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The paper contains some basic results from “dart calculus” of induced' subsets. We obtain as
their consequence a r:egative answer to Hajnal’s hypothesis:
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Hajnal proposed the symt ol (m k)-—>(p, q) to denote the u'uth of the state-
ment:

Given k distinct subsets A,,...,A; of an m-set S (that is, a set of m
elements), there exists 2 p-subset P of S such that the fannly {5 nP} (I=<si<k)
contains at least g distinct members. - : :

Using this dart notation Sauer’s result [3] has the form:

(m, 1+i§ ( ))-4(n, 2"). | (1)

By Erdos the density of a hypergraph G =(S, o) is. , the max*:mal ‘cardinality of
the set V< S for whlch

That is, the densxty of a hypergraph with 1+ -3 (™) edges-is at least n.
Hajnal suggested a nice possible: generalxzatxon of (l), namely

(HH) (m,1+:§( )) (m 1, 1+"2",1 (m 1)) if m>n.

If true, this need simply be applied m—n times to yield Sauer’s result.
Unfortunately, one of the results (Theorem 1) of our paper glves the negative
answer to Hajnal’s hypothesis (HH).
At first we prove the Principle of Duahty of this “dart calculus”.

Pmposiﬁon 1. Let m, p, q be naturals. Then ,
(m,p)— (m—1,9) iff (m,2"—p)>(m-1,2""~p+q).

Proof. (I) Let (m, p)— (m—1, q) and ¥ be an arbitrary family of 2™ —p subsets
of the m-set S.
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By the hyrothesis there exists sore (m —1)-set P such that at most p —q sets of
the family & (complemeat of %) have the property

BeF and {BU{x}}e% where x¢P.

From this we have that the family {# N P} contains at least 2™ —(p —q) distinct
sets, because either B € & or {B U{x}}e & besides at most p —q sets. The proof of
the first part is finished.

(I1) Substitute in the previous 2 -p for p and 2" '—(p—q) for q and
calculate:

From (m,2™ —p)—(m—1,2""'—(p—q)) we have

(m,2m—Q2"-p)=(m,p)—>(n-1,2"""'-Q"-p-2" "' -(p—q)))
=(m-1,q)
and the proof is completed.

From this Principie of Duality as 4 consequence one can easily obtain Bondy’s
result [1] (which he proved by a graph theoretical argument) namely,

(mn)—->(m-1,m.

Corollary. (m, m)— (m—1,m) iff (m,2™-—m)—>(m—1,2""1).

Prcof. On the right hand there is a Sauer’s result (1) for m—1=n and the
Principle of Duaality implies the equivalence.

Define the labeled graph G, as follows: the vertices of Gy are the subsets
Ay, ..., A, e of the m-set S; and A, is joined to A; {i# j) by an edge labeled x
if either A, = A; U{x} or A, = A, U{x}.

Let 3 be a family of all subsets of the m-set S. Then Gg is an m-dimensional
labeled cube C,, and for every of = &, G4 is an induced subgraph of C,,.

Now let F(m, t) be the smallest number of the vertices of a subgraph of C,, in
which every x occurs at least ¢ times. Then the following is true:

Proposition 2. L2t m, t be naturals, t be a power of two and log, 2t divides m. Then

m(2t-1)

Fim, i)<1+ .
(m ) 10g22t

Proof. Diecompose the m-set S into mflog, 2t disjoint subsets S;. Each of them
generates a subcube with 2t vertices. These subcubes have the empty set as a
common vertex in a graph induced by a system of all subsets of the sets S;, and so

m(2t— 1_f[
log, 2t

Fim )1+

I

because cvery x occurs exactly t times in each graph constructed like that. The
proof is completed.
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If (HH) is true, then for every subgraph G, of the cube C,, which has
1+3"72 (™) vertices each x occurs in G, at most

E ([ E () () e

i=0 i=0 i=1

Calculate:

F(m, 1+ ):

i=1

r.. n—1
(")) <Fom 2z n<mE= N e
1 r log, m

where r is the smallest natural number for which

1+ Z( D=2

C is some constant and n =3 is fixed.
On the other hand 1+Y'=} (7)~C,m""! and we prove

Theorem 1. If 3<n<m—2 then for every such n there exists a sufficiently large
m, such that for every m=m,

e ()4 o ()

Example. Let n=3 and m = .3. Then from (HH) we have:

15
2

However, F(15,16)<94 (Proposition 2). Since F(15,16)=<122 there exists a
family o of 122 subsets of 15-set S such that every x € S o:curs in G4 at least 16
times.

That is, there exist at most 122—16 =106 distinct sets in the family {ANP},
where P is an arbitrary 14-subset of S.

So we obtain a counterexample to (HH) also for small m.

(15, 1+1+15+ ( )) =(15,122)—> (14, 1+1+14+ (124)) = (14, 107).

For the following results we will use Burtin’s result [2]. He proved that G4 on p
vertices has at most 3p log, p edges. The equality is valid for subcubes or'y.

Theorem 2. Let m =2, p be naturals and p<2". Then

(m, p)— (m - 1;]p(1 *l—o,;“;fl-g)[ \

where ]x[ is the post office function.
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Proof. Since

] (1 _log, p)[ . {p logzg]
-p 2m ¥ 2m 1

take q such that

_Iplog;p
= 2m

where [x] is the greetest integer less or equal to x. Then

g>Rlomr.

2m L,

which implies
iplog, p<im(q+1).
From this inequality and Burtin’s result we have: for every Gy on p vertices

there exists at least one x which occurs in G, at most q times.
That is, (m, p) — (m —1, p—q) and the proof is finished.

There exist examples for which these results are best possible. Still it is not clear
how sharp the results actually are.

References

[1] J.A. Bondy, Induced subsets, J. Combinatorial Theory (B) 12 (1977) 201-202.

[2] 1.D. Burtin, O verojatnosti svjaznosti slu¢ajnogo podgrafa n-mernogo kuba, Problemy Peredati
Inf. (13) (2) (1977) $0-95.

[3] N. Sauer, On the density of famlies of sets, J. Combir atorial Theory (A) 12 (1972) 145-147.



