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1. I N T R O D U C T I O N  

Because of their practical applications, as well as their theoretical attractiveness, restricted in- 
terpolations have received wide attention in the past. Depending on the background of the 
interpolation problem, the preservation, e.g., of convexity, monotonicity, or nonnegativity, may 
be essential. For recent reviews on methods in convex and other types of restricted interpolations, 
we refer to [1-3]. 

The present paper starts with negative results on convex data  interpolation. If the set of 
interpolating functions is a finite dimensional linear subspace of C 1, the set Y of ordinates for 
which convex interpolation is successful turns out to be closed. This property gives rise to 
considerable difficulties in any numerical method for ordinates near the boundary of Y. Further, 
as a consequence of the closedness, convex interpolation in finite dimensional linear C 1 subspaces 
may fail even for data  sets in strictly convex position [4]. 

Therefore, in convex interpolation, one should consider nonlinear approximation sets, e.g., 
exponential splines [5,6], lacunary splines [7,8], rational splines [9-12], or splines on refined grids 
with variable additional nodes [13-15]. In the present paper, for choosing the free nonlinearity 
parameters,  we apply the staircase algorithm [16,17]. In this way, we are in the position to give 
computable bounds for the respective parameters such that  within these bounds convexity can 
be preserved. 

In the cited papers, mostly convex C I interpolation is considered. Recently, using splines on 
refined grids, convex interpolation of C 2 continuity was successfully treated [14,15]. We now 
also include convex C 3 interpolation applying quartic splines on threefold refined grids [18]. T h e  

main purpose of the present paper is, however, to give a unified representation using the staircase 

algorithm as a basic tool. 
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2.  N E G A T I V E  R E S U L T S  I N  C O N V E X  I N T E R P O L A T I O N  
O N  L I N E A R  S U B S P A C E S  

Let  A : a = x0 < Xl < . . .  < xn = b be a fixed grid on the interval I = [a, b]. Wi th  given C 2 
functions ~oi,j, the  splines s may be defined on the  subintervals Ii  = [X~-l ,  xi]  by 

sb, E span {~Oi,o,~i,1,... ,~Oi,Ni},  i = 1 , . . .  ,n ,  (2.1) 

or, with real numbers  Aij ,  by 

N~ 
s (x )  = Z A i j ~ o i j ( x ) ,  x • Ii,  i = 1 , . . . , n .  

j=o 

We obtain  s • C l[a, b] if and only if 

Ni N,+I 
(~) (v) Ai+l,j~i_kl,j(Xi), 1 , . . .  1, O, 1. (2.2) 

j=0 5=0 

For i = 1 , . . .  ,n ,  the systems {~Oi,o, ~oi,1,... ,~Oi,N,} are assumed to  satisfy a weak form of the 
Haar  condition. T h a t  is, there  are numbers  zo = z i , o , . . . ,  ZN, = Zi,N~ • Ii  such tha t  the following 

determinants  do not  vanish: 

~,0(zo) --. ~,N,(zo) 
: : ~ 0, i = 1 , . . . , n .  (2.3) 

~,0(ZN,) -.- ~o~,N,(ZN,) 

The  finite dimensional linear set of these C 1 splines is abbreviated by S I (A) .  For s • S I (A) ,  

convexity means 
N~ 

Z " . . ,  (2.4) Ai,j ~o~,j(x) > 0, x • I~, i = 1,. n. 
j=o 

Next,  let a = to < t l  < . . .  < t m  = b be the nodes for interpolation,  and YO, Y l , . . .  ,Ym • •1 be 
the  given ordinates.  The  interpolat ion requirement 

s(t~) = yt, e = 0 , . . . ,  m, (2.5) 

hence reads 
N~ 

= = ( 2 . 6 )  

j=O 

if i is chosen such tha t  Q • Ii. Now we define Y to be the set of ordinates  for which convex 
interpolat ion with splines from S I (A)  is successful; i.e., 

Y = {(Y0,- .- ,  Yr~) : there  exist interpolat ing convex splines s • S I (A)} .  (2.7) 

I t  is obvious tha t  Y ~ R 'n+l. Moreover, we obtain the following theorem. 

THEOREM 1. For m >_ 2, the se t  o f  ordinates Y for which the problem oE convex  interpolation is 
solvable in S I (  A ) is dosed.  

PROOF. Let  (y(ok),... ,y(m k)) • Y, k = 1, 2 , . . . ,  be a convergent sequence of vectors from Y. The  

components  of the  limit vector  axe denoted by y~ = limk-.oQ y}k), i = 0 , . . . ,  m. We have to show 

tha t  ( y ~ , . . . ,  Y~n) • Y. 
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An interpolating convex spline which belongs to (y(ok),..., y~) )  is called sk, and the coefficients 

may be A! k.) The convexity of sk yields 

. ( k )  
s k ( x ) <  m a x  ~i , z e I .  

i=O, . . . ,m  

Thus, the splines sk are uniformly bounded from above. On the other hand, for m >_ 2 we obtain 
due to the convexity of sk 

sk(x)>_ min min {g}k) , f [k )}  x E I ,  
i= l , . . . ,m--  1 

with 

(k) (k) y?)- - 

g}k) ---- Y}k-)l + t,--t,-: =Yi+: ÷ :'--'t---~+l (Xi-:--Xi+:). 

Hence, the splines sk are also uniformly bounded from below. 

Now, using (2.3), the boundedness of the sequence (sk) implies the boundedness of the se- 
quences of the coefficients; i.e., we obtain 

A!k) < K ,  k = l , 2 ,  

a constant K.  Therefore, we have subsequences (A~,~ ~)) being convergent, say A*,,3 = with 

limr-~c~ A~,~ ~). Of course, if (2.2),(2.4),(2.6) are satisfied for Aid = A !ky),,,3 Yt -- y~k~), then also for 
the limit values Aid ---- A~,j, Yt = Y~. This means that  the spline 

N, 
s * ( x ) = E A ~ , j ~ , j ( x ) ,  x e I ~ ,  i = t , . . . , n  

j=o 

is a convex C:  spline and interpolates (y~, . . .  ,Ym), i.e., (y~,. "',Ym) E Y. Thus, the proof of 
Theorem 1 is complete. | 

The  closedness of the set Y of ordinates suitable for convex C 1 interpolation causes large 
numerical problems if ordinates are near or on the boundary OY. In every neighbourhood of 
vectors from OY, there are vectors not belonging to Y. Therefore, in view of the unavoidable 
rounding errors, numerical algorithms to compute convex interpolants must fail in general for 
ordinates from OY. In addition, it is very easy to find vectors (Y0,. . . ,  Ym) E OY. For instance, 
(Y0,. . . ,  Ym) is from OY if the points (ti, yi), i = 0 , . . . ,  m are lying on a straight line. 

A widely used counterexa.mple in convex C 1 interpolation is the function f ( x )  = Ixl combined 

with to = - 1 ,  t :  = - 1 / 2 ,  t2 = 0, t3 = 1/2, t4 = 1; i.e., we have to set Y0 = Ya = 1, y: = Y3 = 1/2, 
Y2 = 0. Obviously, interpolating convex functions s have to be identical with f .  Thus, they 
are not from C 1. Hence, the above vector (1, 1/2, 0, 1/2, 1) belongs to the open set R 5 \ Y. 
Therefore, there are ordinates (Y0,.. . ,  Y4) being even in strictly convex position, i.e., 

T1 < T2 <~ . . .  < T in ,  Ti = y~ -- y~--.__________~l (2.8) 
ti -- t i -  1 ' 

such that  (Yo, . . . ,  Y4) ¢~ Y .  Summarizing, we obtain the following corollary. 

COROLLARY 2. There are data sets in strictly convex position such that the problem of convex 
C 1 interpolation is not solvable in S I (A) .  
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3.  S T A I R C A S E  A L G O R I T H M  

For given nonempty sets W1,W2, . . . ,  W,~ c R 2, the abstract staircase algorithm [16,17] is 
concerned with the existence and construction of numbers Po,Pl , . . . ,  Pn E R 1 satisfying 

(Pi-l,pi) E Wi, i = 1, . . .  ,n. (3.1) 

ALGORITHM 3. Let Vo = R 1, and for / = 1, 2 , . . . ,  n 

V~ = (y  E JR1: there exist x E Vi-x with (x,y) E Wi} .  (3.2) 

THEOREM 4. Problem (3.1) is solvable ff and only ff 

Vi ~t 0, i = 1, 2 , . . . ,  n. (3.3) 

All solutions can be determined as follows. Choose Pn E Vn, and [or i = n, n - 1 , . . . ,  1 

p -i e y _l n {x e • w J .  (3.4) 

For a short proof, we refer to [19]. 
In the following, we are interested in two special systems W1, . . . ,  Wn. In the first case, being 

useful in (4.1)-(4.3), Wi is described by 

W i = { ( x , y )  e R 2 : ( 2 + ~ i ) x + y < _ ( 3 + ~ ) r i ,  (3 + ai)  7"i _< x + (2 + ai) y} ,  (3.5) 

where ~i _> 0, f~i >_ 0, i = 1 , . . .  ,n, are parameters while T1,... ,Tn are constants with 

T1 < T2 < "'" < Tn. (3.6) 

The sets Vi from (3.2) now are intervals [A~, Bi] if Ai _< Bi. Algorithm 3 leads immediately to 
the following method to compute these intervals. 

ALGORITHM 5. Let A0 = (3 + al)T1 - (2 + al)7"2, Bo =T1, and for i = 1 , . . . , n  

{ (3+OLi)T i - -B i -1}  
Ai = max T~, -~ ~--~ , B~ = (3 + j3i) ~'i - (2 + ~i) Ai-1. (3.7) 

By means of these quantities, Theorem 4 now yields the following theorem. 

THEOREM 6. Problem (3.1),(3.5) is solvable i / an d  only ff 

Ai <_ Bi, i = 0 , 1  . . . .  ,n. (3.8) 

The solutions can be determined by choosing pn • [An, Bn] and [or i = n ,n  - 1 , . . . ,  1, 

[ { (3+13i)Ti- -Pi}]  (3.9) P i - I •  m a x { A ~ _ l , ( 3 + a i ) T ~ - ( 2 + a ~ ) p ~ } ,  rain Bi-1, 2+B~ " 

Note that  the complexity of this procedure is O(n). 
Next it will be shown that  the solvability test (3.8) can always be satisfied by choosing the 

parameters a i  and ~ ,  i = 1 , . . . ,  n, appropriately. 

PROPOSITION 7. Assume that (3.6) holds true. Then, system (3.1),(3.5) is solvable if 

ai > O, i = l, . . . , n, 3 1 ~ 0 ,  3n >_ O, 

f~i >- max ~0, ~',+1 + 2_ri-.__A1: 3~'i ~ ,  i =  2,. .. ,n  - 1. (3.10) 
( ) 
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PROOF. We verify (3.8). For i = 0, we find A0 = T1 -- (2+a1)(T2--7"X) < T1 ----- B 0 ,  while for i = 1, 

we have A1 = T1 < 7-2 <_ T1 + (2 + a l ) ( 2 + f ~ l ) ( T 2  --T1) = B1. Next ,  i fA i -1  = Ti-1 < T~ < B~-I is 
a s sumed  for i e {2 , . . .  , n  - 1}, because of (3.10), we obta in  Ai = ri < Ti+I <_ Ti + (2 + j3i)(ri -- 

T i _ l )  = B i. Finally, for i = n, we find A,~ = r,~ < rn + (2 +/~,~)(~,~ -- A n - l )  = B~. | 

T h e  second special case of  a p rob lem (3.1) being of interest  in (5.1)-(5.3) below is defined by 

W i = { ( x , y )  E R 2 : ( M - L ~ i ) z + L ~ i y < _ M T i < ( M - 1 - L I 3 i ) x + ( I + L I 3 i ) y } ,  (3.11) 

where  M ~ 2, L are integers, and f~i are pa rame te r s  wi th  0 < 13i < (M - 1)/L, i = 1 , . . . ,  n. Let  
the  quant i t ies  T 1 , . . . ,  T~ again sat isfy (3.6). T h e  abs t rac t  s taircase a lgor i thm now reduces to  the  
following a lgor i thm.  

A L G O R I T H M  8 .  Let A0 = (MT1 - (1 + LI31)T2)/(M - 1 - L~I ) ,  B0 = T1, and  for i = 1 , . . .  , n  

{ M r ~ - ( M - 1 - L ~ i )  B i _ I }  
Ai = max ri, "I~-L-~( ' (3.12) 

MTi -- (M - Lfli) Ai-1 
Bi = L~ 

THEOREM 9. Problem (3.1),(3.11) is solvable i f  and only ff 

A~ < B~, i=O,  1 , . . . , n ,  (3.13) 

for the quantities (3.12). The solutions axe computed by selecting pn ~ [An, Bn] and for i = n, 
n - I , . . . , 1  

Pi-1 6 max A i - i ,  ~t I ' - - -1ZL-~ /  , min  B i - i ,  M - - ~ /  " 

Again,  the  p a r a m e t e r s  j 3 i , . . . ,  j3n can be chosen in such a way t h a t  the  solvabil i ty tes t  (3.13) 

is fulfilled. 

PROPOSITION 10. / / ( 3 . 6 )  iS valid, then sys tem (3.1),(3.11) is solvable ff 

(3.15) 
[ [ M ( ' r i - v i  1) M - l } )  

j3iE [ 0 , m i n ( - -  - . . . .  , i - - 2 ,  . n - 1 .  
\ ( L ( T i + I  - - T i - - I )  i ' "" ' 

PROOF. For i = 0, we obta in  A0 = Ti -- (1 + L ~ I ) ( T 2  - -  T 1 ) / ( M  - -  1 - -  L~31) < Ti = B0, and 
for i = 1, it follows A1 = rl < r2 <_ T2 + M ( T 2  -- r i ) / ( L ~ I ( M  - 1 - Lf/ i ) )  = B1. Fur ther ,  
i f A i _ l  = 7i-1 < T~ <_ Bi-1 is assumed for i E { 2 , . . . , n -  1}, we get A~ = T~ < r i+ i  _< 
T~-i + M(Ti -- ~-i-i)/(L~i) = Bi, provided (3.15) is t aken  into account.  For i = n, we find 
An = 7n <_ r n "-[- (M - L~n)(~'n - An-1)/(Ll3n) = Bn. Thus,  the  cri terion (3.13) holds. | 

Summar iz ing  the  above considerations,  a solution of a sys tem (3.1),(3.5) can be c o m p u t e d  as 
follows. At first, de te rmine  the pa rame te r s  c~1, j31 . . . . .  c~n, f~n according to (3.10). Of ten  it is ad- 
van tageous  if these  p a r a m e t e r s  axe t aken  as small  as possible. Then  app ly  the  recursive formulae 
(3.7),(3.9) to  compu te  a solution (po,Pl , . . .  ,pr,). In general,  one should prefer the  midpoin t s  of  
the  intervals (3.9). If, on the  other  hand,  a sys tem (3.1),(3.11) is given, subs t i tu te  (3.15) for (3.10) 
and (3.12),(3.14) for (3.7),(3.9). In  (3.14) and (3.15), it is r ecommended  to take the  midpoin t s  

of the  intervals.  
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4. C O N V E X  C 1 I N T E R P O L A T I O N  W I T H  S O M E  
T Y P E S  O F  N O N L I N E A R  S P L I N E S  

Let A : a = x0 < xi  < . . .  < Xn = b be a grid on the interval I = [a,b]. We assume that  the 
splines s considered here are defined on A, and that  x 0 , . . . ,  xn are the nodes for interpolation. 
Thus, the interpolation condition (2.5) reads 

s ( x i ) = y i ,  i = O , . . . , n .  (4.1) 

For convex C 1 interpolation, we can refer to some kinds of nonlinear splines. The nonlinearity 
parameters now are determined by the staircase algorithm. In this way, only the given function 

values Yo, • • •, Yn are necessary. 
In what follows, we denote by u = (x - x i - i ) / h i  and v = (xi - x ) / h i  with hi = xi - x i -1  the 

barycentric coordinates on the subinterval Ii = [xi-1, xi], while the slopes are abbreviated by 

Ti = (Yi -- y i - i ) / h i .  

4.1. R a t i o n a l  Sp l ines  [10] 

These splines are defined as follows. With rationality parameters a i  _> 0 , . . . ,  an _> 0, set 

(pi-  - Tdv + (Ti - p d  u 
S(X) = y i - l V  + yizt q- 1 -~ ~iUV hiuv,  x E I i ,  i = 1 , . . . ,  n. (4.2) 

We immediately find that  s is always from C i. The interpolation condition (4.1) is satisfied, and 
the parameters P0 . . . .  ,Pn are the unknown first-order derivatives in the nodes; i.e., 

Pi = s'(x~), i = 0 , . . . ,  n. (4.3) 

Further, after some computations, we get that  

( 2 + a i ) p i _ l + p i ~ _ ( 3 + a i ) T i ~ _ p i _ i + ( 2 + ~ i ) p i ,  i = l , . . . , n  (4.4) 

is necessary and sufficient for convexity; see, e.g., [1]. Thus, we are led to a system (3.1),(3.5), 
and the results from Chapter 3 yield the following proposition. 

PROPOSITION 11. For data sets in strictly convex position, c o n v e x  C 1 interpolation with rational 

splines (4.2) is always possible i f  the rationality parameters  a i  = ~ i , . . . ,  an  = ~n are chosen 

according to (3.10). In this case, convex spline interpolants are given by (3.7),(3.9),(4.2). 

4.2. R a t i o n a l  Sp l ines  [9] 

It  is convenient to define these splines by 

s ( x ) = y i - i v + y i u + a i  i + a i u  v +b i  l + / ~ i v  u , x e I i ,  i = l , . . . , n ,  (4.5) 

with rationality parameters a i  _> 0,/~i _> 0 , . . . ,  an ~ 0, f~n > 0. The splines obviously interpolate 
in the sense of (4.1). They are from C i if, using the parameters (4.3), 

ai = hi (3 + &)ri  - (2 + f~i) pi-1 - pi 
aif~i + 2ai + 2f~i + 3 ' (4.6) 

b i = h i  p i - i  + ( 2 + a i ) p i - ( 3 + ~ ) T ~ ,  i = l , . . . , n .  
a~f~i + 2~i + 2f~i + 3 

Convexity is assured if and only if ai > 0, b~ > 0, i = 1 , . . . ,  n, i.e., if 

(2 +/~i) p i - i  + pi _< (3 +/3i) ri, (3 + a~) ri _< p i - i  + (2 + a i )pi ,  i = l , . . . , n .  (4.7) 

Hence, again a system (3.1),(3.5) arises, and Proposition 11 analogously holds for the rational 
splines (4.5),(4.6). 
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4.3. Lacunary Splines [8] 

By means of lacunarity parameters k~ _> 3, li _> 3, these splines are given by 

s (x)  = y , _ i v  + y ,~  + a, (v k, - v) + b, ( ~ ,  - ~ ) ,  x e I , ,  i = 1 , . . . ,  ~.  (4.8) 

While the interpolation condition (4.1) is always satisfied, we obtain C 1 continuity if, using the 
parameters (4.3), 

ai = hi giT~ -- (t~ -- 1)pi-1 --Pi bi = hi P i -1  + (ki  - 1 )p i  - kiTi 
ki£i  - k i  - gi ' kigi - ki  - i i  , i = 1 , . . . ,  n. (4.9) 

Here, the convexity is easily seen to be equivalent to ai >_ O, bi _> 0, i = 1 , . . .  ,n,  i.e., to 

(ei - 1 ) p i - 1  + pi <_ givi, kiTi < Pi -1  + (ki  - 1)pi, i = 1 , . . .  ,n.  (4.10) 

Again, we are led to a system of the type (3.1),(3.5), now with ~ = ki  - 3,/~i = gi - 3. Thus, 
Proposition 11 is analogously valid for the lacunary splines (4.8),(4.9). 

We remark that  it seems to be impossible to extend these results to the convex interpolation 
of C 2 continuity when using the above nonlinear splines on the grid A. 

5.  C O N V E X  C 1, C 2, A N D  C 3 I N T E R P O L A T I O N  W I T H  

S P L I N E S  O N  R E F I N E D  G R I D S  

Another type of nonlinear splines suitable for convex interpolation is splines on grids with 
additional variable nodes. In this way, it is possible to preserve convexity under higher continuity 
than C 1. 

5.1. Q u a d r a t i c  C 1 Spl ines  on  Ref ined  Gr ids  

In [13], quadratic splines are considered on grids/X which originate by adding one node 

~i ~-- /~iXi-1 ~- OliXi, OQ > O, /3~ > O, a i  +/~i = 1 (5.1) 

in each subinterval/~, i = 1 , . . .  ,n. Let Ul = (x  - x i -1 ) / ( c~ ih~) ,  Vl = ( ~  - x ) / ( a i h i )  and u2 -- 
( x  - ~ i ) / ( ~ i h i ) ,  v2 = (x i  - x ) / ( ~ i h ~ )  be the barycentric coordinates on the subintervals [xi-1, ~i] 
and  [~i, xi], respectively. Then, for i = 1 , . . . ,  n, we define 

s ( z )  = y~_l~l  ~ + n , ~  + (2y~_l + ~ h , p ~ _ l )  Ul~ l ,  • e [~_~, ~1, 
(5.2) 

s ( x )  = ~l~v 2 + y iu  2 + (2yi - l~h,p~) u2v2, x • [~,, x~]. 

These splines satisfy the interpolation condition (4.1), and the parameters P0 , . . . ,  Pn again have 
the meaning (4.3). The C 1 property is valid if we set 

71i = s(~i)  = ~ iY i -1  + a~yi + a ~ i h i ( p i - 1  - P i )  i = 1, . .  n.  (5.3) 
, • , 

Further, the splines s are immediately seen to be convex if and only if 

(2 - /~i)Pi-1 +/~iPi  <_ 2vi <_ (1 - / ~ )  P~-I -{- (1 q-/~,)Pi, i = 1 . . . .  , n .  (5.4) 

Thus, we are led to a problem (3.1),(3.11) with M = 2, L = 1. Applying the results of Section 3, 
we get the following proposition. 

PROPOSITION 12. For da ta  s e t s  in  s t r i c t l y  c o n v e x  pos i t ion ,  c o n v e x  C 1 i n t e rpo la t i on  with quad-  

ratic sp l ines  on re//ned gr ids  ~ is  a lways  poss ib l e  p r o v i d e d  the ratios/~1,...,/~,~ are d e t e r m i n e d  

b y  (3.15).  Then, convex sp l ine  in t e rpo]an t s  are  o b t a i n e d  via  (3 .12) , (3 .14) , (5 .3 ) , (5 .2 ) .  
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5.2.  C u b i c  C 2 S p l i n e s  o n  T w o f o l d  R e f i n e d  G r i d s  

In this section, we show how convex interpolants of C 2 continuity can be determined.  To this 
end, we follow [15] where cubic splines on twofold refined grids are used. Analogous results are 
possible with quart ic  C 2 splines on grids with only one additional node in each subinterval  [20]. 
Another  construct ion was recently described in [14]. 

The  refinement A of the original grid A arises by adding two nodes 

= + x i - x  + = % z i - 1  + ( a i  + (5.5) 

in each subinterval  Ii, with ratios ~i > 0,/~i > 0, 7~ > 0, and a~+f~i+7i = 1, i = 1 , . . . ,  n. This  im- 

plies ~ i o - x i - 1  = a~hi, ~ i l -~ io  = Bihi, and x i - ~ i l  = %hi. On the  subintervals [X~-l, ~io], [~io, ~il] 
and [~il, xi], we introduce baxycentric coordinates by ul  = ( x - z i - 1 ) / ( a i h i ) ,  Vl = ( ~ i o - x ) / ( a i h i ) ,  

u2 = (x  - ~io)/(/~ihi),  v2 = (~il -- x ) / ( ~ i h i ) ,  and u3 = (x - ~ l ) / ( ? i h i ) ,  v3 = ( X i  - -  x ) / ( ' y ih i ) ,  re- 
spectively. Then,  we can define cubic splines s o n / ~  by 

8(x) = y i_ l  v3 -4- 7~i0 u3 -4- (ai~tl + biVl) UlVl,  x • [xi-1,  ~io], 

s ( x )  = rhoV 3 + r}ilU 3 -4- (a/u2 + div2) u2v2, z • [~io, ~il], (5.6) 

s (x )  -- Wily 3 -4- yi u3 + (eiu3 4- f i r3)  u3v3, x • [~il, xi], 

i = 1 , . . . ,  n. Obviously, these splines are continuous and satisfy the  interpolat ion condit ion (4.1). 

In the  case 
bi = 3yi-1 + aih~pi-1 ,  e~ = 3yi - ?ihipi ,  

aidi  + ~iai ~if i  + 7ici (5.7) 
rIi0 = 3(ai  + f~i) ' r/~l = 3(f~i + ~/~) ' i = 1 , . . . ,  n, 

the  splines easily tu rn  out  to be in C 1 , and the parameters  P 0 , . . . ,  P~ again are the first derivatives 
in the nodes; i.e., (4.3) holds. Further ,  if we set 

2 2  2 ~  
c~i hi D 

ai = 3y i -1  + 2 a i h i p i - 1  + T r i - 1 ,  f i  = 3yi - 27ihipi  + Pi, 

ci = ~ i  ((1 - ~/i) ai - /~ibi)  + 1 - 7i ((1 - a i )  f~ - /~ ie i ) ,  (5.8) 

di = 1 -  c~i ( ( 1 -  7~ ) ai - /~ib~ ) + ~ ( ( 1 -  a i  ) f i - /~iei i = l ,  . . . , n,  

the  C 2 p roper ty  is direct ly verified when the equalities 

+ - f 2bi + - + Zi)d  = 0, 

(~i + %)Tici - "~d~ +/~2ei - f~i(f~i + 7 i ) £  = 0 

(being equivalent with the lat ter  two of (5.8)) are used. The  parameters  P o , . . - ,  P= are the  
second-order derivatives in the nodes 

Pi = s " ( x i ) ,  i = 0 , . . . ,  n. (5.9) 

The  convexity of the cubic splines (5.6)-(5.8) is obviously equivalent to  s"(x~)  >_ O, i = 0 , . . . ,  n,  
s"(~io) > O, s ' ( ~ i l )  > O, i = 1 , . . . ,  n. Hence, we get the necessary and sufficient convexity 
condit ions 

P i > O ,  i = O , . . . , n ,  

3Ti - -  (1 + 2ai  + f ~ i )  P i - 1  - -  (2 - 2ai  - f~i) Pi 

a i (2  - ~/~) hiP~- i  + (1 - ai)"/~ hiP~ > O, (5.10) 
2 2 - 

- 3 r i  + (2 - 2~i - ~ )  Pi-1 + (1 + 2~/i + f~i) Pi 

+ (1 - %)c~i h iP i -1  %(2 - a i )  h iPi  >_ O, i = 1 , . . . ,  n.  
2 2 
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Now, to  prove the existence of  convex C 2 interpolants,  the choice 

Ps = 0, i = 0 , . . . , n  (5.11) 

is admissible. Further,  if we assume/3i = 7i, i = 1 . . . ,  n, the system (5.10) reduces to  

(3 - 3fli) Ps-1 + 3/3sPi _< 3TS < (2 -- 3~s)Pi-1 + (1 + 3/3i) Pi, i = 1 , . . .  ,n.  (5.12) 

Hence, we obta in  a problem (3.1),(3.11) with M = 3, L = 3. The  considerations of  Section 3 
now lead to the following proposition. 

PROPOSITION 13. Let  the da ta  set be in strictly convex position. Then, convex C 2 interpolation 
wi th  cubic splines on twofold refined grids is always successful i f  the ratios/31 = "[1,...  ,/3n = 

7n • (0, 1/2) are computed  by (3.15), and a l  = 1 - 2/31, . . . ,  aN = 1 - 2/3~. Convex interpolants 
can then be determined by using the formulae (3.12), (3.14), (5.11), (5.6)-(5.8). 

Note  t h a t  this smooth  result is not  possible if a i  = 7i, i = 1 , . . .  ,n,  is set [21]. 

5.3.  Q u a r t i c  C 3 Sp l ines  o n  T h r e e f o l d  R e f i n e d  Grids  

I t  is even possible to  retain convexity under  C 3 continui ty [18]. This can be achieved using 

quar t ic  splines on refined grids with three additional nodes 

(io = (3s + "is + 5s) xs-1 + aixs,  

~il 7_ (~S ~- ~i) X i - 1  -t- (Olin t- /3i) Xi, (5.13) 

~i2 -~ 5sXi-1 q- (OLS q- /3S "~- "~i) Xi 

in each subinterval Is, i = 1 , . . . ,  n. The  ratios as,/3i,  "Yi, 5i are assumed to  be positive, and 

a i  + t3 /+  ~s + 5i -- 1. Moreover, for simplification, we set/3i = ~s = 5i, i = 1 , . . . ,  n. As before, 
we use barycentr ic  coordinates  ul ,  Vl, u2, v2, u3, v3, and u4, v4 in order to  describe the  splines s 

on the  subintervals [xi-1, ~io], [~io, ~sl], [~il, ~i2], and [~s2, xs], respectively, 

8(X)  4 4 (a iu2  biUlVl  Ciy21) X , = Y i - l V l  ~- ?~S0Ul ~- ~- -t- UlVl, C [Xi-1 ~S0], 

s(x)  = rlsoV 4 + rhlu42 + (dsu~ + esu2v2 + fiv22) u2v2, x • [~i0, ~sl], 
(5.14) 

8(X) -~ ?TSl v4 -t- 7]i27~43 ~- (gi u2 ~- Jiu3V3 ~- ki  v2)  U3V3, X • [~Sl, ~S2], 

8(X) ---- ?]s2V 4 ~- ys u4 Jr (eiU24 "~- m s u 4 V  4 ~- n s v  2) "34v4, x • [~i2, xi], 

i = 1 , . . . ,  n. These splines are in C 3 if we set 

ai = 4ys-1 + 3aihips-1 + ai  hs pi_ 2 + a3h3Gs-16 ' 

2 2  
bi = 6yi-1 + 3aihipi -1  + a i h i P i - 1 ,  

2 

ci = 4yi-1 + aihip~-1, (5.15) 

ls = 4yi - /3ihiPs,  
2 2 

mi = 6y~ - 3/3ihip~ + 13s hi Pi 
2 

~3h3 G 2 2 t-'S i z 
ni = 4yi - 3/3ihipi +/3i hi Pi 6 ' 

31-415-G 
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and 

~3i (3 (1  - 2B~)(5  - 3f~i) a i  - 2/~i(11 - 1 5 ~ )  bi + 18f~2ci)  a 2 ( 6 g i  - 1 4 m {  + 1 8 h i )  
f~ = 3ai(l - j3i) + 3(1 - /3 i )  ' 

Zi (3 (1  - 2Z )(1 ai  - 2Z i (3  - 5Z ) + 6Z ci) 

gi = 9a~ 

+ 2(3(1 - /~i)  gi - (9 - 7/3i) m i  + 3(5 - 3/3i) ni) 
9 ' (5.16) 

di = -2f~i(1 - 2/3i)2ai + 2fl2(1 - 2/3i) bi - / y3c i  + ai(1 - 2fli)2 f i  
3 

-3f~i(1 - 2j3i) ai + 2fl~bi + 3ai(1 - 2f~i) f/ 
e i  = 2013 , 

j~ = mi  - 3n~ + 3gi, ki = - £ i  + 4m~ - 8ni + 4g~, 

and 
13~ai + a i f i  di + ki gi + ni 

~]io-- 4(ai+/~i)'  71~i= 8 ' ~i2= 8 (5.17) 

We verify the interpolation condition (4.1), and the parameters Pi, Pi, and Gi are the derivatives 
(4.3),(5.9), and 

a i  = s" ' (x i ) ,  i = 0 , . . . ,  n. (5.18) 

Under the assumption 

Pi = Gi = O, i = O , . . . , n ,  (5.19) 

a condition sufficient for convexity is derived to read 

( 4 - - 6 f l i ) p i _ l  +613ipi <_4Ti <_ (3 - -6 t3 i )p i_ l  + ( l  +6 f l i )p i ,  i =  l , . . . , n .  (5.20) 

This is a system (3.1),(3.11) with M = 4, L = 6, t reated in Section 3. Thus, we find the following 
proposition. 

PROPOSITION 14. For s tr ic t ly  convex  data sets, convex C 3 interpolation wi th  quart ic  splines on 

threeEold refined grids is always possible i f  the ratios j3i = ~i = 6i E (0, 1/3) are chosen according 

to (3.15), and a~ = 1 - 313i, i = 1 , . . .  ,n .  For comput ing  convex interpolants,  we can then use 
the formulae (3.12), (3.14), (5.19), (5.14)-(5.17). 

6.  C O N C L U D I N G  R E M A R K S  

There are further methods for finding suitable nonlinearity parameters,  One of these procedures 
is as follows (compare with [1,22]). At first determine values P 0 , p l , . . .  ,Pn such tha t  

Po < ":1 < Pl < " "  < Pn-1 < T~ < Pn (6.1) 

holds. In view of (3.6), this is always possible. One particular choice is 

h i r i + l  + h i + l T i  i = 1 , . . . ,  n -- 1, PO = 2rl -- Pl, p,~ = 2r,~ -- P,~-I. (6.2) 
Pi = hi + hi+l ' 

Then solve the separable inequalities (3.1),(3.5) for ai ,  f~i or (3.1),(3.11) for f~i, i = 1 , . . .  ,n.  In 
the first case, the result is 

{ 3,i  -= pi-_~l =- 2pi } B i > m a x { o ,  2 P , _ l + p A : 3 " r i }  (6.3) 
a i  >_ m a x  O, P i  - -  "ri ' - -  "ri - -  P i - 1  ' 
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and in the second case, we have 

( { M(Ti-pi)'~-pi-I-pi -Pi-1) {M 1 M(Ti--Pi) }) 
/3+ E max 0, , min ~ 'L-~i- -pi - -T)  . (6.4) 

In the staircase algorithm (3.2), the recursion runs forward from + = 1 to i -- n. It is possible 
to organize this algorithm also in a backward form, or in mixed forms. In these ways, algorithms 
arise being somewhat different from the algorithms (3.7),(3.9) and (3.12),(3.14). From a numerical 
point of view, it seems not to be essential which form is used. 

In the next remark, we assume that  the nonlinearity parameters are fixed if once determined by 
one of the methods described above. Then the formulae (3.9) or (3.14) can be applied in order +o 
choose the first derivatives P0 , . . - ,  Pn, while the higher order derivatives, if needed, can be taken 
equal to zero. However, visually more pleasing interpolants in general are obtained by varying 
the derivatives P0, P0, G o , . . . ,  Pn, Pn, G,+ within the convexity constraints. In our computational 
tests, we preferred an automatic choice based on the minimization of an objective function like 
the Holladay functional 

ab s"(x) 2 dx (6.5) 

(minimization of the mean curvature). The constraints are the convexity conditions, for instance 
(5.10), if cubic C 2 splines on twofold refined grids are applied. 

One of the data  sets used for test purposes is 

{(+ + 1) ( n -  1)(n +2) 
x+=i,  i = O , . . . , n ,  Y~-- 2 , i = O , . . . , n - 1 ,  Yn= 2 +M,  (6.6) 

with M _> 0 (Example 1). When considering the spline curves in Figures 1 and 2, it is difficult 
to observe differences. However, the curves of the second order derivatives show the usefulness 
of the optimization approach. 

10  3.5 

9 Sl / 
3 t I .~  . . . . .  

I I. r 
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7 2 .5  J i I 
l i  I 

l i  
I '  
i. I 

6 2 l/ 
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5 j 
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1.5 Jt ,,'I 
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0.5 ~ I / ~  

1 2 3 4 1 2 3 4 

Figure  1. Example  1 w i t h  M = 0.175; p~ according to (3.9), Pi = 0 (i = 0 , . . .  ,4);  
spl ine (solid), first der ivat ive  (dashdot) ,  second der ivat ive  (dashed).  
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Figure 2. Example 1 with M = 0.175; Pi,Pi (i = 0 , . .  ,4) by curvature minimiza- 
tion according to (6.5); spline (solid), first derivative (dashdot), second derivative 
(dashed). 
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