Berezin symbol and invertibility of operators on the functional Hilbert spaces

Mubariz T. Karaev
Suleyman Demirel University, Isparta (MYO) Vocation School, 32260 Isparta, Turkey
Received 7 June 2005; accepted 24 April 2006
Available online 16 June 2006
Communicated by Paul Malliavin

Abstract

We give in terms of reproducing kernel and Berezin symbol the sufficient conditions ensuring the invertibility of some linear bounded operators on some functional Hilbert spaces. © 2006 Elsevier Inc. All rights reserved.

Keywords: Hardy space; Bergman space; Toeplitz operator; Berezin symbol; Reproducing kernel

1. Introduction

Let \mathbf{T} be the unit circle $\mathbf{T}=\{\zeta \in \mathbf{C}:|\zeta|=1\}, \varphi \in L^{\infty}=L^{\infty}(\mathbf{T})$, and let T_{φ} be the Toeplitz operator acting in the Hardy space $H^{2}(\mathbb{D})$ on the unit disc $\mathbb{D}=\{z \in \mathbf{C}:|z|<1\}$ by the formula $T_{\varphi} f=P_{+} \varphi f$, where P_{+}is the Riesz projector. Let $\tilde{\varphi}$ denote the harmonic extension of the function φ to \mathbb{D}. In [5] Douglas posed the following problem: if φ is a function in L^{∞} for which $|\tilde{\varphi}(z)| \geqslant \delta>0, z \in \mathbb{D}$, then is T_{φ} invertible?

In [18] Tolokonnikov firstly gave a positive answer to this question under the condition that δ is near enough to 1 , namely, he proved that if

$$
1 \geqslant|\tilde{\varphi}(z)| \geqslant \delta>\frac{45}{46}, \quad z \in \mathbb{D},
$$

then T_{φ} is invertible and

$$
\left\|T_{\varphi}^{-1}\right\| \leqslant(1-46(1-\delta))^{-1}
$$

[^0]This assertion was also proved by Wolff [19]. Nikolskii [15] has somewhat improved the result of Tolokonnikov proving invertibility of T_{φ} and the estimate

$$
\left\|T_{\varphi}^{-1}\right\| \leqslant(24 \delta-23)^{-1 / 2}
$$

under condition $\delta>23 / 24$. Finally, Wolff [19] has constructed a function $\varphi \in L^{\infty}$ such that $\inf _{\mathbf{D}}|\tilde{\varphi}(z)|>0$ but the corresponding operator T_{φ} is not invertible, and thus showed that the answer to the question of Douglas is negative in general. Since $\tilde{\varphi}$ coincides with the Berezin symbol \widetilde{T}_{φ} of the operator T_{φ} (see Lemma 2.1), in this context the following natural problem arises.

Problem 1. Let A be a linear bounded operator acting in the functional Hilbert space $\mathcal{H}(\Omega)$ of complex-valued functions over the some (non-empty) set Ω, such that $|\widetilde{A}(z)| \geqslant \delta$ for all $z \in \Omega$ and for some $\delta>0$. To find the number δ_{0}, which can be (more or less) easily computed from the data of A, and due to which the inequality

$$
|\widetilde{A}(z)| \geqslant \delta>\delta_{0}, \quad z \in \mathbf{D}
$$

ensures the invertibility of A, where \widetilde{A} denotes the Berezin symbol of the operator A.
In particular, the following problem is also interesting, which is closely related with the finite section method of Böttcher and Silbermann [3].

Problem 2. Let $E \subset \mathcal{H}(\Omega)$ be a closed subspace of the functional Hilbert space $\mathcal{H}(\Omega)$, and let A be a linear bounded operator acting in $\mathcal{H}(\Omega)$ such that

$$
|\widetilde{A}(z)| \geqslant \delta
$$

for all $z \in \Omega$ and for some $\delta>0$. To find a number δ_{0}, such that $\delta>\delta_{0}$ ensures the invertibility of operator $P_{E} A \mid E$ (the compression of the operator A to the subspace E), where P_{E} is an orthogonal projection from $\mathcal{H}(\Omega)$ onto E.

In this article we solve these problems in some special cases. Our argument uses the concept of reproducing kernel and Berezin symbol.

2. Notations and preliminaries

2.1. Recall that a functional Hilbert space is a Hilbert space $\mathcal{H}=\mathcal{H}(\Omega)$ of complex-valued functions on a (non-empty) set Ω, which has the property that point evaluations are continuous (i.e., for each $\lambda \in \Omega$, the map $f \rightarrow f(\lambda)$ is a continuous linear functional on \mathcal{H}). Then the Riesz representation theorem ensures that for each $\lambda \in \Omega$ there is a unique element k_{λ} of \mathcal{H} such that $f(\lambda)=\left\langle f, k_{\lambda}\right\rangle$ for all $f \in \mathcal{H}$. The collection $\left\{k_{\lambda}: \lambda \in \Omega\right\}$ is called the reproducing kernel of \mathcal{H}. It is well known (see, for instance, [8, Problem 37] that if $\left\{e_{n}\right\}$ is an orthonormal basis for a functional Hilbert space \mathcal{H}, then the reproducing kernel of \mathcal{H} is given by

$$
k_{\lambda}(z)=\sum_{n} \overline{e_{n}(\lambda)} e_{n}(z)
$$

For $\lambda \in \Omega$, let $\hat{k}_{\lambda}=\frac{k_{\lambda}}{\left\|k_{\lambda}\right\|}$ be the normalized reproducing kernel of \mathcal{H}. For a bounded linear operator A on \mathcal{H}, the function \widetilde{A} defined on Ω by

$$
\widetilde{A}(\lambda)=\left\langle A \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle
$$

is the Berezin symbol of A, which firstly have been introduced by Berezin [1,2]. It is clear that the Berezin symbol \widetilde{A} is the bounded function on Ω whose values lies in the numerical range of the operator A, and hence

$$
\begin{aligned}
\sup _{z \in \mathbb{D}}|\tilde{A}(z)| & \stackrel{\text { def }}{=} \operatorname{ber}(A) \quad \text { ("Berezin number") } \\
& \leqslant w(A) \quad \text { (numerical radius). }
\end{aligned}
$$

More typical examples of functional Hilbert spaces are the Hardy and Bergman spaces.
2.2. Let $d m_{2}$ denote Lebesgue area measure on the unit disk \mathbb{D}, normalized so that the measure of \mathbb{D} equals 1 . The Bergman space $L_{a}^{2}=L_{a}^{2}(\mathbb{D})$ is the Hilbert space consisting of the analytic functions on \mathbb{D} that are also in $L^{2}\left(\mathbb{D}, d m_{2}\right)$. For $z \in \mathbb{D}$, the Bergman reproducing kernel is the function $k_{\lambda} \in L_{a}^{2}$ such that $f(\lambda)=\left\langle f, k_{\lambda}\right\rangle$ for every $f \in L_{a}^{2}$. It is well known that $k_{\lambda}(z)=\frac{1}{(1-\bar{\lambda} z)^{2}}$. The normalized Bergman reproducing kernel \hat{k}_{λ} is the function $\frac{k_{\lambda}}{\left\|k_{\lambda}\right\|_{2}}=\frac{1-|\lambda|^{2}}{(1-\bar{\lambda} z)^{2}}$.

The Hardy space $H^{2}=H^{2}(\mathbb{D})$ is the Hilbert space of analytic functions $f(z)=\sum_{n \geqslant 0} a_{n} z^{n}$ defined in the unit disc $\mathbb{D}=\{z \in \mathbf{C}:|z|<1\}$, such that $\sum_{n \geqslant 0}\left|a_{n}\right|^{2}<\infty$. Alternately, it can be identified with a closed subspace of the Lebesgue space $L^{2}=L^{2}(\mathbf{T})$ on the unit circle, by associating to each analytic function its radial limit. The algebra of bounded analytic functions on \mathbb{D} is denoted by H^{∞}. Any $\varphi \in H^{\infty}$ acts as a multiplication operator on H^{2}, that we will denote by T_{φ}.

Norm and inner product in L^{2} or H^{2} will be denoted by $\|\cdot\|$ and $\langle\cdot, \cdot\rangle$, respectively. Evaluations at points $\lambda \in \mathbb{D}$ are bounded functionals on H^{2} and the corresponding reproducing kernel is $k_{\lambda}(z)=\frac{1}{1-\overline{\lambda z}}$; thus, $f(\lambda)=\left\langle f, k_{\lambda}\right\rangle$. If $\varphi \in H^{\infty}$, then k_{λ} is an eigenvector for T_{φ}^{*} and $T_{\varphi}^{*} k_{\lambda}=$ $\overline{\varphi(\lambda)} k_{\lambda}$. By normalizing k_{λ} we obtain

$$
\hat{k}_{\lambda}=\frac{k_{\lambda}}{\left\|k_{\lambda}\right\|}=\sqrt{1-|\lambda|^{2}} k_{\lambda}
$$

2.3. The Berezin symbol have been investigated in detail for the Toeplitz and Hankel operators on the Hardy and Bergman spaces; it is widely applied in the various questions of analysis (see, for instance, $[9-14,16,17,20]$). In particular, it is known (see [11,20]) the following result which we will use in what follows.

Lemma 2.1. The Berezin symbol \widetilde{T}_{φ} of the Toeplitz operator $T_{\varphi}, \varphi \in L^{\infty}$, on the Hardy space H^{2} coincides with the harmonic extension $\tilde{\varphi}$ of the function φ into the unit disc \mathbb{D}, that is $\widetilde{T}_{\varphi}(\lambda)=$ $\tilde{\varphi}(\lambda)$ for all $\lambda \in \mathbb{D}$.

Suppose now θ is an inner function. We define the corresponding model space by the formula $K_{\theta}=H^{2} \ominus \theta H^{2}$.
2.4. We recall some basic definitions concerning geometric properties of sequences in a Hilbert space. For most of the definitions and facts below, one can use $[7,15]$ as a main references (see also [4,6]).

Let H be a complex Hilbert space. If $\left\{x_{n}\right\}_{n} \geqslant 1 \subset H$, we denote by $\operatorname{span}\left\{x_{n}: n \geqslant 1\right\}$ the closure of the linear hull generated by $\left\{x_{n}\right\}_{n} \geqslant 1$. The sequence $X \stackrel{\text { def }}{=}\left\{x_{n}\right\}_{n} \geqslant 1$ is called:

- complete if $\operatorname{span}\left\{x_{n}: n \geqslant 1\right\}=H$;
- minimal if for all $n \geqslant 1, x_{n} \notin \operatorname{span}\left\{x_{m}: m \neq n\right\}$;
- uniformly minimal if $\inf _{n \geqslant 1} \operatorname{dist}\left(\frac{x_{n}}{\left\|x_{n}\right\|}, \operatorname{span}\left(x_{m}: m \neq n\right)\right)>0$;
- a Riesz basis if there exists an isomorphism U mapping X onto an orthonormal family $\left\{U x_{n}: n \geqslant 1\right\}$;
- the operator U will be called the orthogonalizer of X.

The expression "a Riesz basis in H " means a Riesz basis X with the completeness property $\operatorname{span}(X)=H$. It is well known that X is a Riesz basis in its closed linear span if there are positive constants C_{1}, C_{2} such that

$$
\begin{equation*}
C_{1}\left(\sum_{n \geqslant 1}\left|a_{n}\right|^{2}\right)^{1 / 2} \leqslant\left\|\sum_{n \geqslant 1} a_{n} x_{n}\right\| \leqslant C_{2}\left(\sum_{n \geqslant 1}\left|a_{n}\right|^{2}\right)^{1 / 2} \tag{1}
\end{equation*}
$$

for all finite complex sequences $\left\{a_{n}\right\}_{n} \geqslant 1$. Note that if U is an orthogonalizer of the family X then the product $r(X) \stackrel{\text { def }}{=}\|U\|\left\|U^{-1}\right\|$ characterizes the deviation of the basis X from an orthonormal one and $\|U\|^{-1}$ and $\left\|U^{-1}\right\|$ are the best constants in the inequality (1); $r(X)$ will be referred to as the Riesz constant of the family X. Obviously, $r(X) \geqslant 1$.

We now recall some well-known facts (see [15]) concerning reproducing kernels in H^{2}. Let $\Lambda=\left\{\lambda_{n}\right\}_{n} \geqslant 1$ be a sequence of distinct points in \mathbb{D}. Then we have:
(i1) $\left\{k_{\lambda_{n}}\right\}_{n \geqslant 1}$ is minimal if and only if $\left\{\lambda_{n}\right\}_{n \geqslant 1}$ is Blaschke sequence (which means that $\left.\sum_{n \geqslant 1}\left(1-\left|\lambda_{n}\right|\right)<\infty\right)$. As usual, we denote by

$$
B=B_{\Lambda}=\prod_{n \geqslant 1} b_{\lambda_{n}}, \quad \text { where } b_{\lambda_{n}}(z)=\frac{\left|\lambda_{n}\right|}{\lambda_{n} \mid} \frac{\lambda_{n}-z}{1-\overline{\lambda_{n}} z} .
$$

(i2) If $\left\{\lambda_{n}\right\}_{n \geqslant 1}$ is a Blaschke sequence, then $\left\{k_{\lambda_{n}}\right\}_{n \geqslant 1}$ is complete in K_{B}.
(i3) $\left\{\hat{k}_{\lambda_{n}}\right\}_{n \geqslant 1}$ is a Riesz basis of K_{B} if and only if it is uniformly minimal which is equivalent to $\left\{\lambda_{n}\right\}_{n} \geqslant 1$ satisfies the Carleson condition

$$
\inf _{n \geqslant 1}\left|B_{n}\left(\lambda_{n}\right)\right|>0,
$$

where $B_{n}=B / b_{\lambda_{n}}$; we will write in this case $\left\{\lambda_{n}\right\}_{n \geqslant 1} \in(\mathrm{C})$.

3. Results

In this section we partially solve Problems 1 and 2.

Theorem 3.1. Let $\Lambda=\left\{\lambda_{n}\right\}_{n} \geqslant 1$ be a Carleson sequence of distinct points in \mathbb{D}, B the corresponding Blaschke product, and

$$
X \stackrel{\text { def }}{=}\left\{\hat{k}_{\lambda_{n}}: n \geqslant 1\right\}
$$

be a corresponding Riesz basis in the model space $K_{B}=H^{2} \ominus B H^{2}$ (see assertion (i i_{3}) above), and denote by $r(X)=\|U\|\left\|U^{-1}\right\|$ the corresponding Riesz constant of the family X. Let A be a linear bounded operator on the Hardy space H^{2} such that $A^{\star} K_{B} \subset K_{B}$, and denote $M_{A} \stackrel{\text { def }}{=}$ $P_{B} A \mid K_{B}$, where P_{B} is an orthogonal projection from H^{2} onto K_{B}. Suppose that:

$$
\begin{align*}
& \left(\sum_{n=1}^{\infty}\left\|A \hat{k}_{\lambda_{n}}-\widetilde{A}\left(\lambda_{n}\right) \hat{k}_{\lambda_{n}}\right\|^{2}\right)^{1 / 2} \stackrel{\text { def }}{=} \tau_{A}^{\Lambda}<+\infty \quad \text { and } \tag{1}\\
& \left(\sum_{n=1}^{\infty}\left\|A^{\star} \hat{k}_{\lambda_{n}}-\widetilde{A^{\star}}\left(\lambda_{n}\right) \hat{k}_{\lambda_{n}}\right\|^{2}\right)^{1 / 2} \stackrel{\text { def }}{=} \tau_{A^{\star}}^{\Lambda}<+\infty \tag{2}
\end{align*}
$$

where \tilde{A} denotes the Berezin symbol of the operator A. If

$$
\inf _{z \in \mathbb{D}}|\widetilde{A}(z)| \stackrel{\text { def }}{=} \delta>\delta_{0} \stackrel{\text { def }}{=} r(X)\|U\| \max \left\{\tau_{A}^{\Lambda}, \tau_{A^{\star}}^{\Lambda}\right\}
$$

then the operator M_{A} is invertible in K_{B} and

$$
\left\|M_{A}^{-1}\right\| \leqslant\left(\frac{\delta}{r(X)}-\|U\| \tau_{A}^{\Lambda}\right)^{-1}
$$

Proof. Since $\Lambda \in(\mathrm{C})$, the sequence $X=\left\{\hat{k}_{\lambda_{n}}: n \geqslant 1\right\}$ is a Riesz basis in K_{B} (see assertion (i3) above). If U is an orthogonalizer of X, then $\|U\|^{-1}$ and $\left\|U^{-1}\right\|$ are corresponding best constants appearing in (1), that is

$$
\begin{equation*}
\|U\|^{-1}\left(\sum_{n \geqslant 1}\left|a_{n}\right|^{2}\right)^{1 / 2} \leqslant\left\|\sum_{n \geqslant 1} a_{n} \hat{k}_{\lambda_{n}}\right\| \leqslant\left\|U^{-1}\right\|\left(\sum_{n \geqslant 1}\left|a_{n}\right|^{2}\right)^{1 / 2} \tag{2}
\end{equation*}
$$

for all finite complex sequences $\left\{a_{n}\right\}_{n} \geqslant 1$. Now it is clear from (2) and the condition $|\widetilde{A}(z)| \geqslant$ $\delta>0, z \in \mathbb{D}$, of the theorem that

$$
\begin{aligned}
\left\|\sum_{n=1}^{N} a_{n} \widetilde{A}\left(\lambda_{n}\right) \hat{k}_{\lambda_{n}}\right\| & \geqslant\|U\|^{-1}\left(\sum_{n=1}^{N}\left|a_{n} \widetilde{A}\left(\lambda_{n}\right)\right|^{2}\right)^{1 / 2} \geqslant \delta\|U\|^{-1}\left(\sum_{n=1}^{N}\left|a_{n}\right|^{2}\right)^{1 / 2} \\
& \geqslant \frac{\delta}{\|U\|\left\|U^{-1}\right\|}\left\|\sum_{n=1}^{N} a_{n} \hat{k}_{\lambda_{n}}\right\|=\frac{\delta}{r(X)}\left\|\sum_{n=1}^{N} a_{n} \hat{k}_{\lambda_{n}}\right\|
\end{aligned}
$$

and hence

$$
\begin{equation*}
\left\|\sum_{n=1}^{N} a_{n} \widetilde{A}\left(\lambda_{n}\right) \hat{k}_{\lambda_{n}}\right\| \geqslant \frac{\delta}{r(X)}\left\|\sum_{n=1}^{N} a_{n} \hat{k}_{\lambda_{n}}\right\| \tag{3}
\end{equation*}
$$

where $r(X)$ is the Riesz constant of the family $X=\left\{\hat{k}_{\lambda_{n}}: n \geqslant 1\right\}$.
Now using condition (1) of the theorem and inequalities (2) and (3), for every finite $N>0$ and for arbitrary numbers $a_{n} \in \mathbb{C}(n=1,2, \ldots, N)$ we have:

$$
\begin{aligned}
& \left\|M_{A} \sum_{n=1}^{N} a_{n} \hat{k}_{\lambda_{n}}\right\| \\
& \quad=\left\|\left(P_{B} A \mid K_{B}\right) \sum_{n=1}^{N} a_{n} \hat{k}_{\lambda_{n}}\right\|=\left\|P_{B} A \sum_{n=1}^{N} a_{n} \hat{k}_{\lambda_{n}}\right\|=\left\|\sum_{n=1}^{N} a_{n} P_{B} A \hat{k}_{\lambda_{n}}\right\|^{\prime}\left\|_{n=1}^{N} a_{n} P_{B}\left(A \hat{k}_{\lambda_{n}}-\widetilde{A}\left(\lambda_{n}\right) \hat{k}_{\lambda_{n}}+\widetilde{A}\left(\lambda_{n}\right) \hat{k}_{\lambda_{n}}\right)\right\| \\
& \quad=\left\|\sum_{n=1}^{N} a_{n} P_{B} \widetilde{A}\left(\lambda_{n}\right) \hat{k}_{\lambda_{n}}\right\|-\left\|\sum_{n=1}^{N} a_{n} P_{B}\left(A \hat{k}_{\lambda_{n}}-\widetilde{A}\left(\lambda_{n}\right) \hat{k}_{\lambda_{n}}\right)\right\| \\
& \quad \geqslant\left\|\sum_{n=1}^{N} a_{n} \tilde{A}\left(\lambda_{n}\right) \hat{k}_{\lambda_{n}}\right\|-\sum_{n=1}^{N}\left|a_{n}\right|\left\|A \hat{k}_{\lambda_{n}}-\widetilde{A}\left(\lambda_{n}\right) \hat{k}_{\lambda_{n}}\right\| \\
& \quad \geqslant \frac{\delta}{r(X)}\left\|\sum_{n=1}^{N} a_{n} \hat{k}_{\lambda_{n}}\right\|-\left(\sum_{n=1}^{N}\left|a_{n}\right|^{2}\right)^{1 / 2}\left(\sum_{n=1}^{N}\left\|A \hat{k}_{\lambda_{n}}-\widetilde{A}\left(\lambda_{n}\right) \hat{k}_{\lambda_{n}}\right\|^{2}\right)^{1 / 2} \\
& \quad \geqslant \frac{\delta}{r(X)}\left\|\sum_{n=1}^{N} a_{n} \hat{k}_{\lambda_{n}}\right\|-\|U\|\left\|\sum_{n=1}^{N} a_{n} \hat{k}_{\lambda_{n}}\right\|\left(\sum_{n=1}^{\infty}\left\|A \hat{k}_{\lambda_{n}}-\widetilde{A}\left(\lambda_{n}\right) \hat{k}_{\lambda_{n}}\right\|^{2}\right)^{1 / 2} \\
& \geqslant \frac{\delta}{r(X)}\left\|\sum_{n=1}^{N} a_{n} \hat{k}_{\lambda_{n}}\right\|-\|U\| \tau_{A}^{\Lambda}\left\|\sum_{n=1}^{N} a_{n} \hat{k}_{\lambda_{n}}\right\| \\
& \quad=\left(\frac{\delta}{r(X)}-\|U\| \tau_{A}^{\Lambda}\right)\left\|\sum_{n=1}^{N} a_{n} \hat{k}_{\lambda_{n}}\right\| .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left\|M_{A} \sum_{n=1}^{N} a_{n} \hat{k}_{\lambda_{n}}\right\| \geqslant\left(\frac{\delta}{r(X)}-\|U\| \tau_{A}^{\Lambda}\right)\left\|\sum_{n=1}^{N} a_{n} \hat{k}_{\lambda_{n}}\right\| \tag{4}
\end{equation*}
$$

for all finite $N>0$ and complex numbers $a_{n}, n=1,2, \ldots, N$. Since the Carleson condition implies the Blaschke condition, we have from (4) that

$$
\begin{equation*}
\left\|M_{A} f\right\| \geqslant\left(\frac{\delta}{r(X)}-\|U\| \tau_{A}^{\Lambda}\right)\|f\| \tag{5}
\end{equation*}
$$

for all $f \in K_{B}$ (see assertion (i_{2}) above).

Since $A^{\star} K_{B} \subset K_{B}$, it is easy to see that

$$
M_{A}^{\star}=\left(P_{B} A \mid K_{B}\right)^{\star}=A^{\star} \mid K_{B}
$$

Analogously, using condition (2) of the theorem, the equality $\left|\widetilde{A^{\star}}(z)\right|=|\widetilde{A}(z)|(z \in \mathbb{D})$ and the inequalities (2) it can be proved that (we omit it)

$$
\left\|M_{A}^{\star} \sum_{n=1}^{N} a_{n} \hat{k}_{\lambda_{n}}\right\| \geqslant\left(\frac{\delta}{r(X)}-\|U\| \tau_{A^{\star}}^{\Lambda}\right)\left\|\sum_{n=1}^{N} a_{n} \hat{k}_{\lambda_{n}}\right\|
$$

for all finite $N>0$ and complex numbers $a_{n}, n=1,2, \ldots, N$, which yields that

$$
\begin{equation*}
\left\|M_{A}^{\star} f\right\| \geqslant\left(\frac{\delta}{r(X)}-\|U\| \tau_{A^{\star}}^{\Lambda}\right)\|f\| \tag{6}
\end{equation*}
$$

for all $f \in K_{B}$.
Now by considering that

$$
\delta>r(X)\|U\| \max \left\{\tau_{A}^{\Lambda}, \tau_{A^{\star}}^{\Lambda}\right\}=\delta_{0},
$$

we deduce from the estimates (5) and (6) that the operator M_{A} is invertible in K_{B} and

$$
\left\|M_{A}^{-1}\right\| \leqslant\left(\frac{\delta}{r(X)}-\|U\| \tau_{A}^{\Lambda}\right)^{-1}
$$

which completes the proof.
It is necessary to note that when A is an analytic Toeplitz operator (i.e., $A=T_{\varphi}, \varphi \in H^{\infty}$) in Theorem 3.1, the invertibility of the operator M_{A} follows only from the condition

$$
\inf _{z \in \mathbb{D}}|\widetilde{A}(z)|>0,
$$

because in this case A is invertible.
Our next result concerns to the Bergman space operators. We recall that

$$
\hat{k}_{\lambda}(z)=\frac{1-|\lambda|^{2}}{(1-\bar{\lambda} z)^{2}}
$$

are the normalized reproducing kernels of the Bergman space L_{a}^{2}. These normalized reproducing kernels are the right building blocks for L_{a}^{2}. In some sense, they play the role of an orthonormal basis for L_{a}^{2}, although they are clearly not mutually orthogonal. (This and other properties of Bergman kernel can be found in Zhu [20].)

The following key lemma (see [20, Theorem 4.4.6]) gives the so-called atomic decomposition for functions in the Bergman space L_{a}^{2}.

Lemma 3.2. There exists a sequence $\Lambda=\left\{\lambda_{n}\right\}_{n \geqslant 1}$ in \mathbb{D} and a constant $C>0$ with the following properties:
(a) For any $\left\{a_{n}\right\}$ in l^{2}, the function

$$
f(z)=\sum_{n=1}^{\infty} a_{n} \frac{1-\left|\lambda_{n}\right|^{2}}{\left(1-\overline{\lambda_{n}} z\right)^{2}}
$$

is in L_{a}^{2} with $\|f\| \leqslant C\left\|\left\{a_{n}\right\}\right\|_{l^{2}}$;
(b) If $f \in L_{a}^{2}$, then there is $\left\{a_{n}\right\}$ in l^{2}, such that

$$
f(z)=\sum_{n=1}^{\infty} a_{n} \frac{1-\left|\lambda_{n}\right|^{2}}{\left(1-\overline{\lambda_{n}} z\right)^{2}} \quad \text { and } \quad\left\|\left\{a_{n}\right\}\right\|_{l^{2}} \leqslant C\|f\| .
$$

Theorem 3.3. Let $\Lambda=\left\{\lambda_{n}\right\}_{n \geqslant 1}$ and $C>0$ are the same as in Lemma 3.2. Let A be a linear bounded operator on the Bergman space L_{a}^{2} satisfying
(1) $\sum_{n=1}^{\infty}\left\|A \hat{k}_{\lambda_{n}}-\widetilde{A}\left(\lambda_{n}\right) \hat{k}_{\lambda_{n}}\right\|^{2} \stackrel{\text { def }}{=} \tau_{A}^{\Lambda}<+\infty$ and
(2) $\sum_{n=1}^{\infty}\left\|A^{\star} \hat{k}_{\lambda_{n}}-\widetilde{A^{\star}}\left(\lambda_{n}\right) \hat{k}_{\lambda_{n}}\right\|^{2} \stackrel{\text { def }}{=} \tau_{A^{\star}}^{\Lambda}<+\infty$,
where \widetilde{A} denotes the Berezin symbol of operator A. If $|\tilde{A}(z)| \geqslant \delta>\max \left\{C^{3} \tau_{A}^{\Lambda}, C^{3} \tau_{A^{\star}}^{\Lambda}\right\}, z \in \mathbb{D}$, then A is invertible and

$$
\left\|A^{-1}\right\| \leqslant \frac{C^{2}}{\delta-C^{3} \tau_{A}^{\Lambda}}
$$

Proof. If $f \in L_{a}^{2}$ is an arbitrary function then by Lemma 3.2, there exists $\left\{a_{n}\right\}$ in l^{2} such that

$$
f(z)=\sum_{n=1}^{\infty} a_{n} \hat{k}_{\lambda_{n}}(z) \quad \text { and } \quad\left\|\left\{a_{n}\right\}\right\|_{l^{2}} \leqslant C\|f\|
$$

Since $\sup _{z \in \mathbb{D}}|\widetilde{A}(z)|=\operatorname{ber}(A) \leqslant\|A\|$, we have that $\left\{a_{n} \widetilde{A}\left(\lambda_{n}\right)\right\}_{n \geqslant 1} \in l^{2}$, and therefore it follows from the claim (a) of Lemma 3.2 that the function $\sum_{n=1}^{\infty} a_{n} \widetilde{A}\left(\lambda_{n}\right) \hat{k}_{\lambda_{n}}$ is in L_{a}^{2} with

$$
\begin{equation*}
\left\|\sum_{n=1}^{\infty} a_{n} \widetilde{A}\left(\lambda_{n}\right) \hat{k}_{\lambda_{n}}\right\| \leqslant C\left\|\left\{a_{n} \widetilde{A}\left(\lambda_{n}\right)\right\}\right\|_{l^{2}} \tag{7}
\end{equation*}
$$

Since

$$
\left\|\left\{a_{n} \tilde{A}\left(\lambda_{n}\right)\right\}\right\|_{l^{2}} \leqslant \operatorname{ber}(A)\left\|\left\{a_{n}\right\}\right\|_{l^{2}} \leqslant C \operatorname{ber}(A)\|f\|=C \operatorname{ber}(A)\left\|\sum_{n=1}^{\infty} a_{n} \hat{k}_{\lambda_{n}}\right\|
$$

the inequality (7) means that the diagonal operator $\mathcal{D}_{\left\{\widetilde{A}\left(\lambda_{n}\right)\right\}}$ defined in L_{a}^{2} by the formula

$$
\mathcal{D}_{\left\{\tilde{A}\left(\lambda_{n}\right)\right\}} \sum_{n=1}^{\infty} a_{n} \hat{k}_{\lambda_{n}}=\sum_{n=1}^{\infty} a_{n} \widetilde{A}\left(\lambda_{n}\right) \hat{k}_{\lambda_{n}},
$$

is bounded operator with

$$
\left\|\mathcal{D}_{\left\{\widetilde{A}\left(\lambda_{n}\right)\right\}}\right\| \leqslant C^{2} \operatorname{ber}(A) .
$$

On the other hand, it follows from the condition of theorem that $\left|\widetilde{A}\left(\lambda_{n}\right)\right| \geqslant \delta$ for all $n \geqslant 1$, and therefore $\mathcal{D}_{\left\{\widetilde{A}\left(\lambda_{n}\right)\right\}}$ is an invertible in $L_{a}^{2}, \mathcal{D}_{\left\{\widetilde{A}\left(\lambda_{n}\right)\right\}}^{-1}=\mathcal{D}_{\left\{\frac{1}{\tilde{A}\left(\lambda_{n}\right)}\right\}}$, and

$$
\begin{equation*}
\left\|\mathcal{D}_{\left\{\frac{1}{\tilde{A}\left(\lambda_{n}\right)}\right\}}\right\| \leqslant \frac{C^{2}}{\delta} . \tag{8}
\end{equation*}
$$

Now using condition (1) of the theorem and inequality (8), we have

$$
\begin{aligned}
\|A f\|_{2} & =\left\|A \sum_{n=1}^{\infty} a_{n} \hat{k}_{\lambda_{n}}\right\|=\left\|\sum_{n=1}^{\infty} a_{n} A \hat{k}_{\lambda_{n}}\right\| \\
& \geqslant\left\|\sum_{n=1}^{\infty} a_{n} \widetilde{A}\left(\lambda_{n}\right) \hat{k}_{\lambda_{n}}\right\|-\left\|\sum_{n=1}^{\infty} a_{n}\left(A \hat{k}_{\lambda_{n}}-\widetilde{A}\left(\lambda_{n}\right) \hat{k}_{\lambda_{n}}\right)\right\| \\
& \geqslant\left\|\mathcal{D}_{\left\{\frac{1}{A\left(\lambda_{n}\right)}\right\}}\right\|^{-1}\left\|\sum_{n=1}^{\infty} a_{n} \hat{k}_{\lambda_{n}}\right\|-\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{2}\right)^{1 / 2}\left(\sum_{n=1}^{\infty}\left\|\left(A \hat{k}_{\lambda_{n}}-\widetilde{A}\left(\lambda_{n}\right) \hat{k}_{\lambda_{n}}\right)\right\|^{2}\right)^{1 / 2} \\
& \geqslant\left(\frac{\delta}{C^{2}}-C \tau_{A}^{\Lambda}\right)\left\|\sum_{n=1}^{\infty} a_{n} \hat{k}_{\lambda_{n}}\right\| \\
& =\left(\frac{\delta}{C^{2}}-C \tau_{A}^{\Lambda}\right)\|f\| .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\|A f\|_{2} \geqslant\left(\frac{\delta}{C^{2}}-C \tau_{A}^{\Lambda}\right)\|f\| \tag{9}
\end{equation*}
$$

for all $f \in L_{a}^{2}$.
Since $\left|\widetilde{A^{\star}}(z)\right|=|\widetilde{A}(z)|, z \in \mathbb{D}$, by similar arguments we can prove that

$$
\begin{equation*}
\left\|A^{\star} f\right\| \geqslant\left(\frac{\delta}{C^{2}}-C \tau_{A^{\star}}^{\Lambda}\right)\|f\| \tag{10}
\end{equation*}
$$

for all $f \in L_{a}^{2}$.
Also, since $\delta / C^{2}>C \max \left\{\tau_{A}^{\Lambda}, \tau_{A^{\star}}^{\Lambda}\right\}$ (see the condition of theorem), inequalities (9) and (10) mean that A is invertible in L_{a}^{2} and

$$
\left\|A^{-1}\right\| \leqslant\left(\frac{\delta}{C^{2}}-C \tau_{A}^{\Lambda}\right)^{-1}
$$

which proves the theorem.

Our more general result is the following theorem.
Theorem 3.4. Let $\mathcal{H}=\mathcal{H}(\Omega)$ be a functional Hilbert space of complex-valued functions on a (non-empty) set Ω with the orthonormal basis $\left\{e_{n}(z)\right\}_{n \geqslant 0}$, and let A be a linear bounded operator on \mathcal{H} such that:
(a) $|\widetilde{A}(z)| \geqslant \delta>0, z \in \Omega$;
(b) there exists a sequence $\Lambda=\left\{\lambda_{n}\right\}_{n} \geqslant 0 \subset \Omega$ such that:
(1) $\left(\sum_{n=0}^{\infty}\left\|A e_{n}(z)-\widetilde{A}\left(\lambda_{n}\right) e_{n}(z)\right\|^{2}\right)^{1 / 2} \stackrel{\text { def }}{=} \delta_{A}^{\Lambda}<+\infty$;
(2) $\left(\sum_{n=0}^{\infty}\left\|A^{\star} e_{n}(z)-\widetilde{A^{\star}}\left(\lambda_{n}\right) e_{n}(z)\right\|^{2}\right)^{1 / 2} \stackrel{\text { def }}{=} \delta_{A^{\star}}^{\Lambda}<+\infty$.

If $\delta>\max \left\{\delta_{A}^{\Lambda}, \delta_{A^{*}}^{\Lambda}\right\}$, then A is invertible and

$$
\left\|A^{-1}\right\| \leqslant\left(\delta-\delta_{A}^{\Lambda}\right)^{-1}
$$

Proof. Let us consider the diagonal operator $\mathcal{D}_{\left\{\tilde{A}\left(\lambda_{n}\right)\right\}}$ with respect to the orthonormal basis $\left\{e_{n}(z)\right\}_{n \geqslant 0}$ of the space \mathcal{H}, that is $\mathcal{D}_{\left\{\widetilde{A}\left(\lambda_{n}\right)\right\}} e_{n}(z)=\widetilde{A}\left(\lambda_{n}\right) e_{n}(z), n \geqslant 0$. Since $\delta \leqslant\left|\widetilde{A}\left(\lambda_{n}\right)\right| \leqslant\|A\|$ for all $n \geqslant 0$, we have that

$$
\left\|\mathcal{D}_{\left\{\widetilde{A}\left(\lambda_{n}\right)\right\}}\right\|=\sup _{n \geqslant 0}\left|\widetilde{A}\left(\lambda_{n}\right)\right| \leqslant\|A\|,
$$

$\mathcal{D}_{\left\{\widetilde{A}\left(\lambda_{n}\right)\right\}}^{-1}$ exists and

$$
\mathcal{D}_{\left\{\widetilde{A}\left(\lambda_{n}\right)\right\}}^{-1}=\mathcal{D}_{\left\{\frac{1}{\tilde{A}\left(\lambda_{n}\right)}\right\}} \quad \text { and } \quad\left\|\mathcal{D}_{\left\{\widetilde{A}\left(\lambda_{n}\right)\right\}}^{-1}\right\| \leqslant \frac{1}{\delta} .
$$

Then by considering these and the conditions of theorem, for all $f(z)=\sum_{n=1}^{\infty} a_{n} e_{n}(z) \in \mathcal{H}$ we have

$$
\begin{aligned}
\|A f\|_{\mathcal{H}} & =\left\|A \sum_{n=0}^{\infty} a_{n} e_{n}(z)\right\|_{\mathcal{H}}=\left\|\sum_{n=0}^{\infty} a_{n} A e_{n}(z)\right\|_{\mathcal{H}} \\
& \geqslant\left\|\sum_{n=0}^{\infty} a_{n} \widetilde{A}\left(\lambda_{n}\right) e_{n}(z)\right\|_{\mathcal{H}}-\left\|\sum_{n=0}^{\infty} a_{n}\left(A e_{n}(z)-\widetilde{A}\left(\lambda_{n}\right) e_{n}(z)\right)\right\|_{\mathcal{H}} \\
& \geqslant \frac{1}{\left\|\mathcal{D}_{\left\{\widetilde{A}\left(\lambda_{n}\right)\right\}}^{-1}\right\|}\left\|\sum_{n=0}^{\infty} a_{n} e_{n}(z)\right\|_{\mathcal{H}}-\left(\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}\right)^{1 / 2}\left(\sum_{n=0}^{\infty}\left\|\left(A e_{n}(z)-\widetilde{A}\left(\lambda_{n}\right) e_{n}(z)\right)\right\|^{2}\right)^{1 / 2} \\
& =\frac{1}{\sup _{n \geqslant 0}\left|\frac{1}{\widetilde{A}\left(\lambda_{n}\right)}\right|}\|f\|_{\mathcal{H}}-\delta_{A}^{\Lambda}\|f\|_{\mathcal{H}}=\inf _{n \geqslant 0}\left|\widetilde{A}\left(\lambda_{n}\right)\right|\|f\|_{\mathcal{H}}-\delta_{A}^{\Lambda}\|f\|_{\mathcal{H}} \\
& \geqslant \delta\|f\|_{\mathcal{H}}-\delta_{A}^{\Lambda}\|f\|_{\mathcal{H}}=\left(\delta-\delta_{A}^{\Lambda}\right)\|f\|_{\mathcal{H}} .
\end{aligned}
$$

Analogously, we can show that

$$
\left\|A^{\star} f\right\|_{\mathcal{H}} \geqslant\left(\delta-\delta_{A^{\star}}^{\Lambda}\right)\|f\|_{\mathcal{H}} \quad \text { for all } f \in \mathcal{H},
$$

and hence A is invertible and

$$
\left\|A^{-1}\right\| \leqslant\left(\delta-\delta_{A}^{\Lambda}\right)^{-1}
$$

The theorem is proved.
Corollary 3.5. Let $\varphi \in L^{\infty}(\mathbb{T})$, and denote as before, by $\tilde{\varphi}$ its harmonic extension (by the Poisson formula) into \mathbb{D}. Let T_{φ} be a corresponding Toeplitz operator on the Hardy space H^{2}. Suppose that $\delta \stackrel{\text { def }}{=} \inf _{z \in \mathbb{D}}|\tilde{\varphi}(z)|>0$ and there exists a sequence $\Lambda=\left\{\lambda_{n}\right\}_{n \geqslant 0} \subset \mathbb{D}$ such that

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left(\widehat{|\hat{\varphi}|^{2}}(0)-2 \operatorname{Re} \overline{\tilde{\varphi}\left(\lambda_{n}\right)} \hat{\varphi}(0)+\left|\tilde{\varphi}\left(\lambda_{n}\right)\right|^{2}\right) \stackrel{\text { def }}{=} v_{\varphi}^{\Lambda}<+\infty . \tag{11}
\end{equation*}
$$

If $\delta>\nu_{\varphi}^{\Lambda}$, then T_{φ} is invertible and

$$
\left\|T_{\varphi}^{-1}\right\| \leqslant\left(\delta-\delta_{T_{\varphi}}^{A}\right)^{-1} .
$$

Proof. An easy computation shows that

$$
\begin{aligned}
\left\|T_{\varphi} z^{n}-\tilde{\varphi}\left(\lambda_{n}\right) z^{n}\right\|^{2} & =\left\|T_{\varphi} z^{n}\right\|^{2}-2 \operatorname{Re} \overline{\tilde{\varphi}\left(\lambda_{n}\right)}\left\langle T_{\varphi} z^{n}, z^{n}\right\rangle+\left|\tilde{\varphi}\left(\lambda_{n}\right)\right|^{2} \\
& \leqslant\left\|\varphi z^{n}\right\|_{L^{2}(\mathbb{T})}^{2}-2 \operatorname{Re} \overline{\tilde{\varphi}\left(\lambda_{n}\right)} \hat{\varphi}(0)+\left|\tilde{\varphi}\left(\lambda_{n}\right)\right|^{2} \\
& =\widehat{|\hat{\varphi}|^{2}}(0)-2 \operatorname{Re} \overline{\tilde{\varphi}\left(\lambda_{n}\right)} \hat{\varphi}(0)+\left|\tilde{\varphi}\left(\lambda_{n}\right)\right|^{2},
\end{aligned}
$$

from which by replacing φ with $\bar{\varphi}$ and by considering that $T_{\varphi}^{\star}=T_{\bar{\varphi}}$ and $\left|\widetilde{T}_{\varphi}(z)\right|=\left|\widetilde{T}_{\varphi}^{\star}(z)\right|$, we also have

$$
\left\|T_{\varphi}^{\star} z^{n}-\widetilde{\bar{\varphi}}\left(\lambda_{n}\right) z^{n}\right\|^{2} \leqslant \widehat{|\hat{\varphi}|^{2}}(0)-2 \operatorname{Re} \tilde{\varphi}\left(\lambda_{n}\right) \overline{\hat{\varphi}}(0)+\left|\tilde{\varphi}\left(\lambda_{n}\right)\right|^{2}
$$

Now, by considering the conditions $\delta>v_{\varphi}^{\Lambda}$ and (11), and by applying Lemma 2.1 and Theorem 3.4, we have the desired result.

References

[1] F.A. Berezin, Covariant and contravariant symbols for operators, Math. USSR-Izv. 6 (1972) 1117-1151.
[2] F.A. Berezin, Quantization, Math. USSR-Izv. 8 (1974) 1109-1163.
[3] A. Böttcher, B. Silbermann, Invertibility and Asymptotics of Toeplitz Matrices, Akademie-Verlag, Berlin, 1983.
[4] I. Chalendar, E. Fricain, D. Timotin, Functional models and asymptotically orthonormal sequences, Ann. Inst. Fourier (Grenoble) 53 (5) (2003) 1527-1549.
[5] R.G. Douglas, Banach Algebra Techniques in the Theory of Toeplitz Operators, CBMS Reg. Conf. Ser. Math., vol. 15, Amer. Math. Soc., Providence, RI, 1973, 53 p.
[6] E. Fricain, Bases of reproducing kernels in model spaces, J. Operator Theory 46 (2001) 517-543.
[7] I.C. Gohberg, M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Transl. Math. Monogr., vol. 18, Amer. Math. Soc., Providence, RI, 1969.
[8] P.R. Halmos, A Hilbert Space Problem Book, Springer-Verlag, New York, 1982.
[9] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman Spaces, Grad. Texts in Math., Springer-Verlag, Berlin, 2000.
[10] M.T. Karaev, On the Berezin symbol, J. Math. Sci. (New York) 115 (2003) 2135-2140. Translated from: Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 270 (2000) 80-89.
[11] M.T. Karaev, Berezin symbols and Schatten-von Neumann classes, Math. Notes 72 (2002) 185-192. Translated from: Mat. Zametki 72 (2002) 207-215.
[12] M.T. Karaev, Functional analysis proofs of Abel's theorems, Proc. Amer. Math. Soc. 132 (2004) 2327-2329.
[13] M.T. Karaev, On some problems related to Berezin symbols, C. R. Math. Acad. Sci. Paris 340 (10) (2005) 715-718.
[14] M.T. Karaev, S. Saltan, Some results on Berezin symbols, Complex Var. Theory Appl. 50 (3) (2005) 185-193.
[15] N.K. Nikolskii, Treatise of the Shift Operator, Springer-Verlag, Berlin, 1986.
[16] E. Nordgren, P. Rosenthal, Boundary values of Berezin symbols, Oper. Theory Adv. Appl. 73 (1994) 362-368.
[17] S. Pehlivan, M.T. Karaev, Some results related with statistical convergence and Berezin symbols, J. Math. Anal. Appl. 299 (2004) 333-340.
[18] V.A. Tolokonnikov, Estimates in the Carleson corona theorem, ideals of the algebra H^{∞}, Szökefalvi-Nagy problem, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 113 (1981) 178-190.
[19] T.H. Wolff, Counterexamples to two variants of the Helson-Szegö theorem, Report No. 11, California Institute of Technology, Pasadena, 1983.
[20] K. Zhu, Operator Theory in Function Spaces, Dekker, New York, 1990.

[^0]: E-mail address: garayev@fef.sdu.edu.tr.

