφ0 implies φ0 = G 0

ν

g
T


. Define

gn(t, x) =




g(t, x) ∨
1
n


∧ n for x ∈ Kn,

1 else.

Then gn ∈ Āb,n ⊂ Āb. By the monotone convergence theorem, LT (gn) ↑ LT (g).
Recalling from the proof of the lower bound that −ϵ log Ē


exp


−ϵ−1 F(Z ϵ)


equals the

expression in (A.2),

lim sup
ϵ→0

−ϵ log Ē


e−ϵ−1 F(Z ϵ)


≤ LT (gn)+ lim sup
ϵ→0

Ē


F ◦ Gϵ

ϵN ϵ−1gn


≤ LT (gn)+ F ◦ G 0 νgn

T


,

where the last inequality follows on observing that since gn ∈ Ũ N for some N , we have by
assumption that, for each fixed n, Gϵ(ϵN ϵ−1gn ) ⇒ G 0


ν

gn
T


, as ϵ → 0. Sending n → ∞, we

have

lim sup
ϵ→0

−ϵ log Ē


e−ϵ−1 F(Z ϵ)


≤ LT (g)+ F ◦ G 0 νg
T


≤ I (φ0)+ δ + F ◦ G 0 νg

T


= I (φ0)+ F(φ0)+ δ

≤ inf
φ∈U

(I (φ)+ F(φ))+ 2δ.

Since δ ∈ (0, 1) is arbitrary the desired upper bound follows. This completes the proof of the
theorem. �
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A.3. Proof of Remark 3.2

Proof. Let E ∈ B(XT ) be such that νT (E) < ∞. Fix δ2 ∈ (0,∞), and define F = {(s, v) ∈

XT : ∥G(s, v)∥0,−p > δ2/δ1}. Then
E

eδ2∥G(s,v)∥0,−pν(dv)ds =


E∩F

eδ2∥G(s,v)∥0,−pν(dv)ds

+


E∩Fc

eδ2∥G(s,v)∥0,−pν(dv)ds

≤


E∩F

eδ1∥G(s,v)∥2
0,−pν(dv)ds + eδ

2
2/δ1


E∩Fc

ν(dv)ds

≤


E

eδ1∥G(s,v)∥2
0,−pν(dv)ds + eδ

2
2/δ1νT (E) < ∞.

The remark follows. �

A.4. Proof of Lemma 3.9

Proof. The proof proceeds through a standard Picard iteration argument. Define x0(t) = x0 for
all t ∈ [0, T ]. Define xn(t) iteratively as

xn(t) = x0 +

 t

0
a(s, xn−1(s))ds +

 t

0
b(s, xn−1(s))u(s, xn−1(s))ds, t ∈ [0, T ].

Then

∥xn(t)∥ ≤ ∥x0∥ +

 t

0
∥a(s, xn−1(s))∥ds +

 t

0
∥b(s, xn−1(s))u(s, xn−1(s))∥ds

≤ ∥x0∥ +

 t

0
κ(1 + ∥xn−1(s)∥)ds +

 t

0
κ(1 + ∥xn−1(s)∥) sup

y
∥u(s, y)∥ds

≤ ∥x0∥ + κ(M + T )+ κ

 t

0
∥xn−1(s)∥


1 + sup

y
∥u(s, y)∥


ds.

Let L = ∥x0∥ + κ(M + T ), α(s) = 1 + supy ∥u(s, x)∥, and β(t) =
 t

0 α(s)ds. Then a recursive
argument shows that for all t ∈ [0, T ],

∥xn(t)∥ ≤ L + κLβ(t)+
κ2L

2
β(t)2 + · · · +

κn L

n!
β(t)n,

and thus

sup
n

sup
t∈[0,T ]

∥xn(t)∥ ≤ Leκβ(T ) ≤ Leκ(M+T ). (A.3)

Similarly

∥xn(t)− xn(s)∥ ≤

 t

s
∥a(s, xn−1(r))∥dr +

 t

s
∥b(r, xn−1(r))u(r, xn−1(r))∥dr

≤ κ(1 + Leκ(M+T ))(t − s)+ κ(1 + Leκ(M+T ))

 t

s
sup

y
∥u(r, y)∥dr,
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and therefore

lim
δ→0

sup
n

sup
|t−s|≤δ

∥xn(t)− xn(s)∥ = 0.

Together with (A.3) shows that the sequence {xn
} is pre-compact in C([0, T ] : Rd). Let x be a

limit point of some subsequence of {xn
}. Then using the continuity properties of the functions

a, b and u with respect to x and the dominated convergence theorem, it is easy to check that x
satisfies (3.12). The lemma follows. �

A.5. Proof of (3.14)

Proof. Let yn → y, yn, y ∈ Rd . We will like to show that u(s, yn) → u(s, y) for a.e. s ∈ [0, T ].
Note that, since ψ ∈ SM ,


[0,T ]×X l(ψ(s, v))ν(dv)ds ≤ M . Thus there exists T1 ⊂ [0, T ], with

λT (Tc
1) = 0 and such that

X
l(ψ(s, v))ν(dv) < ∞, ∀s ∈ T1.

Also, from arguments similar to those in the proof of Lemma 3.4,
XT

∥gd(s, v)∥0|ψ(s, v)− 1|ν(dv)ds < ∞.

Consequently, there exists T2 ⊂ [0, T ], with λT (Tc
2) = 0 and such that

X
∥gd(s, v)∥0|ψ(s, v)− 1|ν(dv) < ∞, ∀s ∈ T2. (A.4)

Let T = T1 ∩ T2 and fix s ∈ T. Define Fβ(s) = {v ∈ X : |ψ(s, v) − 1| ≤ β} for β ∈ (0,∞).
Then

u(s, yn) =


X∩Fβ

gd(s, yn, v)

1 + ∥yn∥
(ψ(s, v)− 1)ν(dv)

+


X∩Fc

β

gd(s, yn, v)

1 + ∥yn∥
(ψ(s, v)− 1)ν(dv)

= u1(s, yn)+ u2(s, yn).

From part (c) of Remark 3.3, for all v ∈ Fβ(s),

|ψ(s, v)− 1|
2

≤ c2(β)l(ψ(s, v)).

Thus [ψ(s, ·)−1]1Fβ (s)(·) ∈ L2(X, ν; R). From assumption (a) in Lemma 3.10 we now see that,
for all such s, u1(s, yn) → u1(s, y), as n → ∞.

For u2(s, yn), we havegd(s, yn, v)

1 + ∥yn∥
(ψ(s, v)− 1)

 ≤ ∥gd(s, v)∥0|ψ(s, v)− 1|.

From (A.4), the term on the right hand side is ν-integrable. Furthermore, ν(Fc
β ) → 0 from

the super linear growth of l. Thus u2(s, yn) converges to 0, uniformly in n, as β goes to ∞.
The term u2(s, y) can be treated in a similar manner. Thus we have shown that, for all s ∈ T,
u(s, yn) → u(s, y). Since λT (Tc) = 0, the result follows. �



A. Budhiraja et al. / Stochastic Processes and their Applications 123 (2013) 523–560 557

A.6. Proof of (3.25) when h is a bounded and measurable function

Proof. We can assume without loss of generality that


K gνT (dsdv) ≠ 0 and


K gnνT (dsdv) ≠

0, for all n ≥ 1. Define probability measures ν̃n and ν̃ as follows:

ν̃n(·) =
ν

gn

T (· ∩ K )

mn
, ν̃(·) =

ν
g
T (· ∩ K )

m

where mn =


K gnνT (dsdv) and m =


K gνT (dsdv). If θ(·) =
νT (·∩K )
νT (K )

, then θ is also a
probability measure. We have

R(ν̃n
∥ θ) =


K

log

νT (K )

mn
gn


1

mn
gnνT (dsdv)

=
1

mn


K
(l(gn)+ gn − 1)νT (dsdv)+ log

νT (K )

mn

≤
N

mn
+ 1 −

νT (K )

mn
+ log

νT (K )

mn
.

Noting that mn → m, we have that there exists constant α such that supn∈N R(ν̃n
∥ θ) ≤ α < ∞.

Also note that ν̃n converges weakly to ν̃. From Lemma 2.8 of [3], we have

1
mn


[0,T ]×K

h(s, v)gn(s, v)νT (dvds) →
1
m


[0,T ]×K

h(s, v)g(s, v)νT (dvds),

which proves (3.25). �

A.7. Proof of Itô’s formula in (3.33)

Proof. Here we will give the proof for a simpler case when X t satisfies the following integral
equation, the proof of (3.33) being very similar to this case:

X t = X0 +

 t

0
A(s, Xs)ds +

 t

0


X

G(s, Xs−, v)Ñ (dsdv).

For j ∈ N,

X t [θpφ j ] = X0[θpφ j ] +

 t

0
A(s, Xs)[θpφ j ]ds +

 t

0


X

G(s, Xs−, v)[θpφ j ]Ñ (dsdv).

Note that

X t [θpφ j ] = ⟨X t , φ j ⟩−p = ∥φ j∥−p⟨X t , φ
−p
j ⟩−p,

so
∞
j=1

∥φ j∥
2
p(X t [θpφ j ])

2
=

∞
j=1

⟨X t , φ
−p
j ⟩

2
−p = ∥X t∥

2
−p.

If ξ j (t) = X t [θpφ j ], then ξ j (t) satisfies

ξ j (t) = ξ j (0)+

 t

0
a j (s)ds +

 t

0


X

b j (s, v)Ñ (dsdv)
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where a j (s) = A(s, Xs)[θpφ j ] and b j (s, v) = G(s, Xs−, v)[θpφ j ]. Applying Itô’s formula
(cf. Theorem 2.5.1 of [14]) to the real valued semimartingale ξ j (t), we have

ξ2
j (t) = ξ2

j (0)+ 2
 t

0
a j (s)ξ j (s)ds + 2

 t

0


X

b j (s, v)ξ j (s−)Ñ (dsdv)

+

 t

0


X
[b j (s, v)]2 Ñ (dsdv)+

 t

0


X
[b j (s, v)]2ν(dv)ds. (A.5)

Note that ∥X t∥
2
−p =


∞

j=1 ∥φ j∥
2
pξ

2
j (t). So for the second term in (A.5), we have

∞
j=1

∥φ j∥
2
pa j (s)ξ j (s) =

∞
j=1

∥φ j∥
2
p A(s, Xs)[θpφ j ]Xs[θpφ j ]

= A(s, Xs)


∞
j=1

∥φ j∥
2
p Xs[θpφ j ]θpφ j



= A(s, Xs)


∞
j=1

∥φ j∥
2
p⟨Xs, φ j ⟩−p∥φ j∥

2
−pφ j



= A(s, Xs)


∞
j=1

⟨Xs, φ
−p
j ⟩−pφ

p
j


= A(s, Xs)[θp Xs].

Also, we have

∞
j=1

∥φ j∥
2
pb j (s, v)ξ j (s−) =

∞
j=1

∥φ j∥
2
pG(s, Xs−, v)[θpφ j ]Xs−[θpφ j ]

=

∞
j=1

∥φ j∥
2
p⟨G(s, Xs−, v), φ j ⟩−p⟨Xs−, φ j ⟩−p

=

∞
j=1

⟨G(s, Xs−, v), φ
−p
j ⟩−p⟨Xs−, φ

−p
j ⟩−p

= ⟨G(s, Xs−, v), Xs−⟩−p.

Finally, notice that

∞
j=1

∥φ j∥
2
p[b

j (s, v)]2
=

∞
j=1

∥φ j∥
2
p


G(s, Xs−, v)[θpφ j ]

2
=

∞
j=1

∥φ j∥
2
p


⟨G(s, Xs−, v), φ j ⟩−p

2
=

∞
j=1


⟨G(s, Xs−, v), φ

−p
j ⟩−p

2

= ∥G(s, Xs−, v)∥
2
−p.
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Combining the above equalities with (A.5), we have

∥X t∥
2
−p = ∥X0∥

2
−p + 2

 t

0
A(s, Xs)[θp Xs]ds

+ 2
 t

0


X
⟨G(s, Xs−, v), Xs−⟩−p Ñ (dsdv)

+

 t

0


X

∥G(s, Xs−, v)∥
2
−p Ñ (dsdv)

+

 t

0


X

∥G(s, Xs−, v)∥
2
−pν(dv)ds. �
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