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ABSTRACT Forces applied by cells to substrates can be measured using soft substrates with embedded displacement
markers. Traction forces are retrieved from microscopic images by determining the displacements of these markers and fitting
the generating forces. Here we show that using elastic films of 5–10-mm thickness one can improve the spatial resolution of the
technique. To this end we derived explicit equations for the mechanical response of an elastic layer of finite thickness to point
forces. Moreover, these equations allow highly accurate force measurements on eukaryotic cells on films where finite thickness
effects are relevant (below ;60 mm).

INTRODUCTION

Most animal cells survive only if they are adhered to sub-

strates or other cells. For this reason cell adhesion has been

intensively studied. At present a wealth of facts is known on

the molecules causing cell adhesion and on their regulation

as well as supramolecular organization. Interestingly, cell

adhesion molecules form well-defined aggregates within the

cell substrate contact area. Focal adhesion sites, podosomes,

and hemidesmosomes are prominent examples (1–4).

An outstanding biological function of such complexes is

the transmission of mechanical force. Obviously, techniques to

determine these forces at the level of single contacts are needed

to investigate this function. Here a first breakthrough was the

wrinkling assay of Harris (5). In this assay cells are cultivated

on a thin elastic lamella that forms folds due to cell forces.

However, quantitative evaluation of the observed patterns is

very difficult because wrinkling is a highly nonlinear process.

Later on, wrinklingwas effectively suppressed by using elastic

layers bonded to microscope coverslips (cf. Fig. 1) (6–10).

In such experiments the displacement field of the

surface of the elastic medium is determined directly. If the

force distribution is known, this field can be easily calculated

by convoluting the force distribution with the appropriate

Greens’ tensor. Thus, for traction force microscopy the

Greens’ tensor plays the role of an instrumental resolution

function. Its spatial decay limits the obtainable spatial

resolution of the technique.

Evaluating data from traction force microscopy amounts

to unfolding the Greens’ tensor and the unknown force dis-

tribution. This is a classical example for an inverse problem.

This class of problems is numerically ill-posed (11). In the

literature it was convincingly shown that regularized, non-

linear data fit routines can be used to calculate force distri-

butions from displacement fields (12,13). In experiments the

displacement field is determined with a certain uncertainty at

discrete locations. Due to these two limitations the outcome

of any unfolding algorithm will be of restricted spatial resolu-

tion. In other words, the forces due to focal adhesions in close

proximity will tend to be averaged by the evaluation procedure.

The exact amount of smoothing is difficult to estimate because

choosing the regularization parameter is in essence a subjective

procedure. As an alternative to regularized least squares fitting

unfolding can be also performed in Fourier space (10). Here as

well some smoothing is necessary to overcome high frequency

noise. No matter what technique is used, a more rapidly de-

caying instrument functionwill result in better separation of the

contributions of different focal adhesions.

The resolution problem in traction force microscopy is

rather severe because theGreens’ tensor of an elastic half-space

decays only like the inverse of the distance. In this publication

we will show that finite thickness of the elastic layer leads to a

more rapid decay and therefore to a better spatial resolution

of traction force microscopy on moderately thin elastic films.

This publication is organized as follows. First we will give

explicit expressions for the Greens’ tensor of a point force

acting on an elastic layer of finite thickness that is bonded to

a rigid substrate and discuss the shape of the solutions. Then

we will describe prototype experiments where we applied

point forces to elastic layers and compare the resulting de-

formation fields with our calculations. Finally we will apply

our results to traction force experiments on living cells and

discuss our findings.

MATERIALS AND METHODS

Mathematics and digital image processing

Many symbolic calculations were supported byMaple (Version 9.51, Maplesoft,

Waterloo, Ontario, Canada). Numerical routines for integrating the final

solutions, for digital image processing, and for data fitting were programmed

in MatLab (Release 14, Mathworks, Natick, MA). Image processing rou-

tines for micropatterned substrates exhibiting a regular grid of microdimples

are described in detail in Cesa et al. (14). In short, we correlated the image of
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a small region around each dot of the microstructure in the images before and

after deformation. The maximum of the correlation yielded the position of

the point. These values exhibited an uncertainty of ;30 nm.

Surfaces exhibiting fluorescent microbeads in a random pattern had to

be treated differently. In a first step, a fluorescence micrograph of an area

enclosing a cell was analyzed. This image is called the original image. Here

individual microbeads were localized by cross correlation with an arbitrarily

chosen microbead as template. In a second step, this cell was removed by

trypsination. Subsequently, a reference image of the same region was taken

where microbead locations were determined by the same techniques. Judged

from cell free areas the statistical uncertainty of the bead displacements was

10 nm. Displacements of beads from the first image to the second one had to

be corrected for drift and erroneously assigned beads. Drift was determined

from the average shift of microbeads in areas far from the cell. Especially in

areas with large displacements, our algorithm sometimes failed to find the

same beads in the original and the reference image. This led to apparent

displacements that widely differed in magnitude and direction from neigh-

boring ones. Such artificial displacements were discarded.

Force retrieval was performed by the algorithm of Schwarz et al. (13).

This algorithm performs a regularized least squares fitting of the model

function to the data (11,15). We used n discrete point forces,~fi; located at

the positions (xi, yi), to calculate the model function~ut

~utðx; yÞ ¼ +
n

i¼1

~~Gðx2xi; y2yiÞ~fi: (1)

Here
~~G denotes the Greens’ tensor of the problem (see below). In the

experiment displacements~ue of m marker particles or structures at positions

(xj, yj) were determined. The forces ~fi were chosen to minimize the merit

function MF.

MF ¼ x
21l

2
C

2

¼ +
m

j¼1

ð~utðxj; yjÞ2~ueðxj; yjÞÞ2
s
2

j

1l
2 +

n

i¼1

~fi~fi: (2)

Heresj denotes the statistical uncertainty (standard deviation) of the data point j.

For experiments on substrates with regular microstructures s amounted to

30 nm, onmicrobead coated substratesswas 10 nm. The first sum in Eq. 2,x2,

is the familiar sum of squared deviations. Due to the structure of the Greens’

tensor, minimizing the first factor alone yields fluctuating, meaningless

solutions. These fluctuations are effectively damped by the constraintC, which

corresponds to the second sum in Eq. 2. It penalizes solutions with high

magnitudes of forces (15). The amount of regularization is tuned by the

regularization parameter l. Choosing l amounts to obtaining a fair com-

promise between erroneously fluctuating forces at too small values and

excessively smoothed solutions at too high values.Wevariedl and calculated

the respective x2. Two different criteria for the selection of l are possible:

either one selects the value of l, which yields the statistically expected value

of x2¼ 2(m2 n) or one chooses l at the position where the x2(l) curve starts

to rise significantly. In this work we used the second alternative. The

respective value of l was chosen automatically as the value that maximizes

the third derivative of the x2(l) curve. Examples will be shown below. Much

more detail on this particular method of data retrieval can be found in the

original work of Schwarz et al. (13). Another valuable source of information

is the description of theMatlab packageRegularization Tools byHansen (15).

Preparation of elastic microstructured substrates

The preparation procedures for substrates exhibiting periodic microstructures

are described in detail in Cesa et al. (14). In short, weakly cross-linked silicon

elastomer was used as elastic layer (Sylgard 184, DowCorning,Midland,MI).

Thismaterial is supplied as a two-component kit consisting of basematerial and

cross-linker. Both fluids were mixed at a ratio of 55:1 and deposited onto

a silicon waver bearing a microstructure consisting of 2-mm dots arranged in

a square lattice of 3.5-mm lattice constant on its surface. The polymer layer

was then covered by a glass coverslip. During heat cross-linking (60�C over-

night) the waver served as mold that was subsequently removed.

Microbead covered elastic substrateswere produced fromSylgard for base

material to cross-linker ratios of 55:1 and 45:1. In detail, FluoSpheres (100-nm

diameter; Invitrogen, Carlsbad, CA) were pelleted by centrifugation and

homogenized at a concentration of 5% (v/v) in the mixed but still not cross-

linked polymer solution. This bead-labeled fluid was coated onto a silicon

surface silanized with trichloro(1H,1H,2H,2H-perfluorooctyl)silane (Sigma-

Aldrich, St. Louis, MO). Subsequently, the layer thickness was reduced to

,0.5 mm by wiping with lens tissue (NeoLab, Heidelberg, Germany). After

cross-linking the bead-labeled elastomer layer, unlabeled Sylgard mixture of

identical ratio was overlaid. Layer thicknesses of 100 mm were produced by

using spacers between the silicon surface and the coverslip. For fabrication of

thin elastomer substrates, wedge-shaped elastic structures were produced.

Here, an 80-mm spacer between silicon and coverslip was used only at one

side of the coverslip while the other was pressed down with a paperclip. The

resulting elastomer wedges exhibited defined thicknesses down to 5 mm.

Layer thicknesses were accurately determined at the positions of each cell

analyzed with a confocal microscope (Zeiss LSM510 with an Axiovert

200M as base microscope; Carl Zeiss Jena, Germany). For thick elastomer

layers reflection mode was used employing the 488-nm line of the Argon ion

laser. Thin elastomer substrates were stained with DiD (1,19-dioctadecyl-
3,3,39,39-tetramethylindodicarbocyanine perchlorate, 1 mM in ethanol; Mo-

lecular Probes, Eugene, OR) in 1:500 dilution in water for 16 h at 37�C and

imaged with the confocal microscope using a green HeNe laser (543 nm) and

a 560-nm long-pass filter. An Epiplan 503 /0.7 lens was used for reflection

analysis. In fluorescence microscopy a PlanApochromat 633 /1.40 oil dif-

ferential interference contrast objective was used. The film thicknesses were

corrected for the influence of the mismatch in refractive indices between air

(n ¼ 1.0) or immersion oil (n ¼ 1.515) and cross-linked polydimethylsilox-

ane (n ¼ 1.41) (16). The latter value was determined by an Abbe refractom-

eter (AR 3–6D; A. Krüss, Hamburg, Germany). The elastomer films exhibited

a Poisson ratio of 0.50 and a Young’s modulus of 16 kPa for a mixing ratio

of 55:1, respectively, 38 kPa for a mixing ratio of 45:1. These mechanical

material parameters were determined as described in Cesa et al. (14).

Preparation of cells

Cardiac fibroblasts were isolated from 19-day-old Wistar rat embryos. In

brief, CO2 anesthetized pregnant rats were decapitated, the embryos were

removed and decapitated under sterile conditions. The heart of each embryo

was quickly isolated, washed in Hank’s balanced salt solution ((HBSS)

Sigma), cut into small pieces and repeatedly digested in a 0.5% trypsin/0.2%

EDTA solution inHBSS to disintegrate the tissue. Undigested cell aggregates

FIGURE 1 The basic principle of traction force microscopy. A cell (gray)

adheres to an elastic substrate predominantly at specific locations (black

ellipses). Mechanical forces (solid arrows) result in deformations of the

substrate (dotted arrows) that decay in normal direction (dotted lines) and in
tangential direction (not shown). The elastic film is supported by a rigid

substrate, in general a microscope coverslip (black).
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were further incubated in between with 100ml DNase solution (10,000 units/

ml; Sigma). Cells were collected by centrifugation at 2003 g. Cells were

seeded on PDMS surfaces that were coated with 2.5 mg/cm2 human plasma

fibronectin (BD Biosciences, San Jose, CA). After 50-min nonadherent cells

(primarily myocytes as they adhere slower than cardiac fibroblasts) were taken

away with the supernatant. Cells were maintained in F10 Ham’s medium

supplemented with 10% fetal bovine serum, a 1:100 dilution of an antibiotic

solution (10,000 units penicillin and 10 mg/ml streptomycin in 0.9% NaCl,

Sigma) and a 1:200 dilution of a solution containing insulin (1 mg/ml),

transferrin (0.55 mg/ml), and sodium selenite (0.5 mg/ml) in Earle�s balanced
salt solution (Sigma) at 37�C and 5% CO2 in a humidified incubator.

Light microscopy techniques

For needle tests deformation fields were examined in reflection mode using

the laser scanning microscope equipped with an Epiplan 503 /0.7 lens

(Zeiss). Here a green HeNe laser (543 nm) was used for illumination. To

minimize geometrical image distortions the scanner was calibrated before

the measurements. Moreover, a very low scanning rate was used.

Live cell microscopy was performed on an inverted light microscope

(Axiovert 200, Zeiss) using a PlanNeofluar 633 /1.25 Ph3 Antiflex lens

(Zeiss). Cells were analyzed in phase contrast as well as in reflection

interference contrast microscopy (RICM). The latter allowed us to detect

focal adhesion sites of cells as well as the microstructure of the elastic

substrate. Cell culture conditions were maintained by means of a thermo-

stated chamber flushed with 5% CO2 (Incubator XL-3; Zeiss). Fluorescence

of beads was excited by the 546-nm line of a mercury arc lamp (HBO100/

W3 Osram, Munich, Germany) and selected by the appropriate filter set (FS-

09, Zeiss). Image acquisition was performed using an ORCA ER CCD

camera (Hamamatsu Photonics, Hamamatsu, Japan) and Open Box as

software (version 1.77, Informationssysteme Schilling, Munich, Germany).

Theoretical considerations

The Greens’ tensor for a single, elastic layer bonded
to a rigid substrate

For an elastic half-space the Greens’ tensor for displacements caused by point

forces was solved 130 years ago by Boussinesq (17). In view of the high

relevance of layeredmaterials, e.g., in road construction or building foundations,

it is astonishing that it took another 60 years until Burmister solved the case of a

normal force acting on a layeredmaterial (18–20). However, lateral forces break

the radial symmetry of the problem and were much more difficult to tackle. In

essence, meaningful solutions could only be achieved with the advent of easy

accessible computer-based numerics. For the practical implementation of the

solutionwe found the approach ofYue and co-workersmost convenient (21–24).

Yue’s treatment is based on a Hankel transformation of the differential equation

combined with a matrix transfer technique to connect the boundary conditions at

the diverse interfaces in a layered continuum. Alternatively, one could have

calculated theGreens’ tensor by amethodbasedon elastic potential functions and

image point loads to satisfy the boundary conditions (25).

The displacement field of the surface of an elastic medium,~u is connected
to the force distribution acting on this surface,~f ; by

~uðx; yÞ ¼
Z

~~Gðx2x9; y2y9Þ~f ðx9; y9Þdx9dy9: (3)

Here x and y symbolize the coordinates within the surface and
~~G denotes

the Greens’ tensor for this mechanical problem. Please note that forces

and displacements can have tangential and normal components, i.e., all vectors

have three elements and the Greens’ tensor is a 3 3 3 matrix.

Calculation of the Greens’ tensor,
~~G; was the most difficult problem to

be tackled in this project. Our approach was based on Yue (22) who gave an

algorithm to numerically calculate the Greens’ tensor for stratified media,

i.e., materials consisting of several plane parallel slabs of isotropic,

homogeneous, and linearly elastic materials rigidly bonded at their interfaces

and to an infinitely thick underlying solid material.

Our system consists merely of one layer of elastomer bonded to a glass

coverslip. For this comparably simple case the relevant equations from Yue

(22) could be calculated in explicit form. The resulting expressions could be

substantially simplified by assuming an infinitely stiff underlying material.

This is well justified because the Young’s modulus of the elastomer is

typically in the range of 0.1–100 kPa, whereas a glass coverslip exhibits a

Young’s modulus of 73 GPa (value given by Schott AG, Mainz, Germany).

The final result is

~~G ¼

A12
x
22y

2

r
2 A2 2

2xy

r
2 A2 2

x

r
A3

2
2xy

r
2 A2 A11

x
22y

2

r
2 A2 2

y

r
A3

x

r
A3

y

r
A3 A4

0
BBBBBB@

1
CCCCCCA
: (4)

Here r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x21y2

p
: The terms Ai in the above tensor are given by

Ai ¼ Ai;B1Ai;A for i 2 f1; 2; 3; 4g; (5)

i.e., we split the solution in the Boussinesq solution Ai, B for an infinite layer

thickness and a deviatory part Ai, A. The Boussinesq solution is given by

A1;B ¼ 1

4pmh

22s

s

A2;B ¼ 2
1

4pmh

s

s

A3;B ¼ 1

4pmh

122s

s

A4;B ¼ 1

4pmh

2ð12sÞ
s

: (6)

Here and in the following s denotes the scaled radius (s ¼ r/h), h being the

layer thickness. The elastic parameters of the layer are defined by the

Poisson’s number, s, and the shear modulus, m. The latter modulus is

connected to the more familiar Young’s modulus, E, via m ¼ E/(2(1 1 s)).

A1;A ¼ 2
1

2pmh

Z N

0

J0ðstÞF1ðs; tÞdt

A2;A ¼ 2
1

2pmh

Z N

0

J2ðstÞF2ðs; tÞdt

F1ðs; tÞ ¼ 2expð22tÞ
Nð11expð22tÞÞ 3 f2ðs21Þt212ð12sÞt18s

3220s
2121s281½2ðs23Þt212ð12sÞt18s

3

240s
2148s218�3 expð22tÞ1½24s

2111s26�3 expð24tÞg (7)
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A3;A ¼ 2
1

2pmh

Z N

0

J1ðstÞF3ðs; tÞdtF3ðs; tÞ

¼ 4ð12sÞexpð22tÞ
N

3 ft212ð2s21Þðs21Þg (9)

A4;A ¼ 2
1

2pmh

Z N

0

J0ðstÞF4ðs; tÞdt

F4ðs; tÞ ¼ 2ð12sÞexpð22tÞ
N

3 f2tðt11Þ18s
2

212s151½324s�3 expð22tÞg: (10)

In these equations Jn denotes the Bessel function of first kind and order n

(26), and the term N is given by

Nðs; tÞ ¼ ð324sÞexpð24tÞ1½224s110

14t
2116s

2�expð22tÞ1ð324sÞ: (11)

All the individual terms Ai as well as Ai, B and Ai, A (cf. Eqs. 4 and 5) can

be scaled to be functions, Ml, of only two variables via

mhAlðr; h;s;mÞ ¼ Mlðs;sÞ; (12)

where the index l stands for either i, (i, B), or (i, A) and we used again the

scaled distance s ¼ r/h.

General structure of the solution

The Greens’ tensor for an elastic layer bonded to a rigid substrate can be

reduced to four functions Ai. These functions depend in a trivial way on

thickness and shear modulus. Thus the only nontrivial variables are the

Poisson’s number, s, and the distance in the surface scaled by the thickness

of the layer, s¼ r/h; see Eq. 12. In the following we will discuss the shape of

these functions Ai and focus on the most important case of s ¼ 1/2. This

value has been given for many materials used so far in traction force

microscopy (7,9). The integrals in Eqs. 7–10 were numerically evaluated

to an accuracy of 10211.

Let us first address the deviatory parts of the solutions, Ai, A. These

functions are well behaved because the integrands in Eqs. 7–10 decay like

exp(22t) for t/N and are continuous functions over the full range of

integration without any poles. Please note that this holds for all physically

possible values of s (21 # s # 1/2). For s ¼ 0.5 the functions Ai, A are

displayed in Fig. 2.

These solutions exhibit finite values at s ¼ 0 and decay like 1/s for large

distances. Here the deviatory parts converge to the negative of the respective

terms of the Boussinesq solution resulting in a cancellation of both terms.

Thus the solutions for finite layer thickness decay faster than the Boussinesq

solution at large distances. However, close to the center the deviatory parts stay

finite while the Boussinesq solutions diverge like 1/r. Thus the final solutions,

Ai, differ from the Boussinesq solutions mostly at larger distances; cf. Fig. 3.

One remarkable feature of the finite layer solution is that the horizontal

and tangential degrees of freedom do not separate at Poisson’s number 0.5.

This is formally expressed by a nonzero value of A3; see Fig. 3. Moreover, A2

appears to be quite well approximated by the Boussinesq solution whereas A4

and A3 show especially large deviations. This is expected as these two terms

describe the reaction of thematerial to normal forces. Here the finite thickness

should play a greater role as compared to shear deformations. The deviations

between the finite layer solutions and the Boussinesq solutions can be best

examined upon plotting the ratio of both solutions; cf. Fig. 4.

Please note that all ratios decay to zero at distances corresponding to few

layer thicknesses. This shows that the deformation fields decay much faster

in the finite layer case in comparison to the Boussinesq solution. Moreover,

it is apparent that the Boussinesq solution approximates A2 reasonably well

at small distances. The deviation between both solutions is below 2% for s¼
r/h below 1.3. However, the same accuracy for A1 requires s # 0.03 and for

A4 s# 0.01. In addition, Fig. 4 shows that the general shape of the solutions

does not change much by changing the Poisson’s number from 1/2 to 0.3.

The major advantage of the Boussinesq solution for all practical purposes

is its high computational efficiency compared to the finite layer solution.

However, for many purposes approximate expressions might be sufficient.

For a Poisson’s number of 1/2 we find the following approximations to the

finite layer solution:

A1 � A1;Bð0:12 expð20:43sÞ10:88 expð20:83sÞÞ
A2 � A2;Bð111:22s11:31s

2:23Þ expð21:25sÞ
A3 � 20:063 ½expð20:44sÞ2expð22:79sÞ�2

A4 � A4;Bð110:46s22:50s
2:13Þ expð22:18sÞ: (13)

The relative accuracies for A1, A2, and A4 are 0.8%, 1.8%, and 2.2% of

AB,i, respectively. The accuracy of the approximation for A3 is 2 3 1023.

Experimental tests of the finite layer effects

Needle tests

Microstructured elastomer films of defined thickness were mounted onto the

stage of the confocal microscope. A syringe needle (22 gauge) was mounted

perpendicular to the elastomer surface in a micromanipulator (MHW-3

F2ðs; tÞ ¼ 2expð22tÞ
Nð11expð22tÞÞ 3 f2ðs21Þt212ð12sÞt18s

3220s
2113s221½2ðs11Þt212ð12sÞt

18s
2ðs21Þ12�3 expð22tÞ1½sð324sÞ�3 expð24tÞg (8)

FIGURE 2 The deviatory part of the solutions, Ai, A; cf. Eqs. 5 and 7–11.

The Poisson’s number, s, is 1/2. (Solid line) A1, A; (dotted line) A2, A;

(dashed line) A3, A; and (dash-dotted line) A4, A.

Biophysical Journal 93(9) 3314–3323

Cell Force Microscopy 3317



Narishige, Tokyo, Japan). The needle was gently pressed onto the substrate

(indentation below 3 mm) and moved to the side. Due to adhesion between

needle and substrate, the elastomer film was stably deformed upon needle

translation. Micrographs of the microstructured surface were taken before

and after moving the needle. The displacements of the microstructures were

determined by digital image processing. An example is shown in Fig. 5.

For each of these displacement fields we fitted the generating force of the

needle. In this fit we assumed a single point force in the middle of the contact

zone between needle and substrate. We used the algorithm published by

Schwarz (13) into which we implemented the Greens’ tensor for an elastic

layer of finite thickness as detailed in Eqs. 4–11. In the fitting procedure

we neglected all deformations measured at distances below 7 mm from

the assumed location of the point force. This was necessary because the

microstructures could not be tracked to any reasonable accuracy close to and

under the needle tip. The fitting procedure yielded convincing results; see

Fig. 5. This already indicates that the deformation of an elastomer layer is

well described by the Greens’ tensor as developed here.

For a more direct comparison we considered the displacements of

microstructures along lines through the origin of the point force. We found

the results along lines with an inclination of 45� to the direction of the force

most instructive. Along these lines, the component of the displacement in

direction of force, uk, is given by A1F and the displacement component

perpendicular to the force direction, u?, by2A2F; see Eq. 4. In Fig. 6 several
examples of displacements along diagonals can be found.

These data clearly show that the deformation fields for thin layers are

poorly described by the Boussinesq theory. Above we found from our

calculations that the disagreement between finite layer theory and the

Boussinesq approach is more serious for A1 as compared to A2; cf. Fig. 4.

This is also seen in our experimental data, as uk is proportional to A1 and

u? to A2. Moreover, whereas the Boussinesq theory is obviously a poor

approximation to the displacements measured on thin films, the agreement

between data and finite layer theory is quite convincing.

Living cells on different layer thicknesses

Primary cardiac fibroblasts from rat embryos were cultivated on micro-

structured elastomer films of defined thicknesses. Because we wanted to

probe the spatial resolution of traction force microscopy, a very dense pattern

of markers for the deformation field was necessary. Using microbead coated

elastomer filmswewere able to achieve a higher density ofmarkers than in the

previously described experiments on periodic microstructures.

We evaluated forces of cells cultivated on elastomer films of different

thicknesses. For better comparability, force application points for the force

fitting algorithm were assigned on a relatively dense regular hexagonal grid.

In the data fitting algorithm displacements are calculated for a discrete set of

point forces. Under these assumptions, displacements diverge at the points

of force application. To deal with these divergences, we ignored displace-

ments at locations closer than 0.25 mm to any site of force application for

data fitting. As long as the fraction of removed displacements is small (here

below 0.1%), the value of this cutoff distance plays a minor role for the

results.

FIGURE 4 The ratios between the finite layer solutions, Ai, and the

Boussinesq solutions, Ai, B. (Solid line) A1/A1, B; (dotted line) A2/A2, B;

(dashed line) A3/A3, B; and (dash-dotted line) A4/A4, B. (Top), s ¼ 0.3;

(bottom) s ¼ 0.5; here A3, B ¼ 0 therefore only three curves are shown.

FIGURE 3 The functions Ai from Eq. 4 for Poisson’s

number s ¼ 1/2. The dotted lines denote the Boussinesq

solutions, i.e., the solutions for an infinitely thick substrate.

Note the different scale for A3.
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Force calculations on thin films showed that themagnitude of the retrieved

forces depended strongly on the use of the finite layer theory. Interestingly,

force directions depend much less on the use of the correct theory than

magnitudes. The results for a cardiac fibroblast cultivated on a 6.6-mm thick

elastomer film are displayed in Fig. 7.

A representative image of a cell on relatively thick elastomer substrate is

displayed in Fig. 8. Here the force distribution shows much less spatial

variation than the one shown in Fig. 7 for a cell on a thin substrate. The same

was true for all cells studied. Cell force patterns on thin substrates exhibited

stronger spatial variation than those on relatively thick films.

This qualitative observation implies a better spatial resolution of traction

force microscopy on thin substrates. However, force calculation involves the

choice of a regularization parameter (12,13). This amounts to a trade-off

between lateral smoothing of the force field and retrieving erroneously

fluctuating forces.Unfortunately, for experiments like the ones presented here

where the distribution of the experimental noise was not perfectly Gaussian

there is no objective criterion on how to choose the optimum regularization

parameter (11). This makes it impossible to quantify the spatial resolution

of the force fields in an objective way. Still, analyzing the results of the

regularized least squares fit was instructive. For cells on thick substrates, Fig.

9, we obtained results that are more or less typical for numerically ill-posed

FIGURE 6 Deformation fields of elastomer films along lines inclined by

45� to the force. Shown are the displacements of all points of the

microstructure along a 7-mm-wide corridor centered around these diagonals.

Layer thicknesses are 8 mm (d), 17 mm (h), 54 mm (n), 84 mm (=), and

126 mm (1). All deformations were scaled to the mean of the generating

forces (0.66 mN), the scaling factors ranged from 0.59 to 1.66. (Top) The
displacement components along the force direction. (Bottom) The displace-

ment components perpendicular to the force direction. In both figures the

displacements due to a point force as calculated by the finite layer theory are

shown as dashed lines for the two lowest thicknesses. Moreover, the bold

lines denote the results of the Boussinesq theory.

FIGURE 5 Needle deformation test of a 17-mm-thick layer of cross-

linked PDMS. (A) A micrograph of the sample before deformation. The

lattice constant of the microstructure is 3.5 mm. (B) The corresponding

displacement field. The fat arrow denotes the force applied by the pipette

(500 nN), the thin arrows the displacements of the dots. Please note the

different scalings of space and displacement. (C) The deviations between the
measured displacements and the ones calculated from the fitted point force.
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problems. With increasing regularization parameter l the normalized x2

increased, the constraint C decreased, and in between there was a reasonable

compromise to choose the regularization parameter close to the ‘‘knee’’ in the

double logarithmic plot of constraint C vs. x2. In comparison, smaller values

of the regularization parameter were sufficient for cells on thin substrates; cf.

Fig. 10.Moreover, the ‘‘knee’’ in the aforementioned double logarithmic plot

was less pronounced indicating less need for regularization for traction force

microscopy on thin elastic layers.

Instead of studying force fields to assess the spatial resolution on thin

substrates, we analyzed the spatial variations of the measured displacement

fields. For this analysis the bead numbers were equalized to 3500 on a field

of view of 102 3 137 mm by removing randomly chosen beads. Sub-

sequently, displacement fields were triangulated to achieve dense fields.

After this, spatial resolutions of the resulting fields were down-sampled

to 1.6 mm per pixel, close to the mean distance between microbeads. The

resulting deformation fields were scaled in magnitude by the mean ampli-

tudes of the displacements. Finally the divergences of these normalized

deformation fields were calculated. Divergence is a scalar quantity, therefore

these data can be displayed as pseudograyscale images. An example is

shown in Fig. 11. Although the mean of the divergence over an image was

always close to zero, the range of variation depended strongly on film

thickness. On substrates ranging in thickness from 79 to 100 mm we found a

mean variation of the divergence from 20.022 to 0.020 mm21. On thin

substrates (4.5–9.5 mm thickness) the corresponding variation was20.062–

0.070 mm21. In all cases the extreme values of the divergence were localized

in regions of strong substrate deformation. These results indicate a stronger

spatial variation of the deformation field on thin substrates. Therefore we can

expect any suitable algorithm for force retrieval to achieve higher spatial

resolution on these data.

DISCUSSION

We showed that the deformation field of a point force acting

on the surface of an elastic film of finite thickness decays on

the length scale of about twice the film thickness; cf. Figs. 3

and 6. Thus the response of an elastic film of finite thickness is

more localized than expected by the well-known Boussinesq

theory (Eq. 6). As the spatial spread of the material response

together with experimental noise in the measured displace-

ment fields limit the spatial resolution of the technique, our

finding implies a higher spatial resolution of traction force

microscopy on thin substrates. However, this higher resolution

FIGURE 8 A cardiac fibroblast on a 79-mm-thick elastomer film. (Top)
Reflection image (RICM) of cell and bead displacements (white arrows).

(Bottom) Forces.

FIGURE 7 A cardiac fibroblast on thin elastic substrate (6.6 mm). (A) Re-

flection image (RICM) of the cell and bead displacements (white arrows).

Note the different scaling of distances and displacements. (B) Forces cal-
culated with the finite layer theory. (C) Forces evaluated assuming infinite

layer thickness.
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comes at the expense of reduced displacements; see Fig. 7.

Moreover, for a reliable retrieval of forces on the order of

10–100 measured displacement values ~ue per force to be

retrieved are necessary. As the displacement field on thin

substrates decays effectively within two layer thicknesses, we

were forced to use films whose thicknesses amounted to at

least 2–3 times the average distance between marker points.

In practice film thicknesses below 4 mm could not be used in

our experiments on cells. Yet this still corresponds to a sub-

stantial localization of the deformation field of a cell.

Using microneedles we deflected elastic substrates with

point forces.We fitted themeasured displacement fields using

the Boussinesq theory, cf. Eqs. 4 and 6, as well as using the

Greens’ tensor for finite layer thickness (Eqs. 4 and 7 through

11). The results clearly indicated a much better description of

the data by the finite layer theory. For example, for the data

shown in Fig. 5 we calculated the standard deviation of the

residual vector field,~ue2~ut; and found values of 0.14 mm for

the Boussinesq solution and 0.07 mm for the finite layer

solution. These results strongly support the validity of our

theory. However, for a rigorous exploration of the spatial

resolution of the techniquewewould need a test samplewhere

forces of some 10 nN are applied on the micrometer length

scale in a well-defined manner. All our attempts to construct

such a calibration sample failed. Thus we resorted to ex-

periments on living cells and used the spatial variation of the

observed displacement vector field as indication for the res-

olution; cf. Fig. 11. Based on this criterion we found indeed a

higher spatial resolution for traction force microscopy on thin

elastic substrates.

FIGURE 10 Results of the regularized least squares fit algorithm for a cell

on a thin elastic substrate (6.6 mm; same data as in Fig. 7 B). See Eq. 2 for

definitions of the terms. (Top) The sum of the squared deviations of the

displacement field normalized by the degrees of freedom of the fit 2(m2 n).
(Middle) The constraint C, i.e., the sum of the squared forces. (Bottom)

Variation of C with the normalized x2. Open boxes denote the regularization

parameter chosen for force retrieval.

FIGURE 9 Results of the regularized least squares fit algorithm for a cell

on a thick elastic substrate (79 mm; same data as in Fig. 8). See Eq. 2 for

definitions of the terms. (Top) The sum of the squared deviations of the

displacement field normalized by the degrees of freedom of the fit 2(m2 n).
(Middle) The constraint C, i.e., the sum of the squared forces. (Bottom)

Variation of C with the normalized x2. Open boxes denote the regularization

parameter chosen for force retrieval.
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In addition to improved spatial resolution, we observed

that the amount of regularization necessary for force retrieval

is less for cells on thin elastic substrates. This is another

consequence of the localization of the displacement field due

to a point force. Thus using thin elastic films for traction

force microscopy might not only increase the spatial reso-

lution of the technique but also improve the robustness of the

results against experimental uncertainties.

Besides the possibility to improve the spatial resolution of

traction force microscopy our results imply that under imag-

ing conditions as used for eukaryotic cells the deformation

field of a point force acting on an elastic film of a thickness of

at least 60mmcan bewell described by theBoussinesq theory.

Therefore one can safely use the established techniques for

force retrieval as long as the thickness of the elastic film used

is above this limit and the obtainable spatial resolution is

sufficient.

Both aspects, localization and reduction of deformations,

were clearly visible in simulated data. Here we calculated

displacement fields for a mock cell exhibiting ellipsoidal

contacts that were uniformly loaded with mechanical forces;

cf. Fig. 12. Displacements were calculated using the correct

Greens’ tensor for film thicknesses of 4.5 and 100 mm,

respectively. Uniform loading was modeled by assuming

200 randomly distributed force application points within

each ellipse. Normally distributed noise with a standard

deviation of 10 nm was added to the displacements. For force

retrieval, point-like forces at the centers of the ellipses were

assumed and displacements within 2.5 mm from these points

were neglected. For comparison we quote the forces re-

trieved for the left side of the mock cell from top to bottom.

On the right-hand side we obtained very similar results. We

used forces of 50, 150, 50, 150, and 50 nN and retrieved 49,

142, 54, 146, and 51 nN on 4.5 mm film thickness assuming

the correct thickness of the film. However, on this film

thickness the Boussinesq solution yielded forces of 5, 43, 10,

FIGURE 11 Divergences of normalized deformation fields caused by

cells. (Top) Film thickness 9.5 mm; (bottom) film thickness 97 mm. Note

the different gray scales: (top) from 20.09 1/mm to 0.09 1/mm; (bottom)
from 20.02 1/mm to 0.02 1/mm.

FIGURE 12 Simulated deformation fields. (A) The geometry. Forces were

applied uniformly over ellipses with 5 mm length and 2 mm width that were

equally distributed over the short sides of a 70 3 35 mm sized rectangle.

Forces were alternated between 50 and 150 nN. (B) Film thickness 4.5 mm.

Resulting deformation field (green arrows) and retrieved forces assuming

the correct thickness (red arrows) or infinite layer thickness (black arrows

with gray borders). (C) Layer thickness 100 mm. Here forces for correct

thickness and infinite thickness coincide. For clarity only 50% of the used

displacements are shown in panels B and C.
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45, and 9 nN. Obviously, the Boussinesq solution is a poor

description of these data resulting in severely underestimated

forces and high uncertainties even in the ratios of the forces.

However, on a film thickness of 100 mm the Boussinesq

solution yields correct values that are indistinguishable from

the results of the finite layer theory.

Taken together, using elastic layers of 5–10 mm thickness

results in higher lateral resolution and improved stability of

force retrieval in traction force microscopy. This might prove

valuable for studies on cell types with smaller and less

separated focal adhesions than typical fibroblasts, the best

studied cell type by now. Moreover, on such thin elastic

substrates the deformation field more closely resembles the

force field than on thick layers. This might open opportu-

nities for screening studies for substances that alter cell

forces and cell force patterns. For screening purposes one

might be able to omit the time-consuming force retrieval and

simply use the deformation field itself as a read-out signal.

This project greatly benefited from expert technical assistance given by

B. Bruns, N. Hersch, and S. Born.
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