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Abstract

We give in terms of reproducing kernel and Berezin symbol the sufficient conditions ensuring the invert-
ibility of some linear bounded operators on some functional Hilbert spaces.
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1. Introduction

Let T be the unit circle T = {ζ ∈ C: |ζ | = 1}, ϕ ∈ L∞ = L∞(T), and let Tϕ be the Toeplitz
operator acting in the Hardy space H 2(D) on the unit disc D = {z ∈ C: |z| < 1} by the formula
Tϕf = P+ϕf , where P+ is the Riesz projector. Let ϕ̃ denote the harmonic extension of the
function ϕ to D. In [5] Douglas posed the following problem: if ϕ is a function in L∞ for which
|ϕ̃(z)| � δ > 0, z ∈ D, then is Tϕ invertible?

In [18] Tolokonnikov firstly gave a positive answer to this question under the condition that δ

is near enough to 1, namely, he proved that if

1 �
∣∣ϕ̃(z)

∣∣ � δ >
45

46
, z ∈ D,

then Tϕ is invertible and ∥∥T −1
ϕ

∥∥ �
(
1 − 46(1 − δ)

)−1
.
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This assertion was also proved by Wolff [19]. Nikolskii [15] has somewhat improved the result
of Tolokonnikov proving invertibility of Tϕ and the estimate∥∥T −1

ϕ

∥∥ � (24δ − 23)−1/2

under condition δ > 23/24. Finally, Wolff [19] has constructed a function ϕ ∈ L∞ such that
infD |ϕ̃(z)| > 0 but the corresponding operator Tϕ is not invertible, and thus showed that the
answer to the question of Douglas is negative in general. Since ϕ̃ coincides with the Berezin
symbol T̃ϕ of the operator Tϕ (see Lemma 2.1), in this context the following natural problem
arises.

Problem 1. Let A be a linear bounded operator acting in the functional Hilbert space H(Ω) of
complex-valued functions over the some (non-empty) set Ω, such that |Ã(z)| � δ for all z ∈ Ω

and for some δ > 0. To find the number δ0, which can be (more or less) easily computed from the
data of A, and due to which the inequality∣∣Ã(z)

∣∣ � δ > δ0, z ∈ D,

ensures the invertibility of A, where Ã denotes the Berezin symbol of the operator A.

In particular, the following problem is also interesting, which is closely related with the finite
section method of Böttcher and Silbermann [3].

Problem 2. Let E ⊂ H(Ω) be a closed subspace of the functional Hilbert space H(Ω), and let
A be a linear bounded operator acting in H(Ω) such that∣∣Ã(z)

∣∣ � δ

for all z ∈ Ω and for some δ > 0. To find a number δ0, such that δ > δ0 ensures the invertibility
of operator PEA | E (the compression of the operator A to the subspace E), where PE is an
orthogonal projection from H(Ω) onto E.

In this article we solve these problems in some special cases. Our argument uses the concept
of reproducing kernel and Berezin symbol.

2. Notations and preliminaries

2.1. Recall that a functional Hilbert space is a Hilbert space H = H(Ω) of complex-valued
functions on a (non-empty) set Ω, which has the property that point evaluations are continuous
(i.e., for each λ ∈ Ω , the map f → f (λ) is a continuous linear functional on H). Then the Riesz
representation theorem ensures that for each λ ∈ Ω there is a unique element kλ of H such that
f (λ) = 〈f, kλ〉 for all f ∈ H. The collection {kλ: λ ∈ Ω} is called the reproducing kernel of H.
It is well known (see, for instance, [8, Problem 37] that if {en} is an orthonormal basis for a
functional Hilbert space H, then the reproducing kernel of H is given by

kλ(z) =
∑

en(λ)en(z).
n
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For λ ∈ Ω , let k̂λ = kλ‖kλ‖ be the normalized reproducing kernel of H. For a bounded linear

operator A on H, the function Ã defined on Ω by

Ã(λ) = 〈Ak̂λ, k̂λ〉

is the Berezin symbol of A, which firstly have been introduced by Berezin [1,2]. It is clear that
the Berezin symbol Ã is the bounded function on Ω whose values lies in the numerical range of
the operator A, and hence

sup
z∈D

∣∣Ã(z)
∣∣ def= ber(A) (“Berezin number”)

� w(A) (numerical radius).

More typical examples of functional Hilbert spaces are the Hardy and Bergman spaces.

2.2. Let dm2 denote Lebesgue area measure on the unit disk D, normalized so that the
measure of D equals 1. The Bergman space L2

a = L2
a(D) is the Hilbert space consisting of the

analytic functions on D that are also in L2(D, dm2). For z ∈ D, the Bergman reproducing ker-
nel is the function kλ ∈ L2

a such that f (λ) = 〈f, kλ〉 for every f ∈ L2
a. It is well known that

kλ(z) = 1
(1−λz)2 . The normalized Bergman reproducing kernel k̂λ is the function kλ‖kλ‖2

= 1−|λ|2
(1−λz)2 .

The Hardy space H 2 = H 2(D) is the Hilbert space of analytic functions f (z) = ∑
n�0 anz

n

defined in the unit disc D = {z ∈ C: |z| < 1}, such that
∑

n�0 |an|2 < ∞. Alternately, it can

be identified with a closed subspace of the Lebesgue space L2 = L2(T) on the unit circle, by
associating to each analytic function its radial limit. The algebra of bounded analytic functions
on D is denoted by H∞. Any ϕ ∈ H∞ acts as a multiplication operator on H 2, that we will
denote by Tϕ .

Norm and inner product in L2 or H 2 will be denoted by ‖.‖ and 〈·,·〉, respectively. Evaluations
at points λ ∈ D are bounded functionals on H 2 and the corresponding reproducing kernel is
kλ(z) = 1

1−λ̄z
; thus, f (λ) = 〈f, kλ〉. If ϕ ∈ H∞, then kλ is an eigenvector for T ∗

ϕ and T ∗
ϕ kλ =

ϕ(λ)kλ. By normalizing kλ we obtain

k̂λ = kλ

‖kλ‖ =
√

1 − |λ|2kλ.

2.3. The Berezin symbol have been investigated in detail for the Toeplitz and Hankel opera-
tors on the Hardy and Bergman spaces; it is widely applied in the various questions of analysis
(see, for instance, [9–14,16,17,20]). In particular, it is known (see [11,20]) the following result
which we will use in what follows.

Lemma 2.1. The Berezin symbol T̃ϕ of the Toeplitz operator Tϕ,ϕ ∈ L∞, on the Hardy space H 2

coincides with the harmonic extension ϕ̃ of the function ϕ into the unit disc D, that is T̃ϕ(λ) =
ϕ̃(λ) for all λ ∈ D.

Suppose now θ is an inner function. We define the corresponding model space by the formula
Kθ = H 2 
 θH 2.
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2.4. We recall some basic definitions concerning geometric properties of sequences in a
Hilbert space. For most of the definitions and facts below, one can use [7,15] as a main ref-
erences (see also [4,6]).

Let H be a complex Hilbert space. If {xn}n�1 ⊂ H , we denote by span{xn: n � 1} the closure

of the linear hull generated by {xn}n�1. The sequence X
def= {xn}n�1 is called:

• complete if span{xn: n � 1} = H ;
• minimal if for all n � 1, xn /∈ span{xm: m �= n};
• uniformly minimal if infn�1 dist( xn‖xn‖ , span(xm: m �= n)) > 0;
• a Riesz basis if there exists an isomorphism U mapping X onto an orthonormal family

{Uxn: n � 1};
• the operator U will be called the orthogonalizer of X.

The expression “a Riesz basis in H ” means a Riesz basis X with the completeness property
span(X) = H . It is well known that X is a Riesz basis in its closed linear span if there are
positive constants C1, C2 such that

C1

( ∑
n�1

|an|2
)1/2

�
∥∥∥∥∑

n�1

anxn

∥∥∥∥ � C2

( ∑
n�1

|an|2
)1/2

(1)

for all finite complex sequences {an}n�1. Note that if U is an orthogonalizer of the family X then

the product r(X)
def= ‖U‖‖U−1‖ characterizes the deviation of the basis X from an orthonormal

one and ‖U‖−1 and ‖U−1‖ are the best constants in the inequality (1); r(X) will be referred to
as the Riesz constant of the family X. Obviously, r(X) � 1.

We now recall some well-known facts (see [15]) concerning reproducing kernels in H 2. Let
Λ = {λn}n�1 be a sequence of distinct points in D. Then we have:

(i1) {kλn}n�1 is minimal if and only if {λn}n�1 is Blaschke sequence (which means that∑
n�1(1 − |λn|) < ∞). As usual, we denote by

B = BΛ =
∏
n�1

bλn, where bλn(z) = |λn|
λn

λn − z

1 − λnz
.

(i2) If {λn}n�1 is a Blaschke sequence, then {kλn}n�1 is complete in KB .
(i3) {k̂λn}n�1 is a Riesz basis of KB if and only if it is uniformly minimal which is equivalent

to {λn}n�1 satisfies the Carleson condition

inf
n�1

∣∣Bn(λn)
∣∣ > 0,

where Bn = B/bλn ; we will write in this case {λn}n�1 ∈ (C).

3. Results

In this section we partially solve Problems 1 and 2.
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Theorem 3.1. Let Λ = {λn}n�1 be a Carleson sequence of distinct points in D, B the corre-
sponding Blaschke product, and

X
def= {k̂λn : n � 1}

be a corresponding Riesz basis in the model space KB = H 2 
 BH 2 (see assertion (i3) above),
and denote by r(X) = ‖U‖‖U−1‖ the corresponding Riesz constant of the family X. Let A be

a linear bounded operator on the Hardy space H 2 such that A�KB ⊂ KB, and denote MA
def=

PBA|KB, where PB is an orthogonal projection from H 2 onto KB. Suppose that:

(1)

( ∞∑
n=1

∥∥Ak̂λn − Ã(λn)k̂λn

∥∥2

)1/2
def= τΛ

A < +∞ and

(2)

( ∞∑
n=1

∥∥A�k̂λn − Ã�(λn)k̂λn

∥∥2

)1/2
def= τΛ

A� < +∞,

where Ã denotes the Berezin symbol of the operator A. If

inf
z∈D

∣∣Ã(z)
∣∣ def= δ > δ0

def= r(X)‖U‖max
{
τΛ
A , τΛ

A�

}
,

then the operator MA is invertible in KB and

∥∥M−1
A

∥∥ �
(

δ

r(X)
− ‖U‖τΛ

A

)−1

.

Proof. Since Λ ∈ (C), the sequence X = {k̂λn : n � 1} is a Riesz basis in KB (see assertion (i3)
above). If U is an orthogonalizer of X , then ‖U‖−1 and ‖U−1‖ are corresponding best constants
appearing in (1), that is

‖U‖−1
( ∑

n�1

|an|2
)1/2

�
∥∥∥∥∑

n�1

ank̂λn

∥∥∥∥ � ‖U−1‖
( ∑

n�1

|an|2
)1/2

(2)

for all finite complex sequences {an}n�1. Now it is clear from (2) and the condition |Ã(z)| �
δ > 0, z ∈ D, of the theorem that∥∥∥∥∥

N∑
n=1

anÃ(λn)k̂λn

∥∥∥∥∥ � ‖U‖−1

(
N∑

n=1

∣∣anÃ(λn)
∣∣2

)1/2

� δ‖U‖−1

(
N∑

n=1

|an|2
)1/2

� δ

‖U‖‖U−1‖

∥∥∥∥∥
N∑

n=1

ank̂λn

∥∥∥∥∥ = δ

r(X)

∥∥∥∥∥
N∑

n=1

ank̂λn

∥∥∥∥∥
and hence ∥∥∥∥∥

N∑
anÃ(λn)k̂λn

∥∥∥∥∥ � δ

r(X)

∥∥∥∥∥
N∑

ank̂λn

∥∥∥∥∥, (3)

n=1 n=1
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where r(X) is the Riesz constant of the family X = {k̂λn : n � 1}.
Now using condition (1) of the theorem and inequalities (2) and (3), for every finite N > 0

and for arbitrary numbers an ∈ C (n = 1,2, . . . ,N) we have:

∥∥∥∥∥MA

N∑
n=1

ank̂λn

∥∥∥∥∥
=

∥∥∥∥∥(PBA | KB)

N∑
n=1

ank̂λn

∥∥∥∥∥ =
∥∥∥∥∥PBA

N∑
n=1

ank̂λn

∥∥∥∥∥ =
∥∥∥∥∥

N∑
n=1

anPBAk̂λn

∥∥∥∥∥
=

∥∥∥∥∥
N∑

n=1

anPB

(
Ak̂λn − Ã(λn)k̂λn + Ã(λn)k̂λn

)∥∥∥∥∥
�

∥∥∥∥∥
N∑

n=1

anPBÃ(λn)k̂λn

∥∥∥∥∥ −
∥∥∥∥∥

N∑
n=1

anPB

(
Ak̂λn − Ã(λn)k̂λn

)∥∥∥∥∥
�

∥∥∥∥∥
N∑

n=1

anÃ(λn)k̂λn

∥∥∥∥∥ −
N∑

n=1

|an|
∥∥Ak̂λn − Ã(λn)k̂λn

∥∥
� δ

r(X)

∥∥∥∥∥
N∑

n=1

ank̂λn

∥∥∥∥∥ −
(

N∑
n=1

|an|2
)1/2( N∑

n=1

∥∥Ak̂λn − Ã(λn)k̂λn

∥∥2

)1/2

� δ

r(X)

∥∥∥∥∥
N∑

n=1

ank̂λn

∥∥∥∥∥ − ‖U‖
∥∥∥∥∥

N∑
n=1

ank̂λn

∥∥∥∥∥
( ∞∑

n=1

∥∥Ak̂λn − Ã(λn)k̂λn

∥∥2

)1/2

� δ

r(X)

∥∥∥∥∥
N∑

n=1

ank̂λn

∥∥∥∥∥ − ‖U‖τΛ
A

∥∥∥∥∥
N∑

n=1

ank̂λn

∥∥∥∥∥
=

(
δ

r(X)
− ‖U‖τΛ

A

)∥∥∥∥∥
N∑

n=1

ank̂λn

∥∥∥∥∥.

Thus ∥∥∥∥∥MA

N∑
n=1

ank̂λn

∥∥∥∥∥ �
(

δ

r(X)
− ‖U‖τΛ

A

)∥∥∥∥∥
N∑

n=1

ank̂λn

∥∥∥∥∥ (4)

for all finite N > 0 and complex numbers an, n = 1,2, . . . ,N. Since the Carleson condition
implies the Blaschke condition, we have from (4) that

‖MAf ‖ �
(

δ

r(X)
− ‖U‖τΛ

A

)
‖f ‖ (5)

for all f ∈ KB (see assertion (i2) above).
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Since A�KB ⊂ KB , it is easy to see that

M�
A = (PBA | KB)� = A� | KB.

Analogously, using condition (2) of the theorem, the equality |Ã�(z)| = |Ã(z)| (z ∈ D) and the
inequalities (2) it can be proved that (we omit it)∥∥∥∥∥M�

A

N∑
n=1

ank̂λn

∥∥∥∥∥ �
(

δ

r(X)
− ‖U‖τΛ

A�

)∥∥∥∥∥
N∑

n=1

ank̂λn

∥∥∥∥∥
for all finite N > 0 and complex numbers an, n = 1,2, . . . ,N, which yields that

∥∥M�
Af

∥∥ �
(

δ

r(X)
− ‖U‖τΛ

A�

)
‖f ‖ (6)

for all f ∈ KB.

Now by considering that

δ > r(X)‖U‖max
{
τΛ
A , τΛ

A�

} = δ0,

we deduce from the estimates (5) and (6) that the operator MA is invertible in KB and

∥∥M−1
A

∥∥ �
(

δ

r(X)
− ‖U‖τΛ

A

)−1

,

which completes the proof. �
It is necessary to note that when A is an analytic Toeplitz operator (i.e., A = Tϕ,ϕ ∈ H∞) in

Theorem 3.1, the invertibility of the operator MA follows only from the condition

inf
z∈D

∣∣Ã(z)
∣∣ > 0,

because in this case A is invertible.
Our next result concerns to the Bergman space operators. We recall that

k̂λ(z) = 1 − |λ|2
(1 − λz)2

are the normalized reproducing kernels of the Bergman space L2
a. These normalized reproducing

kernels are the right building blocks for L2
a. In some sense, they play the role of an orthonormal

basis for L2
a , although they are clearly not mutually orthogonal. (This and other properties of

Bergman kernel can be found in Zhu [20].)
The following key lemma (see [20, Theorem 4.4.6]) gives the so-called atomic decomposition

for functions in the Bergman space L2
a.

Lemma 3.2. There exists a sequence Λ = {λn}n�1 in D and a constant C > 0 with the following
properties:
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(a) For any {an} in l2, the function

f (z) =
∞∑

n=1

an

1 − |λn|2
(1 − λnz)2

is in L2
a with ‖f ‖ � C‖{an}‖l2;

(b) If f ∈ L2
a, then there is {an} in l2, such that

f (z) =
∞∑

n=1

an

1 − |λn|2
(1 − λnz)2

and
∥∥{an}

∥∥
l2

� C‖f ‖.

Theorem 3.3. Let Λ = {λn}n�1 and C > 0 are the same as in Lemma 3.2. Let A be a linear
bounded operator on the Bergman space L2

a satisfying

(1)
∑∞

n=1 ‖Ak̂λn − Ã(λn)k̂λn‖2 def= τΛ
A < +∞ and

(2)
∑∞

n=1 ‖A�k̂λn − Ã�(λn)k̂λn‖2 def= τΛ
A� < +∞,

where Ã denotes the Berezin symbol of operator A. If |Ã(z)| � δ > max{C3τΛ
A ,C3τΛ

A�}, z ∈ D,

then A is invertible and

‖A−1‖ � C2

δ − C3τΛ
A

.

Proof. If f ∈ L2
a is an arbitrary function then by Lemma 3.2, there exists {an} in l2 such that

f (z) =
∞∑

n=1

ank̂λn(z) and
∥∥{an}

∥∥
l2

� C‖f ‖.

Since supz∈D |Ã(z)| = ber(A) � ‖A‖, we have that {anÃ(λn)}n�1 ∈ l2, and therefore it follows
from the claim (a) of Lemma 3.2 that the function

∑∞
n=1 anÃ(λn)k̂λn is in L2

a with∥∥∥∥∥
∞∑

n=1

anÃ(λn)k̂λn

∥∥∥∥∥ � C
∥∥{

anÃ(λn)
}∥∥

l2
. (7)

Since

∥∥{
anÃ(λn)

}∥∥
l2

� ber(A)
∥∥{an}

∥∥
l2

� C ber(A)‖f ‖ = C ber(A)

∥∥∥∥∥
∞∑

n=1

ank̂λn

∥∥∥∥∥,

the inequality (7) means that the diagonal operator D{Ã(λn)} defined in L2
a by the formula

D{Ã(λn)}
∞∑

ank̂λn =
∞∑

anÃ(λn)k̂λn,
n=1 n=1
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is bounded operator with

‖D{Ã(λn)}‖ � C2 ber(A).

On the other hand, it follows from the condition of theorem that |Ã(λn)| � δ for all n � 1, and
therefore D{Ã(λn)} is an invertible in L2

a , D−1
{Ã(λn)} = D{ 1

Ã(λn)
}, and

∥∥D{ 1

Ã(λn)
}
∥∥ � C2

δ
. (8)

Now using condition (1) of the theorem and inequality (8), we have

‖Af ‖2 =
∥∥∥∥∥A

∞∑
n=1

ank̂λn

∥∥∥∥∥ =
∥∥∥∥∥

∞∑
n=1

anAk̂λn

∥∥∥∥∥
�

∥∥∥∥∥
∞∑

n=1

anÃ(λn)k̂λn

∥∥∥∥∥ −
∥∥∥∥∥

∞∑
n=1

an

(
Ak̂λn − Ã(λn)k̂λn

)∥∥∥∥∥
�

∥∥D{ 1
Ã(λn)

}
∥∥−1

∥∥∥∥∥
∞∑

n=1

ank̂λn

∥∥∥∥∥ −
( ∞∑

n=1

|an|2
)1/2( ∞∑

n=1

∥∥(
Ak̂λn − Ã(λn)k̂λn

)∥∥2

)1/2

�
(

δ

C2
− CτΛ

A

)∥∥∥∥∥
∞∑

n=1

ank̂λn

∥∥∥∥∥
=

(
δ

C2
− CτΛ

A

)
‖f ‖.

Thus

‖Af ‖2 �
(

δ

C2
− CτΛ

A

)
‖f ‖ (9)

for all f ∈ L2
a .

Since |Ã�(z)| = |Ã(z)|, z ∈ D, by similar arguments we can prove that

‖A�f ‖ �
(

δ

C2
− CτΛ

A�

)
‖f ‖ (10)

for all f ∈ L2
a.

Also, since δ/C2 > C max{τΛ
A , τΛ

A�} (see the condition of theorem), inequalities (9) and (10)
mean that A is invertible in L2

a and

∥∥A−1
∥∥ �

(
δ

C2
− CτΛ

A

)−1

,

which proves the theorem. �
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Our more general result is the following theorem.

Theorem 3.4. Let H = H(Ω) be a functional Hilbert space of complex-valued functions on
a (non-empty) set Ω with the orthonormal basis {en(z)}n�0, and let A be a linear bounded
operator on H such that:

(a) |Ã(z)| � δ > 0, z ∈ Ω;
(b) there exists a sequence Λ = {λn}n�0 ⊂ Ω such that:

(1) (
∑∞

n=0 ‖Aen(z) − Ã(λn)en(z)‖2)1/2 def= δΛ
A < +∞;

(2) (
∑∞

n=0 ‖A�en(z) − Ã�(λn)en(z)‖2)1/2 def= δΛ
A� < +∞.

If δ > max{δΛ
A , δΛ

A�}, then A is invertible and

∥∥A−1
∥∥ �

(
δ − δΛ

A

)−1
.

Proof. Let us consider the diagonal operator D{Ã(λn)} with respect to the orthonormal basis

{en(z)}n�0 of the space H, that is D{Ã(λn)}en(z) = Ã(λn)en(z), n � 0. Since δ � |Ã(λn)| � ‖A‖
for all n � 0, we have that

‖D{Ã(λn)}‖ = sup
n�0

∣∣Ã(λn)
∣∣ � ‖A‖,

D−1
{Ã(λn)} exists and

D−1
{Ã(λn)} = D{ 1

Ã(λn)
} and

∥∥D−1
{Ã(λn)}

∥∥ � 1

δ
.

Then by considering these and the conditions of theorem, for all f (z) = ∑∞
n=1 anen(z) ∈ H we

have

‖Af ‖H =
∥∥∥∥∥A

∞∑
n=0

anen(z)

∥∥∥∥∥
H

=
∥∥∥∥∥

∞∑
n=0

anAen(z)

∥∥∥∥∥
H

�
∥∥∥∥∥

∞∑
n=0

anÃ(λn)en(z)

∥∥∥∥∥
H

−
∥∥∥∥∥

∞∑
n=0

an

(
Aen(z) − Ã(λn)en(z)

)∥∥∥∥∥
H

� 1

‖D−1
{Ã(λn)}‖

∥∥∥∥∥
∞∑

n=0

anen(z)

∥∥∥∥∥
H

−
( ∞∑

n=0

|an|2
)1/2( ∞∑

n=0

∥∥(
Aen(z) − Ã(λn)en(z)

)∥∥2

)1/2

= 1

supn�0

∣∣ 1

Ã(λn)

∣∣‖f ‖H − δΛ
A‖f ‖H = inf

n�0

∣∣Ã(λn)
∣∣‖f ‖H − δΛ

A‖f ‖H

� δ‖f ‖H − δΛ
A‖f ‖H = (

δ − δΛ
A

)‖f ‖H.



M.T. Karaev / Journal of Functional Analysis 238 (2006) 181–192 191
Analogously, we can show that

‖A�f ‖H �
(
δ − δΛ

A�

)‖f ‖H for all f ∈H,

and hence A is invertible and ∥∥A−1
∥∥ �

(
δ − δΛ

A

)−1
.

The theorem is proved. �
Corollary 3.5. Let ϕ ∈ L∞(T), and denote as before, by ϕ̃ its harmonic extension (by the Poisson
formula) into D. Let Tϕ be a corresponding Toeplitz operator on the Hardy space H 2. Suppose

that δ
def= infz∈D |ϕ̃(z)| > 0 and there exists a sequence Λ = {λn}n�0 ⊂ D such that

∞∑
n=0

(|̂ϕ̂|2(0) − 2 Re ϕ̃(λn)ϕ̂(0) + ∣∣ϕ̃(λn)
∣∣2) def= νΛ

ϕ < +∞. (11)

If δ > νΛ
ϕ , then Tϕ is invertible and

∥∥T −1
ϕ

∥∥ �
(
δ − δΛ

Tϕ

)−1
.

Proof. An easy computation shows that∥∥Tϕzn − ϕ̃(λn)z
n
∥∥2 = ∥∥Tϕzn

∥∥2 − 2 Re ϕ̃(λn)
〈
Tϕzn, zn

〉 + ∣∣ϕ̃(λn)
∣∣2

�
∥∥ϕzn

∥∥2
L2(T)

− 2 Re ϕ̃(λn)ϕ̂(0) + ∣∣ϕ̃(λn)
∣∣2

= |̂ϕ̂|2(0) − 2 Re ϕ̃(λn)ϕ̂(0) + ∣∣ϕ̃(λn)
∣∣2

,

from which by replacing ϕ with ϕ̄ and by considering that T �
ϕ = Tϕ̄ and |T̃ϕ(z)| = |T̃ �

ϕ (z)|, we
also have ∥∥T �

ϕ zn − ˜̄ϕ(λn)z
n
∥∥2 � |̂ϕ̂|2(0) − 2 Re ϕ̃(λn)ϕ̂(0) + ∣∣ϕ̃(λn)

∣∣2
.

Now, by considering the conditions δ > νΛ
ϕ and (11), and by applying Lemma 2.1 and Theo-

rem 3.4, we have the desired result. �
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