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The paper conttiss some basic results from “dart calculus” of Inducec! subsets. We obtain as 
their consequence a 1:egative answer to Hajnal’s hypothesis: 

Hajnal proposed the symk 01 (m, k) --, (P;c~) to denote the truth of the state- 
merrt: 

Given k distinct subsets A t,. . * ) AI, of an m-set S (thxt is, a set of m 
elements), there exkts 2 ,n-&set P of S sbWU unL that the family {,$ npj, (1~ i s k) 
contains at least q distinct member% 

Using this dart notation Sauer’s result. [3] -has the form: 

(m, 1+;$ (34% 2% W 

By Erdiis the density of a hypergraph G = (S, a$> is the maxk.xal cardinal&y of 
the set Vc S for which 

card{“.v:O &.I = 2-v, 

That is, the de&ty &? a hypergraph with 4 -kc.; ty) ec’ges-is at least yt. 
Hajnal suggest&l a n&e po&bk generalization of (Q, namely 

(WI-I) (in. I+$; (I))-(m-1,1+;$ (“i”)) if m>n. -_ 

If true, this need simply be applied pn - n times to yield Sauer’s remlIt. 
Unfortunately, one of the results (Theorem 1) of our paper gives the 

answer to Hajnal’s hypothesis (MH). 
At &sl: we prove Ithe Principle of Duality of this “dart calculus”. 

on 11, Let m,p,q be naturals. Then 

hP)-+(~~ -1,q) if (m,2”-p)-,(m-3.,2”-1-p+q). 

negatk 

prad, (I) Let (yn, g) + (m - 1, q) and qC; be an arlbitrwy family of 2” -- p subsets 
of the m-set 5. 
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By the hypothesis then: exists some (m - I)-set P such that at most p - q sets of 

the family 8’ (complemeilt of 9) have the property 

I? E g and (B U(x)) E g, where x6 P. 

From this we have that the family (Z% (3 P) contains at least 2”’ - (p - q) distinct 
sets, because either I3 E 9 or (B U {x):}E s besides at most p - q sets. The proof of 
the first part is finished. 

(II) Substitute in the previous 2”’ - p for p and 2”-l- (p -4) for q and 
calculate: 

From (m, 2” - p) --) (m - 1, 2m-1 - ip -4)) we have 

(m,2”1 -(2m-P))=(m,p)-+(m-1,2m-1-(2m-p-(2”-’-(p-q)))) 
= (m - 1,q) 

and the proof is completed. 

From this Principle of Duality as a consequence one can easily obtain Bondy’s 
result [l] (which he 3proved by a graph theoretical argument) namely, 

(In, n) -+ (m - 1, m‘). 

corollary. (m, m) -+ (m - 1, m) iff {m, 2” - m) + (m - 1, 2m-1). 

P Ki-h. e On the right hand there is a Sauer’s result (I) for m - 1 = R and the 
Principle of Duality implies the equivalence. 

Define the labeled graph Gd as follows: the vertices of Gti are the subsets 

4, * * -, A, E .d of the m-set S; and Ai is joined to Aj (i # i) by an edge labeled x 
if either Ai = Aj U(X) or Aj = Ai U(X). 

Let 93 be a family of all subsets of the m-set S. Then Gss is an m-dimensional 
labeled cube Cm and for every Se c 9, G& is an induced subgraph of C,. 

Now let F(m, t) be the smallest number of the vertices of a subgraph of C,, in 
which every x occurs at least t times. Then the following is true: 

Proposition 2- Let m, t b&b naturtnls, t be a power of two and log, 2t divides m. ‘Then 

F(m, t)<l+ 
m(2t-1) 

log, 2t .. 

Proof. Decompose the m-set S into m/log 2 2t disjoint subsets Si. Each of them 
generates a subcube with 2t vertices. These subcubes have the empty set as a 
common vertex irk 3 graph induced by a system of all subsets of the sets S,, and so 

F( m, t) G 1 -t 
m(2t - 1) 

log, 2t--’ 

because every x occurs exactty t times in each graph ccsnstrxted like that. The 
proof is completed. 
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If (HI-I) is true, then for every subgraph Gd of the cube C, which has 

1 +Cr-,’ (y) vertices each x occurs in Gsd at most 

Calculate: 

where P is the smallest natural number for which 

C is some constant and L 2 3 is Exed. 
0n the other hand l+~~Z~ (7) - C,m”” and we prove 

Theorem 1. If 3 s n s m - 2 hen for every such n there exists a sz@kitmtly large 
m. such that for every m 3 m() 

(m,l+;g (Y))% (m-191+;; (“-‘)). 
@kuqIe, Let n = 3 and m -2 ,Z. Then from {I-M) we have: 

( 15,1+1-r-15+ Q)=(lS, 122)+ (14,1+1+14+(124))==(14,107). 

However, F(l5,16)s94 (proposition 2). Sjince F(15,16) 6 122 there exists a 
family & of 122 subsets of IS-set S such that every x E S o :curs in Gs9 at least 16 
times. 

That is, there exist at most 122 - 16 = 106 distinct sets in the family (Se n P), 
where P is an arbitrary 14-subsea of S. 

So we obtain a counterexample to (EM) also for small m. 

For the following results we wiU use Burtin’s result [2]. He proved that Gd on y 
vertices has at most $ip log, p edges. The equality is valid for subcubes OT’V. 

2. 

(m: 

where ]x[ is 

Let m * 2, p be naturds and p 6 2”. Then 

p)-+ (m-l;]P(l-y)[ -Jp 
the post office f&n&on. 
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Proof. Since 

take 4 such that 

w:here [X ] is the greci test integer less or equal to x. Then 

which implies 

;p log, p -c m(q + 1). 

Front this inequality and Burtin’s result we have: for every G& on p vertices 
there exists at least one x which occurs in G& at most q times. 

That is, (m, pJ + (m - I? p -4) and the proof is finished. 

There exist examples for which these results are best possible. Still it is not clear 
how sharp the rc.suCts actually are. 
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