showed myocardial hypertrophy and granular appearance of the myocardium should be considered in the diagnosis of CA. Cardiac magnetic resonance imaging is valuable in the diagnosis of CA.

GW26-e2244
Gene Mutations in Chinese with Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy—a cohort registry study
Xiaoliang Qiu,1 Xin Liu,1 Cuiyan Li,2 Xuyang Qin,1 Tianqiang Zhu,1 Fujun Wang,1 Li Zhang,1 Dayi Hu,1 Yuxin Fan,1 Wenling Liu1
1Heart Center, Peking University People's Hospital; 2First Affiliated Hospital of Tsinghua University; 3Tujia Miao Zizhizhou People's Hospital; 4Main Line Health Heart Center, Philadelphia, Pennsylvania, U.S.A; 5Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, U.S.A

OBJECTIVES
Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is an inherited cardiac disease associated with an increased risk of arrhythmic sudden death. Mutations in desmosomal genes and some extra-desmosomal genes have been identified to associate with ARVD/C. Previously we identified 5 novel plakophilin (PKP2) mutations in a cohort of Chinese patients with ARVD/C. Our present study is to determine the prevalence of other associated gene mutations in this ARVD/C registry study and explore the potential genotype-phenotype relationship.

METHODS
Genotypic and phenotypic profiles were studied in a cohort of 22 symptomatic Han Chinese with clinical diagnosis of or suspected ARVD/C according to modified international Task Force criteria in 2010. Direct sequencing of 5 desmosomal genes and 3 extra-desmosomal genes was performed by 3730XL DNA Analyzer.

RESULTS
22 mutations including 13 novel (13/22, 59.1%) in 5 desmosomal genes PKP2, Desmplakin (DSP), Desmoglein-2 (DSG2), Desmocollin-2 (DSC2), Plakoglobin (JUP) were identified in 20 (20 of 32, 55.6%) patients in our cohort. No mutations were found in extra-desmosomal genes. Among 32 patients, 11 (1 of 32, 34.4%) patients have PKP2 mutations, 3 (9.4%) DSP, 3 (9.4%) DSG2, 6 (18.8%) DSC2 and 4 (12.5%) JUP. Multiple mutations were found in 6 subjects (6 of 32, 18.7%). In which, 3 have PKP2 mutation, 3 DSC2, 3 DSP and 3 JUP. Genotype-phenotype analysis indicates compound multiple mutations may predict major structural abnormalities.

CONCLUSIONS
PKP2 mutation is the most common gene mutations in our ARVD/C cohort. A higher percentage of DSC2 and JUP mutations were identified in the cohort compared with previous reports. Compound multiple mutations are common and may indicate major structural abnormalities. Extra-desmosomal gene mutations are rare in our Chinese ARVD/C cohort.

GW26-e2283
Incremental Value of Contrast Echocardiography in the Diagnosis of Left Ventricular Noncompaction
Li Yuan,1 Xiaoyao Zhang,1 Xuyu Jin,2 Mingxing Xie1
1Department of Ultrasonography, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Key Laboratory; 2Oxford Echo Core Lab, NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK

OBJECTIVES
Contrast echocardiography with left ventricular opacification (LVO) can improve endocardium definition and potentially becomes supplement of conventional two-dimensional echo (2DE) in the diagnosis of noncompaction of the ventricular myocardium (NCVM). This study aimed to access the feasibility, accuracy, reproducibility of LVO & its incremental value than 2DE in NCVM diagnosis.

METHODS
LVO & 2DE were performed in 85 patients (54 men, mean age 40±20 years) with suspected NCVM (NCVM Gp), and 2DE were performed in 40 healthy volunteers (Normal Gp, 20 men, mean age 40±23 years). The LV chamber size and LV ejection fraction derived from Biplane Simpson’s formula were compared among LVO-NCVM Gp, 2DE-NCVM Group & 2DE-Normal Gp. The location and extent of NCVM were evaluated based on AHA/ACA 16 segment model for LV segmentation, and the thickness ratio of noncompacted to compacted myocardium (NCR) were assessed on LVO & 2DE by 2 independently blinded experienced echo-cardiologists.

RESULTS
(1) Compared with the Normal Gp, the NCVM Gp showed larger LVEDV (89.8±11.6ml vs. 45.1±15.3ml), LVEDV (121.1±15.5ml vs. 95.1±14.8), LVEFS (43.0±3.44mm vs. 33.4±0.4mm), LVEFS (74.3±3.94ml vs. 44.4±4.3ml), lower LVEF (40.8±13.2% vs. 65.6±7.1%), and E/A ratio (0.82±0.32 vs. 1.62±0.5) using 2DE method (p<0.05).
(2) Within the NCVM Gp, compared with the values from 2DE method, LVEDV (65.2±7.8ml vs. 58.9±11.6ml), LVEDV (162±14.8ml vs. 121.1±15.5ml), LVEFS (47.8±5.67mm vs. 43.0±3.44mm), LVEFS (84.7±2.46ml vs. 74.3±3.94ml) derived from LVO method were larger and LVEF (38.2±12.4 vs. 40.8±13.2) on LVO was slightly lower (p<0.05).
(3) Among the whole 1360 LV segments in NCVM Gp, there were more segments adequately visualized for analysis on LVO than on 2DE (1278 vs. 1143, 93.97% vs. 86.99%). There were no more noncompaction areas detected on LVO than on 2DE (314 vs. 239, 29.09% vs. 19.26%). Of the 921 segments interpreted as normal on 2DE, 52 segments (5.65%) were noncompacted on LVO. NCVM on LVO were majorly located in medium (53.18%), apical (46.15%) segments and lateral wall (99.81%); rarely involved in basal segment (0.64%).
(4) NCR on LVO was greater than that on 2DE (4.21±1.3 vs. 3.3±1.2, P<0.0001), but they are highly related and both showed excellent interobserver consistency. The coefficient of inter-observer variability of NCR was slightly smaller using LVO than 2DE (5.2% vs. 6.6%).

CONCLUSIONS
Contrast echocardiography can clinically improve the diagnosis of NCVM in accuracy, sensitivity & reproducibility, and act as a useful supplement to the routine two-dimensional transthoracic echo.